ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Stanley decompositions and partitionable simplicial complexes

Jürgen Herzog1 , Ali Soleyman Jahan1 and Siamak Yassemi3
1Universität Duisburg-Essen Fachbereich Mathematik und Informatik Campus Essen 45117 Essen Germany
3University of Tehran Department of Mathematics P.O. Box 13145448 Tehran Iran

DOI: 10.1007/s10801-007-0076-1

Abstract

We study Stanley decompositions and show that Stanley's conjecture on Stanley decompositions implies his conjecture on partitionable Cohen-Macaulay simplicial complexes. We also prove these conjectures for all Cohen-Macaulay monomial ideals of codimension 2 and all Gorenstein monomial ideals of codimension 3.

Pages: 113–125

Keywords: keywords Stanley decompositions; partitionable simplicial complexes; pretty clean modules

Full Text: PDF

References

1. Ahmad, S., & Popescu, D. (2007). Sequentially Cohen-Macaulay monomial ideals of embedding dimension four. math.AC/0702569.
2. Anwar, I., & Popescu, D. (2007). Stanley conjecture in small embedding dimension. math.AC/0702728.
3. Apel, J. (2003). On a conjecture of R. P. Stanley; part II-quotients modulo monomial ideals. Journal of Algebraic Combinatorics, 17, 57-74.
4. Björner, A., & Wachs, M. (1997). Shellable nonpure complexes and posets. I. Transactions of American Mathematical Society, 349, 3945-3975.
5. Bruns, W., & Herzog, J. (1995). On multigraded resolutions. Mathematical Proceedings of the Cambridge Philosophical Society, 118, 234-251.
6. Bruns, W., & Herzog, J. (1996). Cohen-Macaulay rings, revised ed., Cambridge Univ. Press, Cambridge.
7. Conca, A., & Herzog, J. (2003). Castelnuovo-Mumford regularity of products of ideals. Collec\?tia Matematic\check a, 54, 137-152.
8. Dress, A. (1993). A new algebraic criterion for shellability. Beiträge zur Algebra und Geometrie, 34(1), 45-55.
9. Eagon, J., & Reiner, V. (1998). Resolutions of Stanley-Reisner rings and Alexander duality. Journal of Pure and Applied Algebra, 130, 265-275.
10. Hachimori, M. Decompositions of two-dimensional simplicial complexes. Discrete Mathematics, in press.
11. Herzog, J., Hibi, T., & Zheng, X. (2004). Monomial ideals whose powers have a linear resolution. Mathematica Scandinavica, 95(1), 23-32.
12. Herzog, J., Hibi, T., & Zheng, X. (2004). Dirac's theorem on chordal graphs and Alexander duality. European Journal of Combinatorics, 25(7), 949-960.
13. Herzog, J., & Popescu, D. (2006). Finite filtrations of modules and shellable multicomplexes. Manuscripta Mathematica, 121, 385-410.
14. Herzog, J., & Takayama, Y. (2002). Resolutions by mapping cones. Homology, Homotopy and Applications, 4, 277-294. The Roos Festschrift, Vol. 2(2).
15. Jahan, A. S. (2007). Prime filtrations of monomial ideals and polarizations. Journal of Algebra, 312(2), 1011-1032.
16. Stanley, R. P. (1975). Cohen-Macaulay rings and constructible polytopes. Bulletin of the American Mathematical Society, 81, 133-135.
17. Stanley, R. P. (1982). Linear Diophantine equations and local cohomology. Inventiones Mathematicae, 68, 175-193.
18. Stanley, R. P. (1983). Combinatorics and commutative algebra. Birkhäuser, Basel.
19. Stanley, R. P. (2000). Positivity problems and conjectures in algebraic combinatorics. In V. Arnold, M. Atiyah, P. Lax, & B. Mazur (Eds.), Mathematics: frontiers and perspectives (pp. 295-319). Providence: American Mathematical Society.
20. Terai, N. (2000). Generalization of Eagon-Reiner theorem and h-vectors of graded rings. Preprint.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition