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Abstract We give a simple description of the natural bijection between the set of
FLOTW bipartitions and the set of Uglov bipartitions (which generalizes the set of
Kleshchev bipartitions). These bipartitions, which label the crystal graphs of irre-
ducible Uv(̂sle)-modules of level two, naturally appear in the context of the modular
representation theory of Hecke algebras of type Bn.
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1 Introduction

Let n > 0, and let Wn be a Weyl group of type Bn with a set of simple reflections
S := {t, s1, . . . , sn−1} and relations symbolized by the following braid diagram:

.

Let k be a field and Q,q ∈ k×. We denote by Hn := Hk(Wn,Q,q) the correspond-
ing Iwahori–Hecke algebra. This is the associative unitary k-algebra generated by the
elements Ts for s ∈ S, subject to the braid relations symbolized by the above diagram
and the relations (Tt − Q)(Tt + 1) = 0, (Tsj − q)(Tsj + 1) = 0 for 1 ≤ j ≤ n − 1.
When Hn is semisimple, the Tits deformation theorem shows that the simple modules
of this algebra are in natural bijection with the simple modules of the group algebra
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kWn. In the nonsemisimple case, the classification of the simple Hn-modules was
obtained by Dipper and James [7], Ariki [1], [2], and Ariki and Mathas [4], using the
theory of canonical bases and crystal graphs for quantum groups.

Let Uv(̂sle) be the quantum group of type A
(1)
e−1. Ariki and Ariki-Mathas showed

that the set of simple Hn-modules Irr(Hn) is in natural bijection with the Kashiwara
crystal basis of the irreducible Uv(̂sle)-module with highest weight sum of two funda-
mental weights Λv0 + Λv1 (0 ≤ v0, v1 < e). There are several natural ways to obtain
a parametrization of this basis, depending on a choice of integers s0 and s1 in the
classes of v0 and v1 modulo e. Hence we obtain several possibilities for labeling
the same set Irr(Hn); they are given by a certain class of bipartitions Φ

(s0,s1)
e,n named

“Uglov bipartitions.” This kind of bipartitions both generalizes the set of FLOTW
bipartitions (which correspond to the case 0 ≤ s0, s1 ≤ e, see [12]), and the set of
Kleshchev bipartitions (corresponding to the case where s0 − s1 > n−1− e, see [2]).

In [10], M. Geck and the author have given an interpretation of this fact in the con-
text of the representation theory of Hecke algebras. We showed that each of the para-
meterizations by Φ

(s0,s1)
e,n corresponds to a natural indexation of the Geck–Rouquier’s

canonical basic set. As a consequence, these sets give natural indexations of the sim-
ple modules for Hecke algebras of type Bn in the nonsemisimple case.

In general we only know a recursive definition of the sets of Uglov bipartitions,
and a natural problem is to obtain a nonrecursive (and simple) characterization of
these sets. In the case where s0 − s1 > n − 1 − e (known as the “asymptotic case”),
this problem has been recently solved by Ariki, Kreiman, and Tsuchioka [5], using
results of Littelmann. Our purpose is to obtain a new characterization of all Uglov
bipartitions using the following facts:

• In the case where 0 ≤ s0 ≤ s1 < e, we know a simple nonrecursive characterization
of the set Φ

(s0,s1)
e,n , the FLOTW bipartitions [6].

• If s′
0 ≡ s0(mod e) and s′

1 ≡ s1(mod e) or if s′
0 ≡ s1(mod e) and s′

1 ≡ s0(mod e), we

have a bijection between Φ
(s0,s1)
e,n and Φ

(s′
0,s

′
1)

e,n .

Hence, if we know a simple (and nonrecursive) description of the above bijection,
the desired characterizations of all Uglov bipartitions will follow. Quite remarkably,
the main result of this paper, Theorem 4.6, together with the work of Leclerc and Miy-
achi, shows that this bijection is controlled by the canonical bases of the irreducible
Uv(sl∞)-modules. As a special case, we obtain a quite simple and new characteriza-
tion of the set of Kleshchev bipartitions (but which remains recursive. . . ) by using
the notion of symbols.

The paper is organized as follows. The first section gives a brief exposition of
the theory of crystal graphs and connections with the representation theory of Hecke
algebras. In the second and third sections, our main results are stated and proved:
we study the combinatoric of Uglov bipartitions and give a description of the above
bijection. This description is largely inspired by the works of Leclerc and Miyachi.
In the last section, we describe the relations of our results with these works.
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2 Crystal graphs of v-deformed Fock spaces of level 2

2.1 Fock spaces

Let v be an indeterminate, and let e be a positive integer. Let h be a free Z-module
with basis {hi,d | 0 ≤ i < e}, and let {Λi, δ | 0 ≤ i < e} be the dual basis with respect
to the pairing

〈, 〉 : h∗ × h → Z

such that 〈Λi,hj 〉 = δij , 〈δ,d〉 = 1, and 〈Λi,d〉 = 〈δ,hj 〉 = 0 for 0 ≤ i, j < e. The
Λk (1 ≤ k ≤ e) are called the fundamental weights. The quantum group Uv(̂sle)

of type A
(1)
e−1 is the unital associative algebra over C(v) generated by the elements

{ei, fi | i ∈ {0, . . . , e − 1}} and {kh | h ∈ h} subject to the relations described, for
example, in [16, Chap. 6].

In this paper, we want to study the irreducible Uv(̂sle)-modules with highest
weight Λ, where Λ is the sum of two fundamental weights Λv0 + Λv1 with 0 ≤
v0, v1 < e. These modules can be constructed by using the Fock space representation
which we now define. Let Π2,n be the set of bipartitions of rank n, that is, the set of
2-tuples (λ(0), λ(1)) such that λ(0) (resp. λ(1)) is a partition or rank a1 (resp. a2) with
a1 +a2 = n. Let s = (s0, s1) ∈ Z

2 be such that s0 ≡ v0 (mod e) and s1 ≡ v1 (mod e) or
such that s0 ≡ v1 (mod e) and s1 ≡ v0 (mod e). The Fock space (of level 2) is defined
to be the C(v)-vector space generated by the symbols |λ, s〉 with λ ∈ Π2,n:

F
s :=

⊕

n≥0

⊕

λ∈Π2,n

C(v)|λ, s〉.

Let us introduce some additional notation concerning the combinatorics of biparti-
tions. Let λ = (λ(0), λ(1)) be a bipartition of rank n. The diagram of λ is the following
set:

[λ] = {

(a, b, c) | 0 ≤ c ≤ 1, 1 ≤ b ≤ λ(c)
a

}

.

The elements of this diagram are called the nodes of λ. Let γ = (a, b, c) be a node of
λ. The residue of γ associated to e and (s0, s1) is the element of Z/eZ defined by

res(γ ) ≡ (b − a + sc)(mod e).

If γ is a node with residue i, we say that γ is an i-node. Let λ and μ be two bi-
partitions of ranks n and n + 1 such that [λ] ⊂ [μ]. There exists a node γ such that
[μ] = [λ] ∪ {γ }. Then, we denote [μ]/[λ] = γ and if res(γ ) = i, we say that γ is
an addable i-node for λ and a removable i-node for μ. Let i ∈ {0, . . . , e − 1}. We
introduce a total order on the set of addable or removable i-nodes of a bipartition.
Let γ = (a, b, c) and γ ′ = (a′, b′, c′) be two i-nodes of a bipartition. We denote
γ <(s0,s1) γ ′ if:

b − a + sc < b′ − a′ + sc′ or if b − a + sc = b′ − a′ + sc′ and c′ < c.

Note that this order strongly depends on the choice of s0 and s1 in the classes of v0
and v1 modulo e. Note also that this order coincides with that of [10].
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Using this order, it is possible to define an action of Uv(̂sle) on the Fock space
Fs such that Fs becomes an integrable Uv(̂sle)-module. Moreover, it is known that
the submodule Ms generated by the empty bipartition is a highest-weight module
with weight Λv0 + Λv1 (see [14] for details). Hence, if s′ = (s′

0, s
′
1) ∈ Z

2 is such that
s0 ≡ s′

0(mod e) and s1 ≡ s′
1(mod e) or such that s0 ≡ s′

1(mod e) and s1 ≡ s′
0(mod e),

then the modules Ms and Ms′ are isomorphic. However, it is important to note that the
actions of Uv(̂sle) on the elements of the standard basis |λ, s〉 and |λ, s′〉 are different
in general.

Remark 2.1 Let (v0, v1) ∈ {0,1, . . . , e − 1}2. Then it is possible to define another
order on the set of i-nodes of a bipartition as follows: we write γ = (a, b, c) <(v0,v1)+
γ ′ = (a′, b′, c′) if:

c′ < c or if c = c′ and a′ < a.

Note that if we fix a bipartition λ of rank n, then the above order on the i-nodes of
λ coincides with <(s0,s1) in the case where s0 ≡ v0(mod e) and s1 ≡ v1(mod e) and
s0 � s1. This order will be referred to the positive asymptotic order, and this is the
one used by Ariki [2] in its determination of the simple modules for Hecke algebras
of type Bn.

Similarly, we can define another order on the set of i-nodes of a bipartition as
follows. We write γ = (a, b, c) <(v0,v1)− γ ′ = (a′, b′, c′) if:

c′ > c or if c = c′ and a′ < a.

If we fix a bipartition λ of rank n, then the above order on the i-nodes of λ coincides
with <(s0,s1) in the case where s0 ≡ v0(mod e) and s1 ≡ v1(mod e) and s0 � s1. This
order will be referred to the negative asymptotic order.

In the two cases, we obtain an action of Uv(̂sle) on the space F(v0,v1), and the
submodules M+

v0,v1
and M−

v0,v1
generated by the empty bipartition are both irreducible

highest-weight modules with weight Λv0 + Λv1 , and they are isomorphic.

2.2 Crystal graph of Ms

As the modules Ms are integrable highest-weight modules, the general theory of
Kashiwara and Lusztig provides us with a canonical basis of Ms. We do not need
in this paper the definition of this basis, but it is important to note that by the deep
results of Ariki [1] one of the interest of this basis is that it provides a way to compute
the decomposition matrices for Hecke algebras of type Bn over fields of characteris-
tic zero (see [3, Theorem 14.49]). In order to make an efficient use of this, we need
to determine a good parametrization of the canonical basis. This is given by studying
the Kashiwara crystal graph which we now describe.

Let λ be a bipartition, and let γ be an i-node of λ. We say that γ is a normal i-node
of λ if, whenever η is an i-node of λ such that η >(s0,s1) γ , there are more removable
i-nodes between η and γ than addable i-nodes between η and γ . If γ is the minimal
normal i-node of λ with respect to <(s0,s1), we say that γ is a good i-node.

Following [2, §2], the normal i-nodes of a bipartition λ can be easily obtained
using the following process. We first read addable and removable i-nodes of λ in
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increasing order with respect to <(s0,s1). If we write A for an addable i-node and R

for a removable one, we get a sequence of A and R. Then we delete RA as many as
possible. The remaining removable i-nodes in the sequence are the normal i-nodes,
and the node corresponding to the leftmost R is a good i-node.

Example 2.2 Let e = 4, s = (0,6), and λ = ((4,3,1,1), (4)). The Young diagram of
λ with residues is the following one:

λ =

⎛

⎜

⎜

⎝

,

⎞

⎟

⎟

⎠

.

We have one addable 1-node (2,1,1) and three removable 1-nodes (4,1,0),
(2,3,0), and (1,4,1). We have:

(4,1,0) <(0,6) (2,3,0) <(0,6) (2,1,1) <(0,6) (1,4,1),

and the associated sequence of removable and addable 1-nodes is RRAR. Hence,
(4,1,0) and (1,4,1) are normal 1-nodes of λ, and (4,1,0) is a good 1-node for λ.

Note that this notion depends on the order <(s0,s1) and, thus, on the choice of s. To
define the crystal graph of Ms, we need to introduce the one of the Fock space F s.
This graph has been studied by Jimbo et al. [14], Foda et al. [6], and Uglov [17]. It is
given by:

• Vertices: the bipartitions.

• Edges: λ
i→ μ if and only if [μ]/[λ] is a good i-node.

Then the crystal graph of Ms is the connected components of that of F s which
contains the empty bipartition ∅ := (∅,∅). The vertices of this graph that are in natural
bijection with the canonical basis elements of Ms are given by the following class of
bipartitions.

