ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Coloring complexes and arrangements

Patricia Hersh1 and Ed Swartz2
1Indiana University Department of Mathematics Rawles Hall Bloomington IN 47405 USA
2Cornell University Department of Mathematics Ithaca NY 14853 USA

DOI: 10.1007/s10801-007-0086-z

Abstract

Steingrimsson's coloring complex and Jonsson's unipolar complex are interpreted in terms of hyperplane arrangements. This viewpoint leads to short proofs that all coloring complexes and a large class of unipolar complexes have convex ear decompositions. These convex ear decompositions impose strong new restrictions on the chromatic polynomials of all finite graphs. Similar results are obtained for characteristic polynomials of submatroids of type \Cal B n arrangements.

Pages: 205–214

Keywords: keywords convex ear decomposition; chromatic polynomial; coloring complex

Full Text: PDF

References

1. Birkoff, G.: A determinant formula for the number of ways of coloring a map, chromatic polynomials. Ann. Math. 14, 42-46 (1912)
2. Brylawski, T.: The broken-circuit complex. Trans. Am. Math. Soc. 234(2), 417-433 (1977)
3. Brylawski, T., Oxley, J.: The Tutte polynomial and its applications. In: White, N. (ed.) Matroid Ap- plications, pp. 123-225. Cambridge University Press, Cambridge (1992)
4. Chari, M.: Two decompositions in topological combinatorics with applications to matroid complexes. Trans. Am. Math. Soc. 349(10), 3925-3943 (1997)
5. Herzog, J., Reiner, V., Welker, V.: The Koszul property in affine semigroup rings. Pac. J. Math. 186, 39-65 (1998) k[ ]
6. Hersh, P., Welker, V.: Gröbner basis degree bounds on Tor\bullet (k, k)\bullet and discrete Morse theory for posets. In: Integer Points in Polyhedra-Geometry, Number Theory, Algebra, Optimization. Contemp. Math., vol. 374, pp. 101-138. Am. Math. Soc., Providence (2005)
7. Hultman, A.: Link complexes of subspace arrangements. Eur. J. Comb. 28, 781-790 (2007)
8. Jonsson, J.: The topology of the coloring complex. J. Algebr. Comb. 21, 311-329 (2005)
9. Peeva, I., Reiner, V., Welker, V.: Cohomology of real diagonal subspace arrangements via resolutions.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition