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Abstract We introduce a concept of cyclotomic association scheme over a finite
near-field K. It is proved that any isomorphism of two such nontrivial schemes is
induced by a suitable element of the group AGL(V ), where V is the linear space
associated with K. A sufficient condition on a cyclotomic scheme C that guarantee the
inclusion Aut(C) ≤ A�L(1,F), where F is a finite field with |K| elements, is given.
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1 Introduction

An algebraic structure K = (K,+,◦) is called a (right) near-field if K
+ = (K,+) is

a group with the neutral element 0K, K
× = (K \ {0K},◦) is a group, x ◦ 0K = 0K for

all x ∈ K, and

(x + y) ◦ z = x ◦ z + y ◦ z, x, y, z ∈ K. (1)

In the finite case, the group K
+ is elementary Abelian, and the group K

× is Abelian
iff K is a field (as to near-fields theory, we refer to [13]). By the Zassenhaus theorem
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apart from seven exceptional cases, each finite near-field K is the Dickson near-field,
i.e., there exist a finite field F0 and its extension F such that F

+ = K
+ and

y ◦ x = yσx · x, x, y ∈ K, (2)

where σx ∈ Aut(F/F0) and · denotes the multiplication in F. In this case, |F0| = q

and |K| = |F| = qn, where q is a power of a certain prime p, and n = [F : F0]. It can
be proved that (q,n) forms a Dickson pair, i.e., every prime factor of n is a divisor of
q −1 and 4 |n implies 4 | (q −1). There exist exactly ϕ(n)/k nonisomorphic Dickson
near-fields corresponding to the same Dickson pair (q,n), where k is the order of
p (modn). The multiplicative group of any Dickson near-field is solvable (and even
meta-cyclic).

Let K be a finite near-field and K be a subgroup of the group K
×. Set R =

{Ra}a∈K, where

Ra = {
(x, y) ∈ K

2 : y − x ∈ a ◦ K
}
. (3)

Then it is easily seen that any element of R is a 2-orbit of the permutation group

Γ (K,K) = {x �→ x ◦ b + c, x ∈ K : b ∈ K,c ∈ K}, (4)

and so the pair (K,R) forms an association scheme on K (see Sect. 2 for the back-
ground on permutation groups and association schemes). We call it the cyclotomic
scheme over the near-field K and denote it by Cyc(K,K). The number |K| is called
the valency of the scheme. If K = K

×, then the scheme is of rank 2, and we call it
the trivial scheme. The set of all cyclotomic schemes of valency m < qn − 1 over a
Dickson near-field corresponding to a Dickson pair (q,n) is denoted by Cyc(q,n,m).

When K = F is a field, we come to cyclotomic schemes introduced by P. Delsarte
(1973), see [1, p. 66]. One can see that any two such schemes of the same valency
are isomorphic. Moreover, the automorphism group of such a nontrivial scheme is a
subgroup of the group A�L(1,F) (see [1, p. 389]). However, there exist a number of
cyclotomic schemes over near-fields which are not isomorphic to cyclotomic schemes
over fields. The main purpose of this paper is to study isomorphisms of cyclotomic
schemes over near-fields.

The additive group of a finite near-field K being an elementary Abelian one can
be identified with the additive group of a linear space VK over the prime field con-
tained in the center of K. The existence of an isomorphism between a cyclotomic
scheme over a near-field K and a cyclotomic scheme over a near-field K

′, implies
that |K| = |K′| and hence that the linear spaces VK and VK′ are isomorphic. Thus to
study isomorphisms of cyclotomic schemes, we can restrict ourselves to near-fields
K with a fixed linear space V = VK.

Theorem 1.1 Let C and C′ be nontrivial cyclotomic schemes over near-fields K and
K

′, respectively. Suppose that V = VK = VK′ . Then Iso(C,C′) ⊂ AGL(V ). In partic-
ular, Aut(C) ≤ AGL(V ).

For a trivial scheme C, we obviously have Aut(C) = Sym(K). Thus the inclu-
sion Aut(C) ≤ AGL(V ) holds only if |K| ≤ 4. In general, the right-hand side of the
first inclusion of Theorem 1.1 cannot be refined, because Iso(C,C) = AGL(V ) for a
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scheme C = Cyc(K,F), where F is a finite field of composite order, and K is the
multiplicative group of the prime subfield of F.

We prove Theorem 1.1 in Sect. 3. The key ingredient for the proof is Theorem 3.2
showing that the operation of taking the 2-closure preserves the socle of any uniprim-
itive 3/2-transitive permutation groups of affine type. (Here we essentially use the
result of [9].) From Theorem 1.1 we deduce a criterion for the isomorphism of cyclo-
tomic schemes (Theorem 3.4).

The second part of Theorem 1.1 can be made much more precise in some cases.
For instance, if the cyclotomic scheme C = Cyc(K,K) is imprimitive, then Aut(C) =
Γ (K,K) (Corollary 3.5). In general, this equality does not hold even for a cyclotomic
scheme over a finite field, because the group Aut(C) can contain some automorphisms
of this field. However, we are able to specify the automorphisms of a cyclotomic
scheme by using Zsigmondy prime divisors of its valency.

Definition 1.2 Given integers q,n ∈ N, a prime divisor r of qn − 1 is called a Zsig-
mondy prime for (q,n) if r does not divide qi − 1 for all 1 ≤ i < n. The set of all
such primes greater than a fixed number k ∈ N is denoted by Zk(q,n).

It is known that at least one Zsigmondy prime for (q,n) exists unless (q,n) =
(2,6), or q + 1 is a power of 2 and n = 2 (see, e.g., [11]). Moreover, any such prime
is of the form r = an + 1 for some a ≥ 1.

Theorem 1.3 Let C ∈ Cyc(pd,n,m) be a cyclotomic scheme over a Dickson near-
field and k = dn. Then Aut(C) ≤ A�L(1,pk) whenever m has a prime divisor r ∈
Z2k+1(p, k).

From Lemma 4.2 it follows that for a fixed pd the set Z2k+1(p, k) is not empty
for all sufficiently large k. This fact enables us to prove that the hypothesis of Theo-
rem 1.3 is satisfied in many cases. More precisely, the following statement holds.

Theorem 1.4 Let C ∈ Cyc(pd,n,m) be a cyclotomic scheme over a Dickson
near-field and q = pd . Then Aut(C) ≤ A�L(1, qn) for all n 
 q such that
|Z2dn+1(p, dn)| �= 1.

Theorem 1.4 is proved in Sect. 4 by means of the classification of linear groups
with orders having certain large prime divisors given in [4]. We believe that a more
delicate analysis of this classification could improve our result to show that given a
prime power q for all but finitely many Dickson pairs (q,n), the inclusion Aut(C) ≤
A�L(1, qn) holds for all nontrivial cyclotomic schemes C over a Dickson near-field
corresponding to (q,n).

2 Permutation groups and association schemes

2.1

Concerning basic facts of finite permutation group theory, we refer to [3]. Let V be
a finite set, Γ ≤ Sym(V ), and m ∈ N. Denote by Orbm(Γ ) the set of all orbits of the
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induced action of Γ on the set V m; these orbits are called the m-orbits of Γ . The
largest subgroup of Sym(V ) the m-orbits of which coincide with those of Γ is called
the m-closure of Γ ; we denote it by Γ (m).

Let U be a set with at least two elements, and let m ≥ 2 be an integer. Following
[9], we say that a permutation group G ≤ Sym(V ) preserves a product decomposition
Um of V if the latter can be identified with the Cartesian product Um in such a way
that G is a subgroup of the wreath product Sym(U) � Sym(m) in product action. Any
element g of the latter group induces uniquely determined permutations g1, . . . , gm ∈
Sym(U) and σ ∈ Sym(m) such that

(u1, . . . , um)g = (
u

gi1
i1

, . . . , u
gim

im

)
, where ij = jσ−1

. (5)

If G projects onto a transitive subgroup of Sym(m), then the subgroup of index m in
G stabilizing the first entry of points of Um induces a subgroup of Sym(U) by per-
muting the first entries of points of V = Um; this subgroup is called the group induced
by G on U . The following statement being a special case of result [9, Lemma 4.1]
will be used in Sect. 3. Below a primitive group is called uniprimitive if it is not
2-transitive, and it is called of affine type if its socle is Abelian.

Theorem 2.1 Let G ≤ Sym(V ) be a uniprimitive group of affine type. Suppose that
soc(G) �= soc(G(2)). Then G and G(2) preserve a product decomposition V = Um

such that |U | ≥ 5, m ≥ 2, and the group induced by G(2) on U contains Alt(U).

2.2

Let V be a finite set and R a partition of the set V 2 containing its diagonal Δ(V ) and
closed with respect to the permutation of coordinates. The pair C = (V ,R) is called
an association scheme or a scheme on V if, given binary relations R,S,T ∈ R, the
number

∣
∣{v ∈ V : (u, v) ∈ R, (v,w) ∈ S

}∣∣

does not depend on the choice of (u,w) ∈ T . The elements of R and the number |R|
are called the basis relations and the rank of C respectively. The scheme is called
imprimitive if a union of some of its basis relations is an equivalence relation on V

other than Δ(V ) and V 2; otherwise the scheme is called primitive whenever |V | > 1.
Two schemes C = (V ,R) and C′ = (V ′,R′) are called isomorphic if there exists

a bijection f : V → V ′, called the isomorphism from C to C′, such that Rf = R′,
where Rf = {Rf : R ∈ R} with Rf = {(uf , vf ) : (u, v) ∈ R}. The set of all such
isomorphisms is denoted by Iso(C,C′). The group Iso(C) = Iso(C,C) contains the
normal subgroup

Aut(C) = {
g ∈ Sym(V ) : Rg = R, R ∈ R

}

called the automorphism group of the scheme C.
A wide class of schemes comes from permutation groups as follows. Let Γ ≤

Sym(V ) be a permutation group and R = Orb2(Γ ). Then the pair Inv(Γ ) = (V ,R)

is a scheme and

Aut
(
Inv(Γ )

) = Γ (2).
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In particular, any cyclotomic scheme Cyc(K,K) over a near-field K equals the
scheme Inv(Γ ) with Γ = Γ (K,K) (see (4)). One can prove that this scheme is prim-
itive iff so is the group Γ .

2.3

Let K be a near-field and K ≤ K
×. Then the group Γ (K,K) defined by (4) can

be naturally identified with a subgroup of the group AGL(V ), where V = VK (see
Sect. 1). Under this identification, the group K (considered as a subgroup of the group
Γ (K,K)) goes to a subgroup of the group GL(V ). This subgroup is called the base
group of the cyclotomic scheme Cyc(K,K).

Theorem 2.2 Let C be a cyclotomic scheme over a near-field K. Then C is primitive
iff the base group of C is irreducible.

Proof Let C = Cyc(K,K) for some group K ≤ K
×. Then the scheme C is primitive

iff the group Γ = Γ (K,K) is primitive (see Subsect. 2.2). However, from [3, Theo-
rem 4.7.A] it follows that the latter statement holds iff the stabilizer of the point 0K

in the group Γ is an irreducible subgroup of the group GL(VK). Since this stabilizer
coincides with the base group of the scheme C, we are done. �

It should be noted that the base group of a primitive cyclotomic scheme Cyc(K,K)

can be primitive (as a linear group) or not. For example, it is always primitive for
K = K

×, and it is imprimitive for K = {1} if the number |K| is a composite one.

Corollary 2.3 The cyclotomic scheme C in Theorem 1.3 is primitive.

Proof Let G be the base group of the scheme C. Then G is a solvable subgroup of the
group GL(k,p), and r divides the order m of G. By [6, Proposition 6.3] this implies
that the group G is irreducible. Thus the scheme C is primitive by Theorem 2.2. �

Let V be a finite dimensional linear space over a finite prime field, and let G ≤
GL(V ) be an irreducible Abelian group. Then G is a cyclic group and its linear span
L(G) in the algebra End(V ) is a finite field with |V | elements (see [6, Lemma 0.5]).
The multiplicative group of this field acts regularly on nonzero vectors of V , i.e., this
group is a Singer subgroup of the group GL(V ). So, given a fixed nonzero u0 ∈ V,

the mapping

τ : L(G) → V, A �→ Au0,

is a bijection. This defines a field F = F(G) with elements from V such that F
+

coincides with the additive group of the linear space V . Clearly, τ(G) ≤ F
×.

Theorem 2.4 Any primitive cyclotomic scheme with Abelian base group is a cyclo-
tomic scheme over a field.

Proof Let C = Cyc(K,K) be a primitive cyclotomic scheme and V = VK. Suppose
that its base group G ≤ GL(V ) is Abelian. Then G is irreducible by Theorem 2.2.
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This enables us to construct the field F = F(G). From the definition of this field it
follows that F

+ = K
+ and

x ◦ y = x · y, x ∈ V, y ∈ M,

where M = τ(G), and ◦ and · denote the multiplications in K and F, respectively.
This implies that Γ (K,K) = Γ (M,F), and hence C = Cyc(M,F) is a cyclotomic
scheme over the field F. �

3 An isomorphism criterion for cyclotomic schemes

3.1

In this section, we prove Theorem 1.1. For cyclotomic schemes with primitive base
group we will use Theorem 2.1. In the imprimitive case, we need an auxiliary result
on 3/2-transitive groups, where by such a group we mean a transitive permutation
group Γ for which the orbits of its one point stabilizer Γv other than {v} all have the
same size.

Lemma 3.1 Let G ≤ Sym(V ) be a 3/2-transitive group preserving a product de-
composition V = Um for m ≥ 2. Then the stabilizer Gu,v of some points u,v ∈ V is
an Abelian 2-group.

Proof Let u ∈ V and I = {1, . . . ,m}. Without loss of generality we may assume that
u = (u0, . . . , u0) ∈ Um for some u0 ∈ U . Then from (5) it follows that u

gi

0 = u0 for
all g ∈ Gu and all i ∈ I . So the cardinality of the set Iv = {i ∈ I : vi �= u0}, where vi

is the ith component of v ∈ V , does not depend on the choice of v inside of an orbit
of the group Gu. Thus, the sets

Vk = {
v ∈ V : |Iv| = k

}
, k = 1,2, (6)

R = {
(v,w) ∈ V1 × V2 : vi = wi for the unique i ∈ Iv

}

are Gu-invariant. Obviously, |Rin(w)| = 2 for all w ∈ V2 where Rin(w) = {v ∈ V :
(v,w) ∈ R}. We divide the remaining argument into a sequence of claims.

Claim 1 Let X ∈ Orb(Gu,V1), Y ∈ Orb(Gu,V2), and S = R ∩ (X × Y). Then

∣∣Sout(x)
∣∣ ≤ 2, x ∈ X,

where Sout(x) = {v ∈ V : (x, v) ∈ S}. Indeed, since S is a Gu-invariant relation, the
numbers |Sout(x)| and |Sin(y)| do not depend on x ∈ X and y ∈ Y , respectively. If
we denote them by a and b, then obviously |X|a = |Y |b. Taking into account that
|X| = |Y | due to 3/2-transitivity of G, we conclude that a = b ≤ 2 (see the above
remark).
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Claim 2 Let x and y be elements of V1 such that Ix �= Iy . Then

∣∣yGu,x
∣∣ ≤ 2.

Indeed, let Ix = {i} and Iy = {j} for some distinct i, j ∈ I . Then there exists a
uniquely determined element w ∈ V2 such that xi = wi and yj = wj . Denote by
X and Y the orbits of the group Gu containing x and w, respectively. From Claim 1,
it follows that Sout(x) = {w,w′} for some w′ ∈ Y . Since the set Sout(x) is obviously
Gu,x -invariant, we conclude that so is the set Rin(w) ∪ Rin(w

′). However, this set
contains at most three elements two of which are x and y. Thus

∣∣yGu,x
∣∣ ≤ ∣∣(Rin(w) ∪ Rin(w

′)
) \ {x}∣∣ ≤ 2,

which proves the claim.

Claim 3 Let (x,w) ∈ V1 × V2. Then the transitive constituent H of the group Gu,x

induced by its action on the set Y = wGu,x is a 2-group. Indeed, without loss of
generality we may assume that |Y | > 2 and Iw = {i, j} for some distinct i, j ∈ I .
Then i, j �∈ Ix , since otherwise Y ⊂ Rout(x) and hence |Y | ≤ 2 by Claim 1. Set y to
be the unique element of V1 \ {x} such that yi = wi . By Claim 2 the set X = yGu,x

consists of (not necessary distinct) elements y, z ∈ V1, whence by Claim 1 it follows
that

Y = Sout(y) ∪ Sout(z), 1 ≤ ∣∣Sout(y)
∣∣ = ∣∣Sout(z)

∣∣ ≤ 2.

Since |Y | > 2 and |Sin(w)| = |Sin(w
′)| for all w′ ∈ Y , we conclude that Sout(y) and

Sout(z) are disjoint blocks of the group H , and each of them is of size 2. This implies
that H is a 2-group isomorphic to a subgroup of the group Sym(2) � Sym(2).

Claim 4 The action of Gu on V2 is faithful. Indeed, any g ∈ Gu is of the form (5).
Suppose that wg = w for all w ∈ V2. Then, given i ∈ I and all w ∈ V2 such that
{i, j} ⊂ Iw and wi = wj where j = iσ , we have

wj = (wij )
gij = (wi)

gi = (wj )
gi .

This implies that gi = idU for all i ∈ I . Next, if σ �= idI , then obviously wg �= w for
all w ∈ V2 such that Iw = {i, j} and wi �= wj , where j = iσ . Thus g = idV , and we
are done.

To complete the proof of Lemma 3.1 take v ∈ V1. Denote by K the direct product
of transitive constituents of the group Gu,v corresponding to its orbits contained in
the set V2. Then K is a 2-group by Claim 3. On the other hand, by Claim 4 the group
Gu,v is isomorphic to a subgroup of the group K . Thus Gu,v is a 2-group. �

Theorem 3.2 Let G ≤ Sym(V ) be a uniprimitive 3/2-transitive group of affine type.
Then soc(G) = soc(Γ ), where Γ = G(2).

Proof Suppose that soc(G) �= soc(Γ ). Then from Theorem 2.1 it follows that the
groups G and Γ preserve a product decomposition V = Um such that |U | ≥ 5,
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m ≥ 2, and the group induced by Γ on U contains Alt(U). This implies that

|Γ | = am
∣∣Alt(U)

∣∣ (7)

for some a ∈ N. On the other hand, the group Γ obviously is 3/2-transitive. Denote
by d the size of an orbit of its one point stabilizer Γv other than {v}. Then it is easy to
see that d = me for some divisor e of |U | − 1 (it suffices to check the orbit of a point
from the set V1 defined in (6)). By Lemma 3.1 for G = Γ this implies that

|Γ | = |V |me2k (8)

for some k ∈ N. Thus equalities (7) and (8) show that |Alt(U)| divides |V |e2k . Since
e divides |U | − 1, it follows that (|U | − 2)! divides |V |2k+1. However, this is impos-
sible for |U | ≥ 5, since |V | is a prime power (we used the fact that G is of affine
type). �

From Theorem 3.2 it follows that G(2) is a uniprimitive 3/2-transitive group of
affine type. If in addition, the group G preserves a product decomposition, then the
same decomposition is preserved by G(2). Thus, in this case, the form of this group
can be found by means of the classification of 3/2-transitive imprimitive linear groups
given in [8].

3.2

In this subsection we fix a near-field K and a cyclotomic scheme C over K and denote
by T = TV the translation group of the linear space V = VK. Clearly, T ≤ Sym(V ).

Lemma 3.3 If the scheme C is nontrivial, then T is a characteristic subgroup of the
group Aut(C). More exactly, the following statements hold:

(1) If C is imprimitive, then Aut(C) is a Frobenius group with kernel T .
(2) If C is primitive, then T = soc(Aut(C)).

Proof Let C = Cyc(K,K) and Γ = Γ (K,K), where K < K
× (see (4)). Then C =

Inv(Γ ) and so Aut(C) = Γ (2). On the other hand, it is easy to see that the orbits of
the group Γv other than {v} all have the same size |K|. This implies that the group Γ

and hence the group Aut(C) is 3/2-transitive.
Let C be an imprimitive scheme. Then the group Aut(C) is imprimitive. Since

any 3/2-transitive group is either primitive or a Frobenius group [14, Theorem 10.4],
it follows that Aut(C) is a Frobenius group. The kernel of this group is of order
|V | = |T | and contains all fixed-point-free elements of the group Γ . Thus the kernel
coincides with T , which proves statement (1).

Let C be a primitive scheme. Then the group Γ is primitive and T is a normal
Abelian subgroup of it. This implies that the socle of Γ is Abelian and hence coin-
cides with T (see [3, Theorem 4.3.B]). Thus Γ is a uniprimitive 3/2-transitive group
of affine type. By Theorem 3.2 this implies that

T = soc(Γ ) = soc
(
Γ (2)

) = soc
(
Aut(C)

)
,

which completes the proof of the lemma. �
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Proof of Theorem 1.1 Let f ∈ Iso(C,C′). Then the bijection f induces an isomor-
phism between permutation groups Aut(C) and Aut(C′). Since these groups are tran-
sitive, without loss of generality we may assume that f leaves the point 0 ∈ V fixed.
Then it suffices to verify that f belongs to the group Aut(T ) = GL(V ). However,
the schemes C and C′ and hence the groups Aut(C) and Aut(C′) are primitive or not
simultaneously. Thus the required statement follows from Lemma 3.3. �

3.3

To make the statements of Theorem 1.1 more precise, given a group G ≤ GL(V ), we
set

G = G(1) ∩ GL(V ). (9)

Clearly, G coincides with the largest group H ≤ GL(V ) such that Orb(H) = Orb(G).

