Crystal interpretation of Kerov-Kirillov-Reshetikhin bijection II. Proof for \mathfrak sl n \mathfrak{sl}_{n} case
Reiho Sakamoto
University of Tokyo Department of Physics, Graduate School of Science Hongo, Bunkyo-ku Tokyo 113-0033 Japan
DOI: 10.1007/s10801-007-0075-2
Abstract
In proving the Fermionic formulae, a combinatorial bijection called the Kerov-Kirillov-Reshetikhin (KKR) bijection plays the central role. It is a bijection between the set of highest paths and the set of rigged configurations. In this paper, we give a proof of crystal theoretic reformulation of the KKR bijection. It is the main claim of Part I written by A. Kuniba, M. Okado, T. Takagi, Y. Yamada, and the author. The proof is given by introducing a structure of affine combinatorial R matrices on rigged configurations.
Pages: 55–98
Keywords: keywords fermionic formulae; kerov-kirillov-reshetikhin bijection; rigged configuration; crystal bases of quantum affine Lie algebras; box-ball systems; ultradiscrete soliton systems
Full Text: PDF
References
1. Kerov, S. V., Kirillov, A. N., & Reshetikhin, N. Y. (1988). Combinatorics, the Bethe ansatz and representations of the symmetric group. Journal of Soviet Mathematics, 41, 916-924.
2. Kirillov, A. N., & Reshetikhin, N. Y. (1988). The Bethe ansatz and the combinatorics of Young tableaux. Journal of Soviet Mathematics, 41, 925-955.
3. Kirillov, A. N., Schilling, A., & Shimozono, M. (2002). A bijection between Littlewood-Richardson tableaux and rigged configurations. Selecta Mathematica. New Series, 8, 67-135. math.CO/9901037.
4. Schilling, A. (2003). Rigged configurations and the Bethe ansatz. In B. Lulek, T. Lulek, A. Wal (Eds.), Symmetry and structural properties of condensed matter (Vol. 7, pp. 201-224). Singapore: World Scientific. math-ph/0210014.
5. Baxter, R. J. (1982). Exactly solved models in statistical mechanics. New York: Academic.
6. Kashiwara, M. (1991). On crystal bases of the q-analogue of universal enveloping algebras. Duke Mathematical Journal, 63, 465-516.
7. Schilling, A. (2006). Crystal structure on rigged configurations. International Mathematics Research Notices, 2006, article ID 97376, 1-27. math.QA/0508107.
8. Deka, L., & Schilling, A. (2006). New fermionic formula for unrestricted Kostka polynomials. Journal of Combinatorial Theory. Series A, 113, 1435-1461. math.CO/0509194.
9. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., & Yamada, Y. (1999). Remarks on fermionic formula. Contemporary Mathematics, 248, 243-291. math.QA/9812022.
10. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., & Tsuboi, Z. (2002). Paths, crystals, and fermionic formulae. In M. Kashiwara, T. Miwa (Eds.), MathPhys odyssey 2001, integrable models and beyond. Progress in Mathematical Physics (Vol. 23, pp. 205-272). Basel: Birkäuser. math.QA/0102113.
11. Schilling, A., & Shimozono, M. (2006). X = M for symmetric powers. Journal of Algebra, 295, 562-610. math.QA/0412376.
12. Takahashi, D., & Satsuma, J. (1990). A soliton cellular automaton. Journal of the Physical Society of Japan, 59, 3514-3519.
13. Takahashi, D. (1993). On some soliton systems defined by using boxes and balls. In Proceedings of the international symposium on nonlinear theory and its applications (NOLTA '93) (pp. 555-558).
14. Tokihiro, T., Takahashi, D., Matsukidaira, J., & Satsuma, J. (1996). From soliton equations to integrable cellular automata through a limiting procedure. Physical Review Letters, 76, 3247-3250.
15. Torii, M., Takahashi, D., & Satsuma, J. (1996). Combinatorial representation of invariants of a soliton cellular automaton. Physica D, 92, 209-220. J Algebr Comb (2008) 27: 55-98
16. Hikami, K., Inoue, R., & Komori, Y. (1999). Crystallization of the Bogoyavlensky lattice. Journal of the Physical Society of Japan, 68, 2234-2240.
17. Hatayama, G., Kuniba, A., & Takagi, T. (2000). Soliton cellular automata associated with crystal bases. Nuclear Physics B, 577, 615-645. solv-int/9907020.
18. Fukuda, K., Okado, M., & Yamada, Y. (2000). Energy functions in box-ball systems. International Journal of Modern Physics A, 5, 1379-1392. math.QA/9908116. (1)
19. Hatayama, G., Hikami, K., Inoue, R., Kuniba, A., Takagi, T., & Tokihiro, T. (2001). The A au- M tomata related to crystals of symmetric tensors. Journal of Mathematical Physics, 42, 274-308. math.QA/9912209.
20. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., & Yamada, Y. (2002). Scattering rules in soliton cellular automata associated with crystal bases. Contemporary Mathematics, 297, 151-182. math.QA/0007175.
21. Kuniba, A., Okado, M., Sakamoto, R., Takagi, T., & Yamada, Y. (2006). Crystal interpretation of Kerov-Kirillov-Reshetikhin bijection. Nuclear Physics B, 740, 299-327. math.QA/0601630.
22. Okado, M., Schilling, A., & Shimozono, M. (2003). A crystal to rigged configuration bijection for nonexceptional affine algebras. In N. Jing (Ed.), Algebraic combinatorics and quantum groups (pp. 85-124). Singapore: World Scientific. math.QA/0203163.
23. Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T., Nakashima, T., & Nakayashiki, A. (1992). Affine crystals and vertex models. International Journal of Modern Physics A, 7(Suppl. 1A), 449-484.
24. Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T., Nakashima, T., & Nakayashiki, A. (1992). Perfect crystals of quantum affine Lie algebras. Duke Mathematical Journal, 68, 499-607.
25. Kang, S.-J., Kashiwara, M., & Misra, K. C. (1994). Crystal bases of Verma modules for quantum affine Lie algebras. Compositio Mathematica, 92, 299-325.
26. Kuniba, A., Sakamoto, R., & Yamada, Y. Tau functions in combinatorial Bethe ansatz. math.QA/0610505.
27. Jimbo, M., & Miwa, T. (1983). Solitons and infinite dimensional Lie algebras. Publ. RIMS. Kyoto University, 19, 943-1001.
28. Nakayashiki, A., & Yamada, Y. (1997). Kostka polynomials and energy functions in solvable lattice models. Selecta Mathematica. New Series, 3, 547-599. q-alg/9512027.
2. Kirillov, A. N., & Reshetikhin, N. Y. (1988). The Bethe ansatz and the combinatorics of Young tableaux. Journal of Soviet Mathematics, 41, 925-955.
3. Kirillov, A. N., Schilling, A., & Shimozono, M. (2002). A bijection between Littlewood-Richardson tableaux and rigged configurations. Selecta Mathematica. New Series, 8, 67-135. math.CO/9901037.
4. Schilling, A. (2003). Rigged configurations and the Bethe ansatz. In B. Lulek, T. Lulek, A. Wal (Eds.), Symmetry and structural properties of condensed matter (Vol. 7, pp. 201-224). Singapore: World Scientific. math-ph/0210014.
5. Baxter, R. J. (1982). Exactly solved models in statistical mechanics. New York: Academic.
6. Kashiwara, M. (1991). On crystal bases of the q-analogue of universal enveloping algebras. Duke Mathematical Journal, 63, 465-516.
7. Schilling, A. (2006). Crystal structure on rigged configurations. International Mathematics Research Notices, 2006, article ID 97376, 1-27. math.QA/0508107.
8. Deka, L., & Schilling, A. (2006). New fermionic formula for unrestricted Kostka polynomials. Journal of Combinatorial Theory. Series A, 113, 1435-1461. math.CO/0509194.
9. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., & Yamada, Y. (1999). Remarks on fermionic formula. Contemporary Mathematics, 248, 243-291. math.QA/9812022.
10. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., & Tsuboi, Z. (2002). Paths, crystals, and fermionic formulae. In M. Kashiwara, T. Miwa (Eds.), MathPhys odyssey 2001, integrable models and beyond. Progress in Mathematical Physics (Vol. 23, pp. 205-272). Basel: Birkäuser. math.QA/0102113.
11. Schilling, A., & Shimozono, M. (2006). X = M for symmetric powers. Journal of Algebra, 295, 562-610. math.QA/0412376.
12. Takahashi, D., & Satsuma, J. (1990). A soliton cellular automaton. Journal of the Physical Society of Japan, 59, 3514-3519.
13. Takahashi, D. (1993). On some soliton systems defined by using boxes and balls. In Proceedings of the international symposium on nonlinear theory and its applications (NOLTA '93) (pp. 555-558).
14. Tokihiro, T., Takahashi, D., Matsukidaira, J., & Satsuma, J. (1996). From soliton equations to integrable cellular automata through a limiting procedure. Physical Review Letters, 76, 3247-3250.
15. Torii, M., Takahashi, D., & Satsuma, J. (1996). Combinatorial representation of invariants of a soliton cellular automaton. Physica D, 92, 209-220. J Algebr Comb (2008) 27: 55-98
16. Hikami, K., Inoue, R., & Komori, Y. (1999). Crystallization of the Bogoyavlensky lattice. Journal of the Physical Society of Japan, 68, 2234-2240.
17. Hatayama, G., Kuniba, A., & Takagi, T. (2000). Soliton cellular automata associated with crystal bases. Nuclear Physics B, 577, 615-645. solv-int/9907020.
18. Fukuda, K., Okado, M., & Yamada, Y. (2000). Energy functions in box-ball systems. International Journal of Modern Physics A, 5, 1379-1392. math.QA/9908116. (1)
19. Hatayama, G., Hikami, K., Inoue, R., Kuniba, A., Takagi, T., & Tokihiro, T. (2001). The A au- M tomata related to crystals of symmetric tensors. Journal of Mathematical Physics, 42, 274-308. math.QA/9912209.
20. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., & Yamada, Y. (2002). Scattering rules in soliton cellular automata associated with crystal bases. Contemporary Mathematics, 297, 151-182. math.QA/0007175.
21. Kuniba, A., Okado, M., Sakamoto, R., Takagi, T., & Yamada, Y. (2006). Crystal interpretation of Kerov-Kirillov-Reshetikhin bijection. Nuclear Physics B, 740, 299-327. math.QA/0601630.
22. Okado, M., Schilling, A., & Shimozono, M. (2003). A crystal to rigged configuration bijection for nonexceptional affine algebras. In N. Jing (Ed.), Algebraic combinatorics and quantum groups (pp. 85-124). Singapore: World Scientific. math.QA/0203163.
23. Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T., Nakashima, T., & Nakayashiki, A. (1992). Affine crystals and vertex models. International Journal of Modern Physics A, 7(Suppl. 1A), 449-484.
24. Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T., Nakashima, T., & Nakayashiki, A. (1992). Perfect crystals of quantum affine Lie algebras. Duke Mathematical Journal, 68, 499-607.
25. Kang, S.-J., Kashiwara, M., & Misra, K. C. (1994). Crystal bases of Verma modules for quantum affine Lie algebras. Compositio Mathematica, 92, 299-325.
26. Kuniba, A., Sakamoto, R., & Yamada, Y. Tau functions in combinatorial Bethe ansatz. math.QA/0610505.
27. Jimbo, M., & Miwa, T. (1983). Solitons and infinite dimensional Lie algebras. Publ. RIMS. Kyoto University, 19, 943-1001.
28. Nakayashiki, A., & Yamada, Y. (1997). Kostka polynomials and energy functions in solvable lattice models. Selecta Mathematica. New Series, 3, 547-599. q-alg/9512027.