Triangle-free distance-regular graphs

Yeh-jong Pan · Min-hsin Lu · Chih-wen Weng

Received: 16 March 2006 / Accepted: 2 April 2007 / Published online: 24 May 2007 © Springer Science+Business Media, LLC 2007

Abstract Let Γ denote a distance-regular graph with diameter $d \ge 3$. By a *parallelogram of length* 3, we mean a 4-tuple xyzw consisting of vertices of Γ such that $\partial(x, y) = \partial(z, w) = 1$, $\partial(x, z) = 3$, and $\partial(x, w) = \partial(y, w) = \partial(y, z) = 2$, where ∂ denotes the path-length distance function. Assume that Γ has intersection numbers $a_1 = 0$ and $a_2 \ne 0$. We prove that the following (i) and (ii) are equivalent. (i) Γ is Q-polynomial and contains no parallelograms of length 3; (ii) Γ has classical parameters (d, b, α, β) with b < -1. Furthermore, suppose that (i) and (ii) hold. We show that each of $b(b+1)^2(b+2)/c_2$, $(b-2)(b-1)b(b+1)/(2+2b-c_2)$ is an integer and that $c_2 \le b(b+1)$. This upper bound for c_2 is optimal, since the Hermitian forms graph Her₂(d) is a triangle-free distance-regular graph that satisfies $c_2 = b(b+1)$.

Keywords Distance-regular graph $\cdot Q$ -polynomial \cdot Classical parameters

1 Introduction

Let Γ denote a distance-regular graph with diameter $d \ge 3$ (see Sect. 2 for formal definitions). It is known that if Γ has classical parameters, then Γ is Q-polynomial [2, Corollary 8.4.2]. The converse is not true, since an ordinary *n*-gon has the Q-polynomial property, but is without classical parameters [2, Table 6.6]. Many authors prove the converse under various additional assumptions. Indeed, assume that Γ is Q-polynomial. Then Brouwer, Cohen, and Neumaier [2, Theorem 8.5.1] show that

Y.-j. Pan (⊠) · M.-h. Lu · C.-w. Weng

Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road Hsinchu, Taiwan 30010, Taiwan e-mail: yjp.9222803@nctu.edu.tw

Work partially supported by the National Science Council of Taiwan, R.O.C.

if Γ is a near polygon with the intersection number $a_1 \neq 0$, then Γ has classical parameters. Weng generalizes this result with a weaker assumption, without kites of length 2 or length 3 in Γ , to replace the near polygon assumption [10, Lemma 2.4]. For the complement case $a_1 = 0$, Weng shows that Γ has classical parameters if (i) Γ contains no parallelograms of length 3 and no parallelograms of length 4; (ii) Γ has the intersection number $a_2 \neq 0$; and (iii) Γ has diameter $d \ge 4$ [11, Theorem 2.11]. Our first theorem improves the above result.

Theorem 1.1 Let Γ denote a distance-regular graph with diameter $d \ge 3$ and intersection numbers $a_1 = 0$ and $a_2 \ne 0$. Then the following (i)–(iii) are equivalent:

- (i) Γ is Q-polynomial and contains no parallelograms of length 3.
- (ii) Γ is Q-polynomial and contains no parallelograms of any length *i* for $3 \le i \le d$.
- (iii) Γ has classical parameters (d, b, α, β) with b < -1.

Many authors study distance-regular graph Γ with $a_1 = 0$ and other additional assumptions. For example, Miklavič assumes that Γ is Q-polynomial and shows that Γ is 1-homogeneous [6]; Koolen and Moulton assume that Γ has degree 8, 9, or 10 and show that there are finitely many such graphs [5]; Jurišić, Koolen, and Miklavič assume that Γ has an eigenvalue with multiplicity equal to the valency, $a_2 \neq 0$, and the diameter $d \geq 4$ to show that $a_4 = 0$ and Γ is 1-homogeneous [4]. In the second theorem, we assume that Γ has classical parameters and obtain the following:

Theorem 1.2 With the notation and assumptions of Theorem 1.1, suppose that (i)–(iii) hold. Then each of

$$\frac{b(b+1)^2(b+2)}{c_2}, \qquad \frac{(b-2)(b-1)b(b+1)}{2+2b-c_2}$$
(1.1)

is an integer. Moreover,

$$c_2 \le b(b+1).$$
 (1.2)

To conclude the paper, we give a class of triangle-free distance-regular graphs, each satisfying the equality in (1.2).

2 Preliminaries

In this section, we review some definitions and basic concepts concerning distanceregular graphs. See Bannai and Ito [1] or Terwilliger [8] for more background information.

Let $\Gamma = (X, R)$ denote a finite undirected connected graph without loops or multiple edges with vertex set *X*, edge set *R*, distance function ∂ , and diameter $d := \max\{\partial(x, y) \mid x, y \in X\}$.

For a vertex $x \in X$ and $0 \le i \le d$, set $\Gamma_i(x) = \{y \in X \mid \partial(x, y) = i\}$. Γ is said to be *distance-regular* whenever for all integers $0 \le h, i, j \le d$ and all vertices $x, y \in X$ with $\partial(x, y) = h$, the number

$$p_{ij}^h = \left| \left\{ z \in X \mid z \in \Gamma_i(x) \cap \Gamma_j(y) \right\} \right|$$

is independent of *x*, *y*. The constants p_{ij}^h are known as the *intersection numbers* of Γ . For convenience, set $c_i := p_{1i-1}^i$ for $1 \le i \le d$, $a_i := p_{1i}^i$ for $0 \le i \le d$, $b_i := p_{1i+1}^i$ for $0 \le i \le d - 1$, and put $b_d := 0$, $c_0 := 0$, $k := b_0$. Note that *k* is called the valency of Γ . From the definition of p_{ij}^h it is immediate that $b_i \ne 0$ for $0 \le i \le d - 1$ and $c_i \ne 0$ for $1 \le i \le d$. Moreover,

$$k = a_i + b_i + c_i \quad \text{for } 0 \le i \le d. \tag{2.1}$$

From now on we assume that Γ is distance-regular with diameter $d \ge 3$.

Let \mathbb{R} denote the real number field. Let $Mat_X(\mathbb{R})$ denote the algebra of all matrices over \mathbb{R} with the rows and columns indexed by the elements of *X*. For $0 \le i \le d$, let A_i denote the matrix in $Mat_X(\mathbb{R})$ defined by the rule

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } \partial(x, y) = i, \\ 0 & \text{if } \partial(x, y) \neq i \end{cases} \quad \text{for } x, y \in X.$$

We call A_i the *distance matrices* of Γ . We have

$$A_0 = I, \tag{2.2}$$

 $A_0 + A_1 + \dots + A_d = J$, where J = all 1's matrix, (2.3)

$$A_i^{t} = A_i \quad \text{for } 0 \le i \le d$$
, where A_i^{t} means the transpose of A_i , (2.4)

$$A_{i}A_{j} = \sum_{h=0}^{a} p_{ij}^{h}A_{h} \quad \text{for } 0 \le i, j \le d,$$
(2.5)

$$A_i A_j = A_j A_i \quad \text{for } 0 \le i, j \le d.$$
(2.6)

Let *M* denote the subspace of $Mat_X(\mathbb{R})$ spanned by A_0, A_1, \ldots, A_d . Then *M* is a commutative subalgebra of $Mat_X(\mathbb{R})$ and is known as the *Bose–Mesner algebra* of Γ . By [2, p. 59, 64], *M* has a second basis E_0, E_1, \ldots, E_d such that

$$E_0 = |X|^{-1} J, (2.7)$$

$$E_i E_j = \delta_{ij} E_i \quad \text{for } 0 \le i, j \le d, \tag{2.8}$$

$$E_0 + E_1 + \dots + E_d = I,$$
 (2.9)

$$E_i^{\mathsf{t}} = E_i \quad \text{for } 0 \le i \le d. \tag{2.10}$$

The E_0, E_1, \ldots, E_d are known as the *primitive idempotents* of Γ , and E_0 is known as the *trivial* idempotent. Let *E* denote any primitive idempotent of Γ . Then we have

$$E = |X|^{-1} \sum_{i=0}^{d} \theta_i^* A_i$$
 (2.11)

for some $\theta_0^*, \theta_1^*, \dots, \theta_d^* \in \mathbb{R}$ called the *dual eigenvalues* associated with *E*.

Set $V = \mathbb{R}^{|X|}$ (column vectors) and view the coordinates of V as being indexed by X. Then the Bose–Mesner algebra M acts on V by left multiplication. We call V

Deringer

the *standard module* of Γ . For each vertex $x \in X$, set

$$\hat{x} = (0, 0, \dots, 0, 1, 0, \dots, 0)^{t},$$
 (2.12)

where the 1 is in coordinate x. Also, let \langle , \rangle denote the dot product

$$\langle u, v \rangle = u^{t}v \quad \text{for } u, v \in V.$$
 (2.13)

Then referring to the primitive idempotent *E* in (2.11), from (2.10–2.13) we compute that, for $x, y \in X$,

$$\langle E\hat{x}, \hat{y} \rangle = |X|^{-1} \theta_i^* \tag{2.14}$$

where $i = \partial(x, y)$.

Let \circ denote the entry-wise multiplication in Mat_{*X*}(\mathbb{R}). Then

$$A_i \circ A_j = \delta_{ij} A_i$$
 for $0 \le i, j \le d$,

so *M* is closed under \circ . Thus there exists $q_{ij}^k \in \mathbb{R}$ for $0 \le i, j, k \le d$ such that

$$E_i \circ E_j = |X|^{-1} \sum_{k=0}^{d} q_{ij}^k E_k \text{ for } 0 \le i, j \le d.$$

 Γ is said to be *Q*-polynomial with respect to the given ordering E_0, E_1, \ldots, E_d of the primitive idempotents if, for all integers $0 \le h, i, j \le d, q_{ij}^h = 0$ (resp. $q_{ij}^h \ne 0$) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two. Let E denote any primitive idempotent of Γ . Then Γ is said to be *Q*-polynomial with respect to E whenever there exists an ordering $E_0, E_1 = E, \ldots, E_d$ of the primitive idempotents of Γ with respect to which Γ is *Q*-polynomial. If Γ is *Q*-polynomial with respect to E, then the associated dual eigenvalues are distinct [7, p. 384].

The following theorem about the Q-polynomial property will be used in this paper.

Theorem 2.1 [8, Theorem 3.3] Assume that Γ is Q-polynomial with respect to a primitive idempotent E, and let $\theta_0^*, \ldots, \theta_d^*$ denote the corresponding dual eigenvalues. Then the following (i)–(ii) hold:

(i) For all integers $1 \le h \le d$, $0 \le i, j \le d$ and for all $x, y \in X$ such that $\partial(x, y) = h$,

$$\sum_{\substack{z \in X, \ \partial(x,z)=i\\ \partial(y,z)=j}} E\hat{z} - \sum_{\substack{z \in X, \ \partial(x,z)=j\\ \partial(y,z)=i}} E\hat{z} = p_{ij}^h \frac{\theta_i^* - \theta_j^*}{\theta_0^* - \theta_h^*} (E\hat{x} - E\hat{y}).$$
(2.15)

(ii) For an integer $3 \le i \le d$,

$$\theta_{i-2}^* - \theta_{i-1}^* = \sigma \left(\theta_{i-3}^* - \theta_i^* \right)$$
 (2.16)

for an appropriate $\sigma \in \mathbb{R} \setminus \{0\}$.

🖄 Springer

 Γ is said to have *classical parameters* (d, b, α, β) whenever the intersection numbers of Γ satisfy

$$c_i = \begin{bmatrix} i \\ 1 \end{bmatrix} \left(1 + \alpha \begin{bmatrix} i - 1 \\ 1 \end{bmatrix} \right) \quad \text{for } 0 \le i \le d, \tag{2.17}$$

$$b_{i} = \left(\begin{bmatrix} d \\ 1 \end{bmatrix} - \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \left(\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \quad \text{for } 0 \le i \le d, \tag{2.18}$$

where

$$\begin{bmatrix} i \\ 1 \end{bmatrix} := 1 + b + b^2 + \dots + b^{i-1}.$$
 (2.19)

Suppose that Γ has classical parameters (d, b, α, β) . Combining (2.17–2.19) with (2.1), we have

$$a_{i} = \begin{bmatrix} i \\ 1 \end{bmatrix} \left(\beta - 1 + \alpha \left(\begin{bmatrix} d \\ 1 \end{bmatrix} - \begin{bmatrix} i \\ 1 \end{bmatrix} - \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \right)$$
$$= \begin{bmatrix} i \\ 1 \end{bmatrix} \left(a_{1} + \alpha \left(1 - \begin{bmatrix} i \\ 1 \end{bmatrix} - \begin{bmatrix} i - 1 \\ 1 \end{bmatrix} \right) \right) \quad \text{for } 0 \le i \le d.$$
(2.20)

Note that if Γ has classical parameters (d, b, α, β) and $d \ge 3$, then b is an integer and $b \ne 0, -1$ [2, Proposition 6.2.1]. Γ is said to have *classical parameters* if Γ has classical parameters (d, b, α, β) for some constants d, b, α, β . It is shown that a distance-regular graph with classical parameters has the Q-polynomial property [2, Theorem 8.4.1]. Terwilliger generalizes this to the following:

Theorem 2.2 [8, Theorem 4.2] Let Γ denote a distance-regular graph with diameter $d \ge 3$. Choose $b \in \mathbb{R} \setminus \{0, -1\}$. Then the following (i)–(ii) are equivalent:

(i) Γ is *Q*-polynomial with associated dual eigenvalues $\theta_0^*, \theta_1^*, \ldots, \theta_d^*$ satisfying

$$\theta_i^* - \theta_0^* = \left(\theta_1^* - \theta_0^*\right) \begin{bmatrix} i\\1 \end{bmatrix} b^{1-i} \quad \text{for } 1 \le i \le d.$$

(ii) Γ has classical parameters (d, b, α, β) for some real constants α, β .

Pick an integer $2 \le i \le d$. By a *parallelogram* of length *i* in Γ we mean a 4-tuple *xyzw* of vertices of *X* such that (see Fig. 1)

Fig. 1 A parallelogram of length *i*

Deringer

$$\partial(x, y) = \partial(z, w) = 1,$$
 $\partial(x, z) = i,$
 $\partial(x, w) = \partial(y, w) = \partial(y, z) = i - 1.$

3 Proof of Theorem 1.1

In this section we prove our first main theorem. We start with a lemma.

Lemma 3.1 [6, Theorem 5.2(i)] Let Γ denote a *Q*-polynomial distance-regular graph with diameter $d \ge 3$ and intersection number $a_1 = 0$. Fix an integer *i* for $2 \le i \le d$ and three vertices *x*, *y*, *z* such that

$$\partial(x, y) = 1,$$
 $\partial(y, z) = i - 1,$ $\partial(x, z) = i.$

Then the quantity

$$s_i(x, y, z) := \left| \Gamma_{i-1}(x) \cap \Gamma_{i-1}(y) \cap \Gamma_1(z) \right|$$
(3.1)

is equal to

$$a_{i-1} \frac{(\theta_0^* - \theta_{i-1}^*)(\theta_2^* - \theta_i^*) - (\theta_1^* - \theta_{i-1}^*)(\theta_1^* - \theta_i^*)}{(\theta_0^* - \theta_{i-1}^*)(\theta_{i-1}^* - \theta_i^*)}.$$
(3.2)

In particular, (3.1) is independent of the choice of the vertices x, y, z.

Proof Let $s_i(x, y, z)$ denote the expression in (3.1) and set

$$\ell_i(x, y, z) = \left| \Gamma_i(x) \cap \Gamma_{i-1}(y) \cap \Gamma_1(z) \right|.$$

Note that

$$s_i(x, y, z) + \ell_i(x, y, z) = a_{i-1}.$$
 (3.3)

By (2.15) we have

$$\sum_{\substack{w \in X, \ \partial(y,w) = i-1\\ \partial(z,w) = 1}} E\hat{w} - \sum_{\substack{w \in X, \ \partial(y,w) = 1\\ \partial(z,w) = i-1}} E\hat{w} = a_{i-1} \frac{\theta_{i-1}^* - \theta_1^*}{\theta_0^* - \theta_{i-1}^*} (E\hat{y} - E\hat{z}).$$
(3.4)

Taking the inner product of (3.4) with \hat{x} and using (2.14) and the assumption $a_1 = 0$, we obtain

$$s_i(x, y, z)\theta_{i-1}^* + \ell_i(x, y, z)\theta_i^* - a_{i-1}\theta_2^* = a_{i-1}\frac{\theta_{i-1}^* - \theta_1^*}{\theta_0^* - \theta_{i-1}^*} (\theta_1^* - \theta_i^*).$$
(3.5)

Solving $s_i(x, y, z)$ by using (3.3) and (3.5), we get (3.2).

By Lemma 3.1 $s_i(x, y, z)$ is a constant for any vertices x, y, z with $\partial(x, y) = 1$, $\partial(y, z) = i - 1$, $\partial(x, z) = i$.

Definition 3.2 Let s_i denote the expression in (3.1). Note that $s_i = 0$ if and only if Γ contains no parallelograms of length *i*.

Lemma 3.3 Let Γ denote a distance-regular graph with classical parameters (d, b, α, β) . Suppose that intersection numbers $a_1 = 0$ and $a_2 \neq 0$. Then $\alpha < 0$ and b < -1.

Proof Since $a_1 = 0$ and $a_2 \neq 0$, from (2.19) and (2.20) we have

$$-\alpha(b+1)^2 = a_2 - (b+1)a_1 = a_2 > 0.$$
(3.6)

Hence

$$\alpha < 0. \tag{3.7}$$

By direct calculation from (2.17) we get

$$(c_2 - b)(b^2 + b + 1) = c_3 > 0.$$
 (3.8)

Since

$$b^2 + b + 1 > 0, (3.9)$$

(3.8) implies that

$$c_2 > b.$$
 (3.10)

Using (2.17) and (3.10), we get

$$\alpha(1+b) = c_2 - b - 1 \ge 0. \tag{3.11}$$

Hence, b < -1 by (3.7), since $b \neq -1$.

Proof of Theorem 1.1 (ii) \Rightarrow (i) This is clear.

(iii) \Rightarrow (ii) Suppose that Γ has classical parameters. Then Γ is Q-polynomial with associated dual eigenvalues $\theta_0^*, \theta_1^*, \dots, \theta_d^*$ satisfying

$$\theta_i^* - \theta_0^* = (\theta_1^* - \theta_0^*) \begin{bmatrix} i \\ 1 \end{bmatrix} b^{1-i} \quad \text{for } 1 \le i \le d.$$
(3.12)

We need to prove that $s_i = 0$ for $3 \le i \le d$. To compute s_i in (3.2), observe from (3.12) that

$$\theta_{i-1}^* - \theta_i^* = (\theta_0^* - \theta_1^*) b^{1-i} \quad \text{for } 1 \le i \le d.$$
 (3.13)

Summing (3.13) for consecutive *i*, we find

$$(\theta_1^* - \theta_i^*) = (\theta_0^* - \theta_1^*)(b^{-1} + b^{-2} + \dots + b^{1-i}),$$
(3.14)

$$(\theta_1^* - \theta_{i-1}^*) = (\theta_0^* - \theta_1^*) (b^{-1} + b^{-2} + \dots + b^{2-i}), \qquad (3.15)$$

$$(\theta_2^* - \theta_i^*) = (\theta_0^* - \theta_1^*)(b^{-2} + b^{-3} + \dots + b^{1-i}), \qquad (3.16)$$

🖄 Springer

$$(\theta_0^* - \theta_{i-1}^*) = (\theta_0^* - \theta_1^*) (b^0 + b^{-1} + \dots + b^{2-i})$$
(3.17)

for $3 \le i \le d$. Evaluating (3.2) by using (3.13–3.17), we find that $s_i = 0$ for $3 \le i \le d$. (i) \Rightarrow (iii) Note that $s_3 = 0$. Then by setting i = 3 in (3.2) and using the assumption

 $a_2 \neq 0$, we find

$$(\theta_0^* - \theta_2^*)(\theta_2^* - \theta_3^*) - (\theta_1^* - \theta_2^*)(\theta_1^* - \theta_3^*) = 0.$$
(3.18)

Set

$$b := \frac{\theta_1^* - \theta_0^*}{\theta_2^* - \theta_1^*}.$$
(3.19)

Then

$$\theta_2^* = \theta_0^* + \frac{(\theta_1^* - \theta_0^*)(b+1)}{b}.$$
(3.20)

Eliminating θ_2^* , θ_3^* in (3.18) by using (3.20) and (2.16), we have

$$\frac{-(\theta_1^* - \theta_0^*)^2(\sigma b^2 + \sigma b + \sigma - b)}{\sigma b^2} = 0$$
(3.21)

for an appropriate $\sigma \in \mathbb{R} \setminus \{0\}$. Since $\theta_1^* \neq \theta_0^*$, we have

$$\sigma b^2 + \sigma b + \sigma - b = 0$$

and hence

$$\sigma^{-1} = \frac{b^2 + b + 1}{b}.$$
 (3.22)

By Theorem 2.2, to prove that Γ has classical parameter, it suffices to prove that

$$\theta_i^* - \theta_0^* = (\theta_1^* - \theta_0^*) \begin{bmatrix} i \\ 1 \end{bmatrix} b^{1-i} \quad \text{for } 1 \le i \le d.$$
(3.23)

We prove (3.23) by induction on *i*. The case i = 1 is trivial, and the case i = 2 is from (3.20). Now suppose that $i \ge 3$. Then (2.16) implies

$$\theta_i^* = \sigma^{-1} \left(\theta_{i-1}^* - \theta_{i-2}^* \right) + \theta_{i-3}^* \quad \text{for } 3 \le i \le d.$$
(3.24)

Evaluating (3.24), using (3.22) and the induction hypothesis, we find that $\theta_i^* - \theta_0^*$ is as in (3.23). Therefore, Γ has classical parameters (d, b, α, β) for some scalars α, β . Note that b < -1 by Lemma 3.3.

4 Proof of Theorem 1.2

Recall that a sequence x, y, z of vertices of Γ is geodetic whenever

$$\partial(x, y) + \partial(y, z) = \partial(x, z).$$

Deringer

Recall that a sequence x, y, z of vertices of Γ is *weak-geodetic* whenever

$$\partial(x, y) + \partial(y, z) \le \partial(x, z) + 1.$$

Definition 4.1 A subset $\Omega \subseteq X$ is *weak-geodetically closed* if, for any weak-geodetic sequence x, y, z of Γ ,

$$x, z \in \Omega \Longrightarrow y \in \Omega.$$

Theorem 4.2 [12, Proposition 6.7, Theorem 4.6] Let $\Gamma = (X, R)$ denote a distanceregular graph with diameter $d \ge 3$. Assume that the intersection numbers $a_1 = 0$ and $a_2 \ne 0$. Suppose that Γ contains no parallelograms of length 3. Then, for each pair of vertices $v, w \in X$ at distance $\partial(v, w) = 2$, there exists a weak-geodetically closed subgraph Ω of diameter 2 in Γ containing v, w. Furthermore, Ω is strongly regular with intersection numbers

$$a_i(\Omega) = a_i(\Gamma),\tag{4.1}$$

$$c_i(\Omega) = c_i(\Gamma),\tag{4.2}$$

$$b_i(\Omega) = a_2(\Gamma) + c_2(\Gamma) - a_i(\Omega) - c_i(\Omega)$$
(4.3)

for $0 \le i \le 2$.

Corollary 4.3 Let Γ denote a distance-regular graph with classical parameters (d, b, α, β) , where $d \ge 3$. Assume that Γ has intersection numbers $a_1 = 0$ and $a_2 \ne 0$. Then there exists a weak-geodetically closed subgraph Ω of diameter 2. Furthermore, the intersection numbers of Ω satisfy

$$b_0(\Omega) = (1+b)(1-\alpha b), \tag{4.4}$$

$$b_1(\Omega) = b(1 - \alpha - \alpha b), \tag{4.5}$$

$$c_2(\Omega) = (1+b)(1+\alpha),$$
 (4.6)

$$a_2(\Omega) = -(1+b)^2 \alpha, \tag{4.7}$$

$$|\Omega| = \frac{(1+b)(b\alpha-2)(b\alpha-1-\alpha)}{(1+\alpha)}.$$
(4.8)

Proof Note that b < -1 by Lemma 3.3 and Γ contains no parallelograms of length 3 by Theorem 1.1. Hence there exists a weak-geodetically closed subgraph Ω of diameter 2 by Theorem 4.2. By applying (2.17), (2.18), and (2.20) to (4.1–4.3), we immediately have (4.4–4.7). Note that $|\Omega| = 1 + k(\Omega) + k(\Omega)b_1(\Omega)/c_2(\Omega)$. Equation (4.8) follows from this and from (4.4–4.6).

Proposition 4.4 ([12, Proposition 3.2]) Let Γ denote a distance-regular graph with diameter $d \ge 3$. Suppose that there exists a weak-geodetically closed subgraph Ω of Γ with diameter 2. Then the intersection numbers of Γ satisfy the following inequality

$$a_3 \ge a_2(c_2 - 1) + a_1. \tag{4.9}$$

🖄 Springer

Corollary 4.5 Let Γ denote a distance-regular graph with classical parameters (d, b, α, β) , where $d \ge 3$. Suppose that the intersection numbers $a_1 = 0$ and $a_2 \ne 0$. Then

$$c_2 \le b^2 + b + 2. \tag{4.10}$$

Proof Applying $a_1 = 0$ in (2.20), we have that $a_3 = -\alpha (b^2 + b + 1)(b+1)^2$. Then by applying (4.9), using Lemma 3.3, (4.1), and (4.7), the result immediately follows. \Box

We will decrease the upper bound of c_2 in (4.10). We need the following lemma.

Lemma 4.6 Let Γ denote a distance-regular graph with classical parameters (d, b, α, β) , where $d \ge 3$. Assume that the intersection numbers $a_1 = 0$ and $a_2 \ne 0$. Let Ω be a weak-geodetically closed subgraph of diameter 2 in Γ . Let r > s denote the nontrivial eigenvalues of the strongly regular graph Ω . Then the following (i)–(ii) hold:

(i) The multiplicity of r is

$$f = \frac{(b\alpha - 1)(b\alpha - 1 - \alpha)(b\alpha - 1 + \alpha)}{(\alpha - 1)(\alpha + 1)}.$$
(4.11)

(ii) The multiplicity of s is

$$g = \frac{-b(b\alpha - 1)(b\alpha - 2)}{(\alpha - 1)(\alpha + 1)}.$$
(4.12)

Proof From [9, Theorem 21.1] we have

$$f = \frac{1}{2} \left\{ v - 1 + \frac{(v - 1)(c_2 - a_1) - 2k}{\sqrt{(c_2 - a_1)^2 + 4(k - c_2)}} \right\},\tag{4.13}$$

$$g = \frac{1}{2} \left\{ v - 1 - \frac{(v - 1)(c_2 - a_1) - 2k}{\sqrt{(c_2 - a_1)^2 + 4(k - c_2)}} \right\},\tag{4.14}$$

where $v = |\Omega|$, and k is the valency of Ω . Note that $c_2(\Omega) = (1+b)(1+\alpha)$ by (2.17), $k(\Omega) = (1+b)(1-\alpha b)$ by (4.4), and $v = (1+b)(b\alpha - 2)(b\alpha - 1-\alpha)/(1+\alpha)$ by (4.8). Now (4.11) and (4.12) follow from (4.13) and (4.14).

Corollary 4.7 Let Γ denote a distance-regular graph with classical parameters (d, b, α, β) , where $d \ge 3$. Assume that Γ has intersection numbers $a_1 = 0$ and $a_2 \ne 0$. Then

$$\frac{b(b+1)^2(b+2)}{c_2},\tag{4.15}$$

$$\frac{(b-2)(b-1)b(b+1)}{2+2b-c_2} \tag{4.16}$$

are both integers.

🖉 Springer

Proof Let *f* and *g* be as in (4.11–4.12). Set $\rho = \alpha(1 + b)$. Note that ρ is an integer, since $\rho = c_2 - 1 - b$. Then both

$$f + g - (1 - 3b^2 - b\rho + b^2\rho - b^3) = \frac{2b + 5b^2 + 4b^3 + b^4}{1 + b + \rho} = \frac{b(b+1)^2(b+2)}{c_2}$$

and

$$f - g - (1 - 3b^2 - b\rho + b^2\rho + b^3) = \frac{2b - b^2 - 2b^3 + b^4}{-1 - b + \rho} = \frac{(b - 2)(b - 1)b(b + 1)}{c_2 - 2 - 2b}$$

are integers, since f, g, b, and ρ are integers.

Proposition 4.8 Let Γ denote a distance-regular graph with classical parameters (d, b, α, β) , where $d \ge 3$. Assume that Γ has intersection numbers $a_1 = 0$ and $a_2 \ne 0$. Then $c_2 \le b(b+1)$.

Proof Recall that $c_2 \le b^2 + b + 2$ by (4.10). First, suppose that

$$c_2 = b^2 + b + 2. \tag{4.17}$$

Then the integral condition (4.15) becomes

$$b^2 + 3b + \frac{-4b}{b^2 + b + 2}.$$
(4.18)

Since $0 < -4b < b^2 + b + 2$ for $b \le -5$, we have $-4 \le b \le -2$. For b = -4 or -3, expression (4.18) is not an integer. The remaining case b = -2 implies $\alpha = -5$ by (4.6), v = 28 by (4.8), and g = 6 by (4.12). This contradicts to $v \le \frac{1}{2}g(g+3)$ [9, Theorem 21.4]. Hence $c_2 \ne b^2 + b + 2$. Next, suppose that $c_2 = b^2 + b + 1$. Then (4.16) becomes

$$-b^2 + b + 1 + \frac{1}{b^2 - b - 1}.$$
(4.19)

It fails to be an integer, since b < -1.

Proof of Theorem 1.2 The results come from Corollary 4.7 and Proposition 4.8. \Box

Example 4.9 [3] Hermitian forms graph Her₂(*d*) is a distance-regular graph with classical parameters (d, b, α, β) with $b = -2, \alpha = -3$, and $\beta = -((-2)^d + 1)$, which satisfies $a_1 = 0, a_2 \neq 0$, and $c_2 = b(b + 1)$.

Example 4.10 [9, p. 237] Gewirtz graph is a distance-regular graph with diameter 2 and intersection numbers $a_1 = 0$, $c_2 = 2$, k = 10, which can be written as classical parameters (d, b, α, β) with d = 2, b = -3, $\alpha = -2$, $\beta = -5$, so we have $c_2 = \frac{(b+1)^2}{2}$.

Conjecture 4.11 (Gewirtz graph does not grow) *There is no distance-regular graph* with classical parameters $(d, -3, -2, -\frac{1+(-3)^d}{2})$, where $d \ge 3$.

🖄 Springer

There is a conjecture similar to Conjecture 4.11 for the complement part in $a_1 \neq 0$. See [13, Theorem 10.3] for details.

Acknowledgement The authors thank Paul Terwilliger for reading the first manuscript and giving valuable suggestions.

References

- 1. Bannai, E., & Ito, T. (1984). Algebraic combinatorics I: association schemes. Menlo Park: Benjamin/Cummings.
- 2. Brouwer, A. E., Cohen, A. M., & Neumaier, A. (1989). Distance-regular graphs. Berlin: Springer.
- Ivanov, A. A., & Shpectorov, S. V. (1989). Characterization of the association schemes of Hermitian forms over *GF*(2²). *Geometriae Dedicata*, 30, 23–33.
- 4. Jurišić, A., Koolen, J., & Miklavič, Š. On triangle-free distance-regular graphs with an eigenvalue multiplicity equal to the valency. Preprint.
- Koolen, J. H., & Moulton, V. (2004). There are finitely many triangle-free distance-regular graphs with degree 8, 9 or 10. *Journal of Algebraic Combinatorics*, 19(2), 205–217.
- Miklavič, Š. (2004). Q-polynomial distance-regular graphs with a₁ = 0. European Journal of Combinatorics, 25(7), 911–920.
- Terwilliger, P. (1992). The subconstituent algebra of an association scheme (Part I). Journal of Algebraic Combinatorics, 1, 363–388.
- Terwilliger, P. (1995). A new inequality for distance-regular graphs. *Discrete Mathematics*, 137, 319– 332.
- 9. van Lint, J. H., & Wilson, R. M. (1992). A course in combinatorics. Cambridge: Cambridge University Press.
- 10. Weng, C. (1995). Kite-free P- and Q-polynomial schemes. Graphs and Combinatorics, 11, 201-207.
- 11. Weng, C. (1997). Parallelogram-free distance-regular graphs. *Journal of Combinatorial Theory, Series B*, 71(2), 231–243.
- Weng, C. (1998). Weak-geodetically closed subgraphs in distance-regular graphs. Graphs and Combinatorics, 14, 275–304.
- Weng, C. (1999). Classical distance-regular graphs of negative type. *Journal of Combinatorial Theory*, Series B, 76, 93–116.