Definition 2.3 Let s ∈ Z
2. The set of Uglov bipartitions Φs

e,n is defined recursively
as follows.

• We have ∅ := (∅,∅) ∈ Φs
e,0.

• Let λ ∈ Π2,n for n > 0. Then λ ∈ Φs
e,n if and only if there exist i ∈ {0, . . . , e − 1}

and a good i-node γ such that if we remove γ from λ, the resulting bipartition is
in Φs

e,n−1.

It is known that the set
∐

n≥0 Φs
e,n naturally label the canonical basis of the module

Ms. In the special case where 0 ≤ s0 ≤ s1 < e, Foda, Leclerc, Okado, Thibon, and
Welsh have given a nonrecursive parametrization of the set of Uglov bipartitions.

Proposition 2.4 (Foda et al. [6, Prop. 2.11]) Assume that s := (s0, s1) ∈ Z
2 is such

that 0 ≤ s0 ≤ s1 < e. Then λ = (λ(0), λ(1)) is in Φs
e,n if and only if:
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(1) for all i = 1,2, . . . , we have:

λ
(0)
i ≥ λ

(1)
i+s1−s0

,

λ
(1)
i ≥ λ

(0)
i+e+s0−s1

;
(2) for all k > 0, among the residues appearing at the right ends of the length k rows

of λ, at least one element of {0,1, . . . , e − 1} does not occur.

Such bipartitions are called FLOTW bipartitions.

When the condition 0 ≤ s0 ≤ s1 < e is not satisfied, the above characterization of
Uglov bipartitions is no longer true. Hence, an important problem would be to obtain
a simple description of Φs

e,n in all cases.
Assume that s := (s0, s1) ∈ Z

2 and s′ := (s′
0, s

′
1) ∈ Z

2 are such that s′
0 ≡ s0(mod e)

and s′
1 ≡ s1(mod e) or such that s′

0 ≡ s1(mod e) and s′
1 ≡ s0(mod e). Then the irre-

ducible highest-weight modules Ms and Ms′ are isomorphic, and this implies that
the associated Kashiwara crystal graphs are also isomorphic: only the labeling of the
vertices by the sets of Uglov bipartitions changes. Hence, in these cases, there exists
a bijection

Ψ
(s′

0,s
′
1)

(s0,s1)
: Φ(s0,s1)

e,n → Φ
(s′

0,s
′
1)

e,n .

This bijection can be obtained by following a sequence of arrows back to the empty
bipartition in the crystal graph of Ms and then applying the reversed sequence to
the empty bipartition of Ms′ . In other words, the bijection is obtained recursively as

follows. We put Ψ
(s′

0,s
′
1)

(s0,s1)
(∅) = ∅. Assume that we know Ψ

(s′
0,s

′
1)

(s0,s1)
: Φ(s0,s1)

e,n−1 → Φ
(s′

0,s
′
1)

e,n−1 .

Let λ ∈ Φ
(s0,s1)
e,n . Then there exist i ∈ {0, . . . , e − 1} and a good i-node γ with respect

to <(s0,s1) such that if we remove γ from λ, the resulting bipartition λ′ is in Φs
e,n−1.

Let μ′ := Ψ
(s′

0,s
′
1)

(s0,s1)
(λ′). Then there exist an i-node γ ′ and a bipartition μ such that

[μ] = [μ′] ∪ {γ ′} and such that γ ′ is a good i-node for μ with respect to <(s′
0,s

′
1)

.

Then we put Ψ
(s′

0,s
′
1)

(s0,s1)
(λ) = μ.

Remark 2.5 Let (v0, v1) ∈ {0,1, . . . , e − 1}2. Then the crystal associated to the mod-
ules M+

v0,v1
and M−

v0,v1
can be obtained in the same way as in Definition 2.3 by using

the order <(v0,v1)+ and <(v0,v1)− . The bipartitions which label the vertices of the
crystal graph are respectively called the positive Kleshchev bipartitions and negative
Kleshchev bipartitions. They are denoted by Φ

(v0,v1)+
e,n and Φ

(v0,v1)−
e,n .

Let s := (s0, s1) ∈ Z
2 be such that s0 ≡ v0(mod e) and s1 ≡ v1(mod e). Then the

irreducible highest-weight modules Ms, M+
v0,v1

, and M−
v0,v1

are isomorphic, and we
also obtain the bijections:

Ψ
(v0,v1)−
(s0,s1)

: Φ(s0,s1)
e,n → Φ

(v0,v1)−
e,n ,

Ψ
(v0,v1)+
(s0,s1)

: Φ(s0,s1)
e,n → Φ

(v0,v1)+
e,n ,

Ψ
(v0,v1)−
(v0,v1)+ : Φ(v0,v1)+

e,n → Φ
(v0,v1)−
e,n .
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Note that we also have the bijections Ψ
(v1,v0)−
(s0,s1)

, Ψ
(v1,v0)+
(s0,s1)

, and Ψ
(v1,v0)−
(v0,v1)+ . By the de-

finitions of the order <(v0,v1)+ and <(v1,v0)− and the definition of good nodes, it

is clear that the last bijection is given by Ψ
(v1,v0)−
(v0,v1)+ (λ(0), λ(1)) = (λ(1), λ(0)) for all

(λ(0), λ(1)) ∈ Φ
(v0,v1)+
e,n .

Now it is natural to try to obtain a more efficient description of these bijections.
This is also motivated by the following results.

2.3 Hecke algebras of type Bn

One of the motivations for studying the class of Uglov bipartitions is provided by the
study of the modular representations of Hecke algebras of type Bn. We briefly sketch
this application in this subsection.

Let Wn be the Weyl group of type Bn, and let (a, b) ∈ N
2
>0 and ζl := exp( 2iπ

l
). Let

Hn := Hk(Wn, ζ
b
l , ζ a

l ) be the Hecke algebra with parameters Q := ζ b
l and q := ζ a

l

defined over the field of complex numbers as it is defined in the introduction. In this
case, the algebra Hn is nonsemisimple in general, and one of the main problem is
to determine a parametrization of its simple modules and to compute the associated
decomposition matrix. An approach to solve this problem has been given by Geck [8]
and Geck–Rouquier [11]. This approach which is closely related to the existence
of Kazhdan–Lusztig theory shows the existence of “canonical sets” of bipartitions
which are in natural bijection with the set Irr(Hn). These sets are called “canonical
basic sets,” and they also show the unitriangularity of the decomposition matrix of
Hn (for a good order on the rows provided by the Lusztig a-function). A complete
survey of this theory can be found in [8] (see also [9] for further applications). Now,
[10, Theorem 5.4] shows that these canonical basic sets are precisely given by the
Uglov bipartitions.

Theorem 2.6 (Geck–Jacon [10]) Let Hn := Hk(Wn, ζ
b
l , ζ a

l ) be the Hecke algebra
with parameters Q := ζ b

l and q := ζ a
l , where (a, b) ∈ N

2
>0. Let d ∈ Z be such that

ζ b
l = −ζ a·d

l . Let e ≥ 2 be the multiplicative order of q, and let p ∈ Z be such that:

d + pe <
b

a
< d + (p + 1)e.

Then the set B = Φ
(d+pe,0)
e,n is a canonical basic set in the sense of [10, Def. 2.4], and

it is in natural bijection with Irr(Hn).

Thus it could be interesting to obtain another characterization of the set of Uglov
bipartitions.

3 First results

In this section, we show that the characterization of the map Ψ
(s0,s1+e)
(s0,s1)

in the case

where s0 ≤ s1 is sufficient to obtain a characterization of the maps Ψ
(s′

0,s
′
1)

(s0,s1)
in all

cases.
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3.1 Particular cases

The following proposition gives an explicit description of the map Ψ
(s0,s1)

(s′
0,s

′
1)

in partic-

ular cases.

Proposition 3.1 Let (s0, s1) ∈ N
2, and let e > 1 be a positive integer.

(1) Let t ∈ Z. Then for all λ ∈ Φ
(s0,s1)
e,n , we have Ψ

(s0+te,s1+te)
(s0,s1)

(λ) = λ. Hence we
have

Φ(s0,s1)
e,n = Φ(s0+te,s1+te)

e,n .

(2) For all λ = (λ(0), λ(1)) ∈ Φ
(s0,s1)
e,n , we have Ψ

(s1,s0+e)
(s0,s1)

(λ(0), λ(1)) = (λ(1), λ(0)).
Hence we have

Φ(s1,s0+e)
e,n = {

λ = (

λ(0), λ(1)
) ∈ Π2,n

∣

∣

(

λ(1), λ(0)
) ∈ Φ(s0,s1)

e,n

}

.

Proof The first assertion is clear as the order associated to (s0, s1) and (s0 + te, s1 +
te) on the set of i-nodes of a bipartition is the same in both cases.

We prove (2) by induction on the rank n. If n = 0, then the result is clear. Assume
that n > 0. Let λ = (λ(0), λ(1)) ∈ Φ

(s0,s1)
e,n , and let γ = (a, b, c) be a good i-node

of λ. We must show that γ ′ = (a, b, c + 1(mod 2)) is a good i-node for (λ(1), λ(0))

for the order induced by (s1, s0 + e), and the result will follow by induction. To do
this, by the definition of good nodes in Sect. 2.2, it is enough to show the following
property: if i ∈ {0,1, . . . , e − 1}, then γ1 = (a1, b1, c1) is an i-node in (λ(0), λ(1))

such that γ >(s0,s1) γ1 if and only if γ ′
1 = (a1, b1, c1 + 1(mod 2)) is an i-node in

(λ(1), λ(0)) such that γ ′ >(s1,s0+e) γ ′
1. We first assume that γ >(s0,s1) γ1 and we show

that γ ′ >(s1,s0+e) γ ′
1. Note that as γ and γ1 have the same residue modulo e, there

exists t ∈ Z such that b − a + sc = b1 − a1 + sc1 + te.

• If c = c1, then it is clear that γ ′ >(s1,s0+e) γ1.
• If c = 0 and c1 = 1, then we have t ≥ 0. Hence b − a + s0 ≥ b1 − a1 + s1 and thus

b − a + s0 + e > b1 − a1 + s1 and γ ′ >(s1,s0+e) γ ′
1.

• If c = 1 and c1 = 0, then we have t > 0. Hence we have b − a + s1 ≥ b1 − a1 +
s0 + e. If t > 1, then we have b − a + s1 > b1 − a1 + s0 + e and γ ′ >(s1,s0+e) γ ′

1.
If t = 1, then we have b − a + s1 = b1 − a1 + s0 + e and γ ′ >(s1,s0+e) γ1, since γ ′
is in the first component of (λ(1), λ(0)).

Assume now that γ ′ >(s1,s0+e) γ ′
1. Then by the above argument γ >(s0+e,s1+e) γ1,

and we conclude by using (1). �

The following proposition deals with the characterization of the maps Ψ
(v0,v1)−
(s0,s1)

and Ψ
(v0,v1)+
(s0,s1)

.

Proposition 3.2 Let (s0, s1) ∈ Z
2, and let (v0, v1) ∈ {0,1, . . . , e − 1}2 be such that

v0 ≡ s0(mod e) and v1 ≡ s1(mod e).
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(1) if s1 − s0 > n − 1, then for all λ ∈ Φ
(s0,s1)
e,n , we have Ψ

(v0,v1)−
(s0,s1)

(λ) = λ. Hence we
have

Φ(s0,s1)
e,n = Φ

(v0,v1)−
e,n .

(2) If s0 − s1 > n − 1 − e, then for all λ ∈ Φ
(s0,s1)
e,n , we have Ψ

(v0,v1)+
(s0,s1)

(λ) = λ. Hence
we have

Φ(s0,s1)
e,n = Φ

(v0,v1)+
e,n .

Proof We prove (1). Let (s0, s1) ∈ Z
2 be such that s1 −s0 > n−1 and let λ ∈ Φ

(s0,s1)
e,n .

Let γ = (a, b, c) be a removable i-node of λ, and let γ ′ = (a′, b′, c′) be an addable
or removable i-node of λ. We show that γ <(s0,s1) γ ′ if and only if γ <(v0,v1)− γ ′,
and the result will follow by induction and by the definition of a good i-node as in the
proof of the previous proposition. Assume first that γ <(s0,s1) γ ′. If c = c′, then the
result is clear. So assume that c �= c′. If c′ = 1 and c = 0, then we have γ <(v0,v1)− γ ′.
Assume that c = 1 and c′ = 0. As γ and γ ′ have the same residue modulo e, there
exists t ∈ Z such that b − a + s1 = b′ − a′ + s0 + te. As γ <(s0,s1) γ ′, we have t ≤ 0.
Hence we have:

b − a − (b′ − a′) ≤ (s0 − s1) < 1 − n.

This is impossible. Indeed, as λ is a bipartition of rank n, we must have:

∣

∣b′ − a′ − (b − a)
∣

∣ ≤ n − 1.

Assume now that γ <(v0,v1)− γ ′. If c = c′, then γ <(s0,s1) γ ′. If otherwise, we have
c′ = 1 and c = 0, then b′ − a′ + s1 − (b − a + s0) ≥ 1 − n + s1 − s0 > 0, and we
conclude that γ <(s0,s1) γ ′. Hence the first assertion is proved. (2) follows by using
Proposition 3.1(2) and Remark 2.5. �

3.2 The map Ψ
(s0,s1+e)
(s0,s1)

In this subsection, we show that to characterize Ψ
(s′

0,s
′
1)

(s0,s1)
in all cases, it is enough to

characterize Ψ
(s0,s1+e)
(s0,s1)

in the case where 0 ≤ s0 ≤ s1. First, let us assume that we

know Ψ
(s0,s1+e)
(s0,s1)

and its inverse map if s0 ≤ s1.

Let (u0, u1) ∈ Z
2 be such that 0 ≤ uc < e and sc ≡ uc(mod e) for c = 0,1. By

Proposition 3.1(2), we can assume that we have 0 ≤ u0 ≤ u1 < e. Then, we have a
characterization of all the following maps:

Φ
(u0,u1)
e,n −−−−−→

Ψ
(u0,u1+e)

(u0,u1)

Φ
(u0,u1+e)
e,n −−−−−→

Ψ
(u0,u1+2e)

(u0,u1+e)

· · ·

· · · −−−−−−−→
Ψ

(u0,u1+te)

(u0,u1+(t−1)e)

Φ
(u0,u1+te)
e,n −−−−−−−→

Ψ
(u0,u1+(t+1)e)

(u0,u1+te)

Φ
(u0,u1)−
e,n ,

where t is such that (t − 1)e > n − 1. Now, by Proposition 3.1(1), for all s ∈ N,

we have that Φ
(u0,u1+se)
e,n = Φ

(u0−se,u1)
e,n and Ψ

(u0−se,u1)
(u0,u1+se) is the identity. Hence all the
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following maps are known:

Φ
(u0,u1)
e,n −−−−−→

Ψ
(u0−e,u1)

(u0,u1)

Φ
(u0−e,u1)
e,n −−−−−→

Ψ
(u0−2e,u1)

(u0−e,u1)

· · ·

· · · −−−−−−−→
Ψ

(u0−te,u1)

(u0−(t−1)e,u1)

Φ
(u0−te,u1)
e,n −−−−−−−→

Ψ
(u0−(t+1)e,u1)

(u0−te,u1)

Φ
(u0,u1)−
e,n .

As we have 0 ≤ u0 ≤ u1 < e, we have u1 ≤ u0 + e. Hence, we have a characteri-
zation of the following maps:

Φ
(u1,u0+e)
e,n −−−−−→

Ψ
(u1,u1+2e)

(u1,u0+e)

Φ
(u1,u0+2e)
e,n −−−−−→

Ψ
(u1,u0+3e)

(u1,u0+2e)

· · ·

· · · −−−−−−−→
Ψ

(u1,u0+(t+1)e)

(u1,u0+te)

Φ
(u1,u0+(t+1)e)
e,n −−−−−−−→

Ψ
(u1,u0+(t+2)e)

(u1,u0+(t+1)e)

Φ
(u1,u0)−
e,n .

Hence by Proposition 3.1(2), we have a characterization of the following maps:

Φ
(u0,u1)
e,n −−−−−→

Ψ
(u0+e,u1)

(u0,u1)

Φ
(u0+e,u1)
e,n −−−−−→

Ψ
(u0+2e,u1)

(u0+e,u1)

· · ·

· · · −−−−−−−→
Ψ

(u0+te,u1)

(u0+(t−1)e,u1)

Φ
(u0+te,u1)
e,n −−−−−−−→

Ψ
(u0+(t+1)e,u1)

(u0+te,u1)

Φ
(u0,u1)+
e,n .

By Proposition 3.1(1), for all s ∈ N, we have that Φ
(u0+se,u1)
e,n = Φ

(u0,u1−se)
e,n and

Ψ
(u0−se,u1)
(u0,u1+se) is the identity. Hence all the following maps are known:

Φ
(u0,u1)
e,n −−−−−→

Ψ
(u0,u1−e)

(u0,u1)

Φ
(u0,u1−e)
e,n −−−−−→

Ψ
(u0,u1−2e)

(u0,u1−e)

· · ·

· · · −−−−−−−→
Ψ

(u0,u1−te)

(u0,u1−(t−1)e)

Φ
(u0,u1−te)
e,n −−−−−−−→

Ψ
(u0,u1−(t+1)e)

(u0,u1−te)

Φ
(u0,u1)+
e,n .

In addition, note that by Proposition 3.1(1), we can also assume that s0 and s1 are
both positive integers. Thus, we conclude that the characterization of Ψ

(s0,s1+e)
(s0,s1)

in

the case where 0 ≤ s0 ≤ s1 yields a characterization of Ψ
(s′

0,s
′
1)

(s0,s1)
in all cases.

4 Characterization of the map Ψ
(s0,s1+e)
(s0,s1)

4.1 Properties of Uglov bipartitions

We begin with a general result on the set of Uglov bipartitions. This will be useful
for the proof of the main result.

Proposition 4.1 Let s := (s0, s1) ∈ N
2, and assume that s1 ≥ s0. Let λ ∈ Φs

e,n, Then
λ ∈ Φs

f,n, where f > s1 + n. Hence, for all i = 1,2, . . . , we have:

λ
(0)
i ≥ λ

(1)
i+s1−s0

.
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Proof This is proved by induction on n. If n = 0, the result is trivial. Let n > 0, and
let λ ∈ Φs

e,n. Then by the definition of Uglov bipartitions, there exists a good i-node
η = (a, b, c) such that if we remove η from λ, the resulting bipartition is in Φs

e,n−1.

We have λ
(c)
a − a + sc ≡ i(mod e). Now, we have two cases to consider:

• If there is no addable node η′ = (a′, b′, c′) such that λ
(c′)
a′ −a′ + sc′ = λ

(c)
a −a + sc.

Then, as f > s1 +n, there is no addable node such that λ
(c′)
a′ −a′ + sc′ ≡ λ

(c)
a −a +

sc(modf ). This implies that η is a normal node for the order induced by s and f . If

there is no removable node η′ = (a′, b′, c′) such that λ
(c′)
a′ −a′ + sc′ = λ

(c)
a −a + sc

then this is a good node for the order induced by s and f . If otherwise, as η is a
good node for the order induced by s and e, we must have c′ < c. We conclude that
η is a good i-node for the order induced by s and f .

• If there is an addable node η′ = (a′, b′, c′) such that λ
(c′)
a′ −a′ + sc′ = λ

(c)
a −a + sc ,

then, as η is a good i-node for the order induced by s and e, we must have c′ > c

(if otherwise, we have η′ >(s0,s1) η and no removable i-node between these two
i-nodes). η′ is the only addable node which has the same residue as η′ modulo f .

Moreover, in this case, there is no removable node η′ = (a′, b′, c′) such that λ
(c′)
a′ −

a′ + sc′ = λ
(c)
a − a + sc and thus such that λ

(c′)
a′ − a′ + sc′ ≡ λ

(c)
a − a + sc(modf ).

Hence η must be a good i-node for the order induced by s and f .

Thus, the first part of the proposition follows by induction.
Now, as f > s1 + n ≥ s1, the elements of Φs

f,n are FLOTW bipartitions. Hence,
we can use the characterization of Proposition 2.4 to get the second part of the propo-
sition. �

4.2 Symbol of a bipartition

Let s := (s0, s1) ∈ N
2 be such that s0 ≤ s1, and let λ := (λ(0), λ(1)) be a bipartition of

rank n ≥ 0. Assume that λ(0) = (λ
(0)
1 , λ

(0)
2 , . . . , λ

(0)
r0 ) and λ(1) = (λ

(1)
1 , λ

(1)
2 , . . . , λ

(1)
r1 )

(where λ
(0)
1 ≥ λ

(0)
2 ≥ · · · ≥ λ

(0)
r0 and λ

(1)
1 ≥ λ

(1)
2 ≥ · · · ≥ λ

(1)
r1 ). Let m ∈ N be such that

m > Max(r0 − s0, r1 − s1). We define the following numbers which depend on λ, s,
and m:

• For i = 1, . . . ,m + s0, we put β
(0)
i = λ

(0)
i − i + s0 + m

• For j = 1, . . . ,m + s1, we put β
(1)
j = λ

(1)
j − j + s1 + m

where we put λ
(0)
k := 0 (resp. λ

(1)
k := 0) if k > r0 (resp. k > r1). We have β

(1)
1 >

β
(1)
2 > · · · > β

(1)
m+s1

≥ 0 and β
(0)
1 > β

(0)
2 > · · · > β

(0)
m+s0

≥ 0. In this paper, we some-

times identified β(c) (c = 0,1) with the set {β(c)
m+sc

, . . . , β
(c)
1 }. Then, the s-symbol

Ss(λ) of λ is defined to be the pair of these two partitions. This is written as follows:

(

β
(1)
m+s1

β
(1)
m+s1−1 · · · · · · β

(1)
1

β
(0)
m+s0

β
(0)
m+s0−1 · · · β

(0)
1

)

.

On the other hand, given an s-symbol Ss, it is easy to get the bipartition λ such that
Ss = Ss(λ). By Proposition 4.1, note that if λ is in Φs

e,n, the s-symbol Ss(λ) has the
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property that β
(1)
i+s1−s0

≤ β
(0)
i for i = 1, . . . ,m+ s0. Such symbols are called standard

in [15].
We will now define a map from the set of Uglov bipartitions Φs

e,n to the set of
bipartitions of rank n using this notion of s-symbol. Let λ := (λ(0), λ(1)) ∈ Φs

e,n, and

let Ss(λ) =
(

β(1)

β(0)

)

be its s-symbol. Following [15, §2.5], we first define an injective

map θ : β(0) → β(1) such that θ(β
(0)
j ) ≤ β

(0)
j for all j ∈ {1, . . . ,m + s0} as follows.

• Let β
(1)
i be the maximal element of β(1) such that β

(0)
m+s0

≥ β
(1)
i . Then we put

θ(β
(0)
m+s0

) = β
(1)
i .

• Assume that we have defined θ(β
(0)
j ) for j = p + 1,p + 2, . . . ,m+ s0. Let β

(1)
k be

the maximal element of β(1) \{θ(β
(0)
m+s0

∪· · ·∪β
(0)
p+2 ∪β

(0)
p+1)} such that β

(0)
p ≥ β

(1)
k .

Then we put θ(β
(0)
p ) = β

(1)
k .

Observe that the standardness of Ss(λ) implies that θ is well defined. The 2-tuples
(j, θ(j)) such that θ(j) �= j are called the pairs of Ss(λ).

Example 4.2 Let e = 4 and s = (0,2). Then by Proposition 2.4, the bipartition λ :=
((2,2,1), (3,2)) is in Φ

(0,2)
4,10 . The s-symbol of this bipartition is the following one

(where we put m = 4):
(

0 1 2 3 6 8
0 2 4 5

)

.

We have θ(0) = 0, θ(2) = 2, θ(4) = 3, θ(5) = 1.

Definition 4.3 Let e be a positive integer such that e > 1, and let s := (s0, s1) ∈ N
2

be such that s0 ≤ s1. We define a map

Υ(s0,s1) : Φ(s0,s1)
e,n → Π2,n

as follows. Let λ ∈ Φ
(s0,s1)
e,n , and let Ss(λ) be the associated s-symbol. Let S′

s be the
symbol obtained from Ss(λ) by permuting the pairs in Ss(λ) and reordering the rows
(so that S′

s is a well-defined s-symbol, see the example below). Let μ be the bipartition
such that S′

s = Ss(μ). Observe that μ ∈ Π2,n. Then we put:

Υ(s0,s1)(λ) = μ.