Theorem 3.4 Under the conditions of Theorem 1.1, denote by G and G′ the base
groups of the schemes C and C′, respectively. Then these schemes are isomorphic iff
the groups G and G′ are conjugate in GL(V ). Moreover, Aut(C) = T G.

Proof The first part of the theorem follows from the second one. Indeed, set Γ =
Aut(C) and Γ ′ = Aut(C′). Then by Theorem 1.1 the schemes C and C′ are isomorphic
iff there exists g ∈ GL(V ) such that g−1Γ g = Γ ′ or, equivalently, that g−1Γvg = Γ ′

v

where v is the zero vector of the linear space V . Since by the second part Γv = G and
Γ ′

v = G′, we are done.
To prove the second part of the theorem we note that from Theorem 1.1 it fol-

lows that Γ = T Γv and Γv ≤ GL(V ). Since obviously Orb(Γv) = Orb(G), we con-
clude that Γv ≤ G(1) and Orb(Γv) = Orb(G). This shows that Orb2(Γ ) = Orb2(T G),

whence by maximality of the 2-closure it follows that T G ≤ Γ . Thus Aut(C) = Γ =
T G, and we are done. �

For imprimitive cyclotomic schemes, Theorem 3.4 can be slightly simplified. In-
deed, in this case, Aut(C) is a Frobenius group by statement (1) of Lemma 3.3. So

|G| = ∣∣Aut(C)v
∣∣ = |X| = |G|,

where X is an orbit of the group Aut(C)v other than {v}. Since also G ≤ G, we have
G = G. Thus by Theorem 3.4 we obtain the following statement.

Corollary 3.5 Let the cyclotomic schemes C and C′ be imprimitive. Then they are
isomorphic iff their base groups are conjugate in GL(V ). Moreover, G = G and
Aut(C) = T G.

4 Proof of Theorems 1.3 and 1.4

The main tool of this section is Theorem 4.1 below which is deduced from the clas-
sification of linear groups with orders having certain large prime divisors [4]. In our
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case such a divisor is a Zsigmondy prime r for a pair (q,n), where q is a prime
power and n ∈ N. Any cyclic group G ≤ GL(n, q) of order r is irreducible [6, Propo-
sition 6.3], and the linear span L(G) of it in Mat(n, q) is a finite field F with qn

elements. We will identify the group �L(1,F) with a subgroup of GL(n, q). Below
a group Γ ≤ GL(n, q) is called half-transitive if the action of it on the set V ∗ of
nonzero vectors in the underlying linear space is intransitive and the orbits of this
action all have the same size.

Theorem 4.1 Let G ≤ Γ ≤ GL(n, q) where (q,n) �∈ {(2,4), (2,6)}. Suppose that G

is a cyclic group of order r ∈ Z2n+1(q,n) and that the group Γ is half-transitive.
Then Γ ≤ �L(1,F), where F = L(G).

Proof It suffices to prove that Γ ≤ �L(1, qn). Indeed, in this case Γ ≤ �L(1,F
′)

for some field F
′ ⊂ Mat(n, q) with qn elements. So the multiplicative group of F

′
normalizes G and hence normalizes the Singer subgroup F

× ⊂ L(G) of the group
GL(n, q). However, the normalizer of F

× in GL(n, q) contains the unique Singer
subgroup [2, Proposition 2.5]. This proves that F

′ = F.
Suppose that Γ is a solvable group. If r divides the order of the Fitting subgroup

of Γ , then this group is isomorphic to a subgroup of �L(1, qn) [6, Lemma 6.4].
Otherwise from Lemma 6.7 of the same book it follows that r = n + 1, which con-
tradicts the hypothesis on r . Thus the required statement is true for solvable groups.
In particular, we may assume that n ≥ 2 and that the group Γ is nonsolvable.

Let n = 2. From the classification of all subgroups of GL(2, q) given in [7, Propo-
sition 8.1] it follows that any nonsolvable irreducible subgroup of GL(2, q), say Γ ,
has a subgroup H such that [Γ : H ] divides q − 1 and

H ≥ SL(2, q ′) or H/Z ∼= Alt(5),

where q ′ ≥ 5 is a divisor of q, and Z is the subgroup of scalar matrices contained
in H . However, in the former case, this group acts transitively on the set V ∗, and
the intransitivity of Γ gives a contradiction. In the latter case, the prime divisors
of the number |Γ | are over those of the number (q − 1)5!/2, which contradicts the
assumption that r ∈ Z2n+1(q,n) for n = 2. It should be mentioned that in this case we
proved the required statement for the group Γ which is intransitive but not necessary
half-transitive.

Let n ≥ 3. The Zsigmondy prime r for the pair (q,n) is a primitive prime divisor
of qn − 1 in the sense of [4]. Since r divides the order of the group Γ , this group
satisfies the hypothesis of the Main Theorem of that paper for d = e = n. In this case,
the Main Theorem shows that, for the group Γ (not necessary half-transitive) and
r > 2n + 1, one of the following statements holds:

(1) Γ has a normal subgroup Γ ′ isomorphic to one of the classical groups SL(n, q ′),
Sp(n, q ′), SU(n, q ′1/2

), or Ωε(n, q ′), where r divides the order of Γ ′, q ′ is the
order of a subfield of the ground field, and ε ∈ {◦,+,−},

(2) Γ ≤ GL(n/m,qm) · m, and the number r divides the order of the group
Γ ∩ GL(n/m,qm), where m is a divisor of n other than 1,

(3) (q,n) = (2,4) or (2,6),
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where GL(n/m,qm) · m is the general linear group GL(n/m,qm) embedded to
GL(n, q) and extended by the group of automorphisms of the field extension
GF(qm)/GF(q). However, the case (3) does not arise by the hypothesis of the theo-
rem. Let us prove that the same is true in the other two cases.

We claim that the group Γ contains a normal nonsolvable subgroup H0 isomorphic
to one of the groups SL(n0, q0), Sp(n0, q0), SU(n0, q

1/2
0 ), or Ωε(n0, q0), where r

divides the order of H0, n0 ≥ 2 is a divisor of n, and q0 is the order of a subfield of
the field GF(qn/n0). Indeed, in case (1) we can take H0 = Γ ′ and (n0, q0) = (n, q ′).
Otherwise, case (2) holds. It is easy to see that Γ0 = Γ ∩ GL(n/m,qm) is a normal
subgroup of Γ and Γ/Γ0 is a cyclic group of order coprime to r . This implies that
the group Γ has a characteristic subgroup H ≤ Γ0 such that the factor group Γ/H is
solvable and each prime divisor of its order divides m. In particular,

G ≤ H ≤ GL
(
n/m,qm

)
,

and H is solvable iff Γ is so. If case (2) holds for the group H , we repeat this ar-
gument with Γ = H and (n, q) = (n/m,qm). Finally, we find a nonsolvable charac-
teristic subgroup H of the group Γ such that G ≤ H ≤ GL(n1, q1), where n1 ≥ 2
is a divisor of n, and q1 is the order of a subfield of the field GF(qn/n1). Moreover,
we may assume that case (1) holds for Γ = H and (n, q) = (n1, q1). Since the cor-
responding classical group Γ ′ is a characteristic subgroup of H , we are done with
H0 = Γ ′ and (n0, q0) = (n1, q

′
1).

To complete the proof we will show that the above claim contradicts the half-
transitivity of Γ . Without loss of generality we assume that n0 ≥ 3 (see above). Then
the groups SL(n0, q0) and Sp(n0, q0) act transitively on the set V ∗ [5, Lemma 2.10.5].
By the intransitivity of Γ this implies that H0 cannot be one of these groups. There-
fore we may assume that H0 is either the unitary group SU(n0, q

1/2
0 ) or the orthogonal

group Ωε(n0, q0). Given an element λ of the ground field F, set

V ∗
λ =

{{
v ∈ V ∗ : f (v, v) = λ

}
if H0 = SU

(
n0, q

1/2
0

)
,

{
v ∈ V ∗ : Q(v) = λ

}
if H0 = Ωε(n0, q0),

where f (resp. Q) is the nondegenerate unitary (resp. quadratic) form corresponding
to H0. By the same lemma, for n0 ≥ 3, we obtain that

Orb
(
H0,V

∗) = {
V ∗

λ : λ ∈ F
}

unless n0 = 3, H0 = Ω(3, q0), λ = 0,

and in the exceptional case the set V ∗
λ is the union of two H0-orbits each of size

(q2
0 − 1)/2. Clearly, the number aλ = |V ∗

λ | does not depend on λ �= 0. So using the
explicit formulas for a0 (see Lemma 10.4 and Theorem 11.5 in [12]), one can see that
q0 is coprime to a0 and divides aλ for all λ �= 0. Since Γ acts on the set Orb(H0,V

∗)
(due to the normality of H0 in Γ ), this implies that

(
V ∗

0

)Γ = V ∗
0 and

∣∣Orb
(
Γ,V ∗

0

)∣∣ ≤ 2.

By the half-transitivity of Γ this shows that the size of any X ∈ Orb(Γ,V ∗) is co-
prime to q0. However, this contradicts the fact that q0 divides |X| for all X �⊂ V ∗

0 , and
we are done. �
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Proof of Theorem 1.3 The hypothesis shows that r divides the order m of the base
group of the scheme C. So this group contains a cyclic subgroup G of order r . By
Theorem 1.1 we have

G ≤ Γ ≤ GL(k,p),

where Γ = Aut(C)v with v = 0. Besides, the orbits in the action of Γ on V ∗ all have
the same size m < pk − 1, and hence the group Γ is half-transitive. Thus by Theo-
rem 4.1 with (q,n) = (p, k) it suffices to check only the cases (p, k) ∈ {(2,4), (2,6)}.
However, the fact that (2d , n) with dn ∈ {4,6} is a Dickson pair implies that either
(d,n) = (2,3) or n = 1. But, in the former case k = 6 and Z2k+1(2, k) = ∅, whereas
in the latter case the near-field is a field, and we are done (see Sect. 1).

The following auxiliary lemma is a combination of some number theoretical re-
sults from [10] and [11]; it will be used in the proof of Theorem 1.4. �

Lemma 4.2 Given a prime power q = pd, there exists an integer Nq ∈ N such that
the set Z2dn+1(p, dn) is not empty for all n > Nq .

Proof Given n ∈ N, denote by D(n) the number of distinct prime factors of n, by
P [n] the greatest of them, and by Φn(X) the cyclotomic polynomial of degree ϕ(n).
Then there exists a constant C > 0 such that

P
[
Φdn(p)

]
> Cn

√
logn/ log log logn (10)

for all sufficiently large n such that D(dn) ≤ κ log log(dn) with κ = 1/(2 log 2) (see
[10, p. 25]).

Denote by Sq the set of all integers dn ∈ N such that (q,n) is a Dickson pair and
n is greater than the minimal number a ∈ N for which D(d) logq ≤ κ log log(da).
Then given dn ∈ Sq , we have

D(dn) ≤ D(d)D(n) ≤ D(d) logq ≤ κ log log(dn).

By (10) this implies that P [Φdn(p)] > 2dn+1 for all sufficiently large n ∈ Sq . How-
ever, a prime factor r of the number Φdn(p) is not a Zsigmondy prime for (p, dn)

iff r ≤ dn (see [11, Proposition 2]). Thus there exists a positive integer Nq such that
Z2dn+1(p, dn) �= ∅ for all n > Nq . �

Proof of Theorem 1.4 Let C = Cyc(K,K
×), where K is a Dickson near-field cor-

responding to the Dickson pair (q,n), and the group K ≤ K
× is of order m < qn.

Suppose that n > Nq . Then by Lemma 4.2 the set Z2dn+1(p, dn) is not empty. Set
K ′ to be a maximal subgroup of K

× containing K . Since the group K
× ≤ �L(1, qn)

is supersolvable, the number [K× : K ′] is prime. So if |Z2dn+1(p, dn)| �= 1, then
the number m′ = |K ′| has a prime divisor r ′ ∈ Z2dn+1(p, dn). This implies that the
scheme C′ = Cyc(K ′,K

×) belongs to the class Cyc(q,n,m′) and satisfies the hy-
pothesis of Theorem 1.3 with r replaced by r ′. Thus

Aut(C) ≤ Aut(C′) ≤ A�L
(
1, qn

)
, (11)

and we are done. �
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