Generalized cluster complexes via quiver representations
Bin Zhu
Tsinghua University Department of Mathematical Sciences 100084 Beijing People's Republic of China
DOI: 10.1007/s10801-007-0074-3
Abstract
We give a quiver representation theoretic interpretation of generalized cluster complexes defined by Fomin and Reading. Using d-cluster categories defined by Keller as triangulated orbit categories of (bounded) derived categories of representations of valued quivers, we define a d-compatibility degree ( -
allel - ) on any pair of “colored” almost positive real Schur roots which generalizes previous definitions on the noncolored case and call two such roots compatible, provided that their d-compatibility degree is zero. Associated to the root system Φ corresponding to the valued quiver, using this compatibility relation, we define a simplicial complex which has colored almost positive real Schur roots as vertices and d-compatible subsets as simplices. If the valued quiver is an alternating quiver of a Dynkin diagram, then this complex is the generalized cluster complex defined by Fomin and Reading.
allel - ) on any pair of “colored” almost positive real Schur roots which generalizes previous definitions on the noncolored case and call two such roots compatible, provided that their d-compatibility degree is zero. Associated to the root system Φ corresponding to the valued quiver, using this compatibility relation, we define a simplicial complex which has colored almost positive real Schur roots as vertices and d-compatible subsets as simplices. If the valued quiver is an alternating quiver of a Dynkin diagram, then this complex is the generalized cluster complex defined by Fomin and Reading.
Pages: 35–54
Keywords: keywords colored almost positive real Schur root; generalized cluster complex; $d$-cluster category; $d$-cluster tilting object; $d$-compatibility degree
Full Text: PDF
References
1. Assem, I., Brstle, T., Schiffler, R., & Todorov, G. (2006). m-cluster categories and m-replicated algebras. Preprint arXiv:math.RT/0608727.
2. Athanasiadis, C., & Tzanaki, E. (2006). Shellability and higher Cohen-Macaulay connectivity of generalized cluster complexes. Preprint arXiv:math.CO/0606018.
3. Baur, K., & Marsh, R. A geometric description of m-cluster categories. Transactions of the AMS, to appear. Preprint arXiv:math.RT/0610512.
4. Buan, A., & Marsh, R. (2006) . Cluster-tilting theory. In J. de la Peña & R. Bautista (Eds.), Trends in representation theory of algebras and related topics, contemporary mathematics (Vol. 406, p. 1-30).
5. Buan, A., Marsh, R., & Reiten, I. (2004). Cluster mutation via quiver representations. Comment. Math. Helv., to appear. Preprint arXiv:math.RT/0412077.
6. Buan, A., Marsh, R., Reineke, M., Reiten, I., & Todorov, G. (2006). Tilting theory and cluster combinatorics. Adv. Math., 204, 572-618.
7. Caldero, P., & Chapoton, F. (2006). Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv., 81, 595-616.
8. Caldero, P., & Keller, B. From triangulated categories to cluster algebras. Invent. Math., to appear. Preprint arXiv:math.RT/0506018. J Algebr Comb (2008) 27: 35-54
9. Caldero, P., Chapoton, F., & Schiffler, R. (2006). Quivers with relations arising from clusters (An case). Trans. Am. Math. Soc., 358, 1347-1364.
10. Dlab, V., & Ringel, C. M. Indecomposable representations of graphs and algebras. Mem. Am. Math. Soc. 591 (1976).
11. Fomin, S., & Reading, N. (2004). Root system and generalized associahedra. In Lecture notes for the IAS/Park City graduate summer school in geometric combinatorics.
12. Fomin, S., & Reading, N. (2005). Generalized cluster complexes and Coxeter combinatorics. IMRN, 44, 2709-2757.
13. Fomin, S., & Zelevinsky, A. (2002). Cluster algebras I: foundations. J. Am. Math. Soc., 15(2), 497- 529.
14. Fomin, S., & Zelevinsky, A. (2003). Y-system and generalized associahedra. Ann. Math., 158, 977- 1018.
15. Fomin, S., & Zelevinsky, A. (2003). Cluster algebras II: finite type classification. Invent. Math., 154(1), 63-121.
16. Iyama, O. (2007). Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories. Adv. Math., 210(1), 22-50.
17. Iyama, O. (2005). Maximal orthogonal subcategories of triangulated categories satisfying Serre duality. Mathematisches Forschungsinstitut Oberwolfach Report, no. 6 (pp. 353-355).
18. Iyama, O., & Yoshino, Y. Mutations in triangulated categories and rigid Cohen-Macaulay modules. Preprint arXiv:math.RT/0607736.
19. Keller, B. (2005). Triangulated orbit categories. Documenta Math., 10, 551-581.
20. Keller, B., & Reiten, I. (2007). Cluster-tilted algebras are Gorenstein and stably Calabi-Yau. Adv. Math. 211(1), 123-151.
21. Koenig, S., & Zhu, B. From triangulated categories to Abelian categories-cluster tilting in a general framework. Math. Z., to appear. See also preprint arXiv:math.RT/0605100.
22. Marsh, R., Reineke, M., & Zelevinsky, A. (2003). Generalized associahedra via quiver representations. Trans. Am. Math. Soc., 355(10), 4171-4186.
23. Palu, Y. Ph.D. Thesis, in preparation.
24. Ringel, C. M. (2007). Some remarks concerning tilting modules and tilted algebras. Origin. Relevance. Future. An appendage to the Handbook of tilting theory, L. Angeleri-Hügel, D. Happel & H. Krause (Eds.). LMS Lecture Notes Series (Vol. 332). Cambridge University Press.
25. Thomas, H. (2005). Defining an m-cluster category. Preprint.
26. Zhu, B. (2007). BGP-reflection functors and cluster combinatorics. J. Pure Appl. Algebra, 209, 497- 506.
27. Zhu, B. (2006). Equivalences between cluster categories. J. Algebra, 304, 832-850.
2. Athanasiadis, C., & Tzanaki, E. (2006). Shellability and higher Cohen-Macaulay connectivity of generalized cluster complexes. Preprint arXiv:math.CO/0606018.
3. Baur, K., & Marsh, R. A geometric description of m-cluster categories. Transactions of the AMS, to appear. Preprint arXiv:math.RT/0610512.
4. Buan, A., & Marsh, R. (2006) . Cluster-tilting theory. In J. de la Peña & R. Bautista (Eds.), Trends in representation theory of algebras and related topics, contemporary mathematics (Vol. 406, p. 1-30).
5. Buan, A., Marsh, R., & Reiten, I. (2004). Cluster mutation via quiver representations. Comment. Math. Helv., to appear. Preprint arXiv:math.RT/0412077.
6. Buan, A., Marsh, R., Reineke, M., Reiten, I., & Todorov, G. (2006). Tilting theory and cluster combinatorics. Adv. Math., 204, 572-618.
7. Caldero, P., & Chapoton, F. (2006). Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv., 81, 595-616.
8. Caldero, P., & Keller, B. From triangulated categories to cluster algebras. Invent. Math., to appear. Preprint arXiv:math.RT/0506018. J Algebr Comb (2008) 27: 35-54
9. Caldero, P., Chapoton, F., & Schiffler, R. (2006). Quivers with relations arising from clusters (An case). Trans. Am. Math. Soc., 358, 1347-1364.
10. Dlab, V., & Ringel, C. M. Indecomposable representations of graphs and algebras. Mem. Am. Math. Soc. 591 (1976).
11. Fomin, S., & Reading, N. (2004). Root system and generalized associahedra. In Lecture notes for the IAS/Park City graduate summer school in geometric combinatorics.
12. Fomin, S., & Reading, N. (2005). Generalized cluster complexes and Coxeter combinatorics. IMRN, 44, 2709-2757.
13. Fomin, S., & Zelevinsky, A. (2002). Cluster algebras I: foundations. J. Am. Math. Soc., 15(2), 497- 529.
14. Fomin, S., & Zelevinsky, A. (2003). Y-system and generalized associahedra. Ann. Math., 158, 977- 1018.
15. Fomin, S., & Zelevinsky, A. (2003). Cluster algebras II: finite type classification. Invent. Math., 154(1), 63-121.
16. Iyama, O. (2007). Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories. Adv. Math., 210(1), 22-50.
17. Iyama, O. (2005). Maximal orthogonal subcategories of triangulated categories satisfying Serre duality. Mathematisches Forschungsinstitut Oberwolfach Report, no. 6 (pp. 353-355).
18. Iyama, O., & Yoshino, Y. Mutations in triangulated categories and rigid Cohen-Macaulay modules. Preprint arXiv:math.RT/0607736.
19. Keller, B. (2005). Triangulated orbit categories. Documenta Math., 10, 551-581.
20. Keller, B., & Reiten, I. (2007). Cluster-tilted algebras are Gorenstein and stably Calabi-Yau. Adv. Math. 211(1), 123-151.
21. Koenig, S., & Zhu, B. From triangulated categories to Abelian categories-cluster tilting in a general framework. Math. Z., to appear. See also preprint arXiv:math.RT/0605100.
22. Marsh, R., Reineke, M., & Zelevinsky, A. (2003). Generalized associahedra via quiver representations. Trans. Am. Math. Soc., 355(10), 4171-4186.
23. Palu, Y. Ph.D. Thesis, in preparation.
24. Ringel, C. M. (2007). Some remarks concerning tilting modules and tilted algebras. Origin. Relevance. Future. An appendage to the Handbook of tilting theory, L. Angeleri-Hügel, D. Happel & H. Krause (Eds.). LMS Lecture Notes Series (Vol. 332). Cambridge University Press.
25. Thomas, H. (2005). Defining an m-cluster category. Preprint.
26. Zhu, B. (2007). BGP-reflection functors and cluster combinatorics. J. Pure Appl. Algebra, 209, 497- 506.
27. Zhu, B. (2006). Equivalences between cluster categories. J. Algebra, 304, 832-850.