Example 4.4 Keeping the above example, the symbol S′
s is given by

(

0 2 4 5 6 8
0 1 2 3

)

.

This is the s-symbol of the bipartition (∅, (3,2,2,2,1)).

Remark 4.5 Note that the inverse map Υ −1
(s0,s1)

can be easily obtained as follows.

Let μ := (μ(0),μ(1)) ∈ Υ(s0,s1)(Φ
(s0,s1)
e,n ), and let Ss(μ) =

(

β(1)

β(0)

)

be its s-symbol.

We define an injective map τ : β(0) → β(1) such that τ(β
(0)
j ) ≥ β

(1)
j for all j ∈

{1, . . . ,m + s1} as follows.
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• Let β
(1)
i be the minimal element of β(1) such that β

(0)
1 ≤ β

(1)
i . Then we put

τ(β
(0)
1 ) = β

(1)
i .

• Assume that we have defined τ(β
(0)
j ) for j = 1,2, . . . , p − 1. Let β

(1)
k be the mini-

mal element of β(1) \ {τ(β
(0)
1 ∪ β

(0)
2 ∪ · · · ∪ β

(0)
p−1)} such that β

(0)
p ≤ β

(1)
k . Then we

put τ(β
(0)
p ) = β

(1)
k .

Let λ be the bipartition associated to the s-symbol obtained from Ss(μ) by per-
muting the pairs (j, τ (j)) with j �= τ(j) and reordering the rows. Then we have
μ = Υ −1

(s0,s1)
(λ).

4.3 Main result

We can now state the main theorem of this paper which gives an explicit description
of the bijection Ψ

(s0,s1+e)
(s0,s1)

.

Theorem 4.6 Let e be a positive integer such that e > 1, and let s := (s0, s1) ∈ N
2

be such that s0 ≤ s1. Then:

Ψ
(s0,s1+e)
(s0,s1)

= Υ(s0,s1).

To prove this theorem, we need combinatorial properties of the map Υ(s0,s1). Recall
that m ∈ N is such that m > Max(r0 − s0, r1 − s1). For a bipartition ν ∈ Π2,n, let

Ss(ν) =
(

β(1)

β(0)

)

be its s-symbol. Observe that each node γ on the border of ν (that is at

the right ends of the Young diagram of ν) corresponds to an element of Ss(ν). Indeed,
to each node (a, ν

(c)
a , c), we can associate the element β

(c)
a = ν

(c)
a − a + sc + m.

Observe also that:

• If the number β
(c)
a − 1 does not occur in β(c), then γ is a removable node of ν.

• If the number β
(c)
a + 1 does not occur in β(c), then we have an addable node

γ ′ := (a, ν
(c)
a + 1, c) in ν.

• The residue of the node γ associated to β
(c)
a is β

(c)
a − m(mod e).

In addition, recall that if η = (a, b, c) and η′ = (a′, b′, c′) are two i-nodes of a bipar-
tition, we have η <(s0,s1) η′ if and only if:

b − a + sc < b′ − a′ + sc′ or if b − a + sc = b′ − a′ + sc′ and c > c′.

On the other hand, assume that η = (a, b, c) and η′ = (a′, b′, c′) are two i-nodes such
that η <(s0,s1+e) η′.

• If c = c′ = 0, then we have b − a + s0 < b′ − a′ + s0.
• If c = c′ = 1, then we have b − a + s1 < b′ − a′ + s1.
• If c = 0 and c′ = 1, then we have b − a + s0 < b′ − a′ + s1 + e. Thus we have

b − a + s0 < b′ − a′ + s1 or b − a + s0 = b′ − a′ + s1.
• If c = 1 and c′ = 0, we have b−a+s1 +e ≥ b′−a′+s0. Thus we have b−a+s1 <

b′ − a′ + s0.
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Hence, if η = (a, b, c) and η′ = (a′, b′, c′) are two i-nodes of a bipartition, we have
η <(s0,s1+e) η′ if and only if:

b − a + sc < b′ − a′ + sc′ or if b − a + sc = b′ − a′ + sc′ and c < c′.

4.4 Proof of Theorem 4.6

This is proved by induction on n. If n = 0, then the result is trivial as

Ψ
(s0,s1+e)
(s0,s1)

(∅) = Υ(s0,s1) = (∅) = ∅.

Let n > 0, let λ := (λ(0), λ(1)) ∈ Φs
e,n, and let Ss(λ) =

(

β(1)

β(0)

)

be its s-symbol. Let

μ = (μ(0),μ(1)) := Υ(s0,s1)(λ
(0), λ(1)), and let Ss(μ) =

(

α(1)

α(0)

)

be its s-symbol.

As in Sect. 2.2, we write the sequence of removable and addable i-nodes of λ in
increasing order with respect to <(s0,s1):

A1A2R3R4A5R6 · · ·As,

where we write Rj for a removable i-node and Aj for an addable i-node. We delete
the occurrences RjAj+1 in this sequence. Then, we obtain a sequence S of remov-
able i-nodes and addable i-nodes:

Aj1 · · ·Ajs Ri1Ri2 · · · ,
where j1 < j2 < · · · < i1 < i2 < · · ·. The Rik correspond to the normal i-nodes of λ,

and the leftmost one, Ri1 , is a good i-node for λ.
Let Ril be an element of S. As explained above, Ril corresponds to an element

β
(c)
a in Ss(λ). As Ril is removable, we have β

(c)
a−1 < β

(c)
a − 1. We will associate to

this node a removable i-node R′
il

in μ. To do this, we will distinguish several cases.
We also have to consider the other removable and addable i-nodes of λ as it will
be useful for the proof of the main result. In each case, we give an example of the
symbols Ss(μ) and Ss(λ) in which the elements corresponding to Ril and R′

il
are

written in bold.

(1) Assume that c = 0 and that we have θ(β
(0)
a ) = β

(1)
b < β

(0)
a for b ∈ {1, . . . ,m +s1}.

Then to obtain Ss(μ), we have to permute β
(0)
a and β

(1)
b . As β

(1)
b < β

(0)
a , the node

R′
il

associated to β
(0)
a in α(1) is a removable i-node (because β

(0)
a − 1 cannot

occur in α(1)). Note that if we have β
(1)
b = β

(0)
a − 1, then we have an addable

i-node A on the part of λ associated to β
(1)
b in β(1) such that A <(s0,s1) Ril . In

this case, we have an addable i-node A′ on the part of μ associated to β
(1)
b in

α(0) such that A′ <(s0,s1+e) R′
il

.

Example 4.7 In the following example, we put β
(0)
a = j , β

(1)
b = j − 1, β

(0)
a−1 =

j − 2, and β
(1)
b−1 = j − 2:

Ss(λ) =
( · · · j − 2 j − 1 · · · · · ·

· · · j − 2 j · · ·
)

.
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Then

Ss(μ) =
( · · · j − 2 j · · · · · ·

· · · j − 2 j − 1 · · ·
)

.

(2) Assume that c = 0 and that we have θ(β
(0)
a ) = β

(1)
b = β

(0)
a for b ∈ {1, . . . ,m + s1}

and that β
(1)
b−1 < β

(1)
b − 1. In this case, we have a removable i-node R associated

to β
(1)
b in β(1). Observe that R <(s0,s1) Ril . Then to obtain Ss(μ), β

(0)
a is not

permuted with any elements of β(1). The node R′
il

associated to β
(1)
b in α(1) is a

removable i-node. Note that the removable i-node R′ associated to β
(0)
a in α(0)

is such that R′ <(s0,s1+e) R′
il

.

Example 4.8 In the following example, we put β
(0)
a = j = β

(1)
b , β

(0)
a−1 = j − 2,

and β
(1)
b−1 = j − 3:

Ss(λ) =
( · · · j − 3 j · · · · · ·

· · · j − 2 j · · ·
)

.

Then

Ss(μ) =
( · · · j − 2 j · · · · · ·

· · · j − 3 j · · ·
)

.

(3) Assume that c = 0 and that we have θ(β
(0)
a ) = β

(1)
b = β

(0)
a for b ∈ {1, . . . ,m + s1}

and that β
(1)
b−1 = β

(1)
b − 1. Then to obtain Ss(μ), β

(0)
a is not permuted with any

elements of β(1). The node R′
il

associated to β
(0)
a in α(0) is a removable i-node.

Example 4.9 In the following example, we put β
(0)
a = j = β

(1)
b , β

(0)
a−1 = j − 2,

and β
(1)
b−1 = j − 1:

Ss(λ) =
( · · · · · · j − 1 j · · · · · ·

· · · j − 2 j · · · · · ·
)

.

Then

Ss(μ) =
( · · · · · · j − 1 j · · · · · ·

· · · j − 2 j · · · · · ·
)

.

(4) Assume that c = 1 and that we have θ(β
(0)
b ) = β

(1)
a < β

(0)
b for a

b ∈ {1, . . . ,m + s1}. Then to obtain Ss(μ), β
(0)
b must be permuted with β

(1)
a .

The node R′
il

associated to β
(1)
a in α(0) is a removable i-node. Note that if we

have β
(0)
b−1 = β

(1)
a − 1, then we have an addable i-node A on the part of λ asso-

ciated to β
(0)
b−1 such that A >(s0,s1) Ril . This cannot happen for Ril since we have

assumed that σ is reduced.
However note that if R is such a removable i-node and if R′ is the associated

removable i-node of μ as above, we have an addable i-node A′ on the part of μ

associated to β
(0)
b−1 in α(1) such that A′ >(s0,s1+e) R′.
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Example 4.10 In the following example, we put β
(1)
a = j , β

(0)
b = j + 1, β

(1)
a−1 =

j − 3, and β
(0)
b−1 = j − 1:

Ss(λ) =
( · · · j − 3 j · · · · · ·

· · · j − 1 j + 1 · · ·
)

.

Then

Ss(μ) =
( · · · j − 1 j + 1 · · · · · ·

· · · j − 3 j · · ·
)

.

(5) Assume that c = 1 and that we have θ(β
(0)
b ) = β

(1)
a = β

(0)
b for a

b ∈ {1, . . . ,m + s1}. Then to obtain Ss(μ), β
(1)
a is not permuted with any el-

ements of β(0). The node R′
il

associated to β
(0)
b in α(0) must be a removable

i-node. Note that if β
(0)
b−1 < β

(0)
b − 1, then the node R associated to β

(0)
b in β(0) is

a removable i-node such that R >(s0,s1) Ril . Then, the node R′ associated to β
(1)
a

in α(1) is a removable i-node such that R′ >(s0,s1+e) R′
il

.

Example 4.11 In the following example, we put β
(1)
a = j = β

(0)
b , β

(1)
a−1 = j − 2,

and β
(0)
b−1 = j − 1:

Ss(λ) =
( · · · j − 2 j · · · · · ·

· · · j − 1 j · · ·
)

.

Then

Ss(μ) =
( · · · j − 1 j · · · · · ·

· · · j − 2 j · · ·
)

.

(6) Assume that c = 1 and that we have θ(β
(0)
b ) �= β

(1)
a for all b ∈ {1, . . . ,m + s0}.

Then the node R′
il

associated to β
(1)
a in β(1) is a removable i-node except possibly

in the following case: there exists d ∈ {1, . . . ,m + s0} such that β
(0)
d = β

(1)
a − 1.

In this case, we have an addable i-node A in β(0) such that A >(s0,s1) Ril and
there is no removable i-node between Ril and A in λ, contradicting the fact that
Ril is a normal i-node.

Example 4.12 In the following example, we put β
(1)
a = j :

Ss(λ) =
( · · · j − 3 j j + 1 · · ·

· · · j − 2 j + 3 · · ·
)

.

Then

Ss(μ) =
( · · · j − 2 j j + 3 · · ·

· · · j − 3 j + 1 · · ·
)

.
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Thus we have associated to each normal i-node Ril in λ a removable i-node R′
il

in μ.
Similarly, one can easily check that if Ait is an addable i-node of λ in S, then we

can associate an addable i-node A′
it

in μ as above. If otherwise, one can show that
there exists a removable i-node R such that R <(s0,s1) Ait and that there is no addable
or removable i-node between these two i-nodes for the order >(s0,s1). This contradicts
the fact that we have deleted all the occurrences RjAj+1 in the sequence S.

Hence, we have associated to the sequence S, a sequence of removable and
addable i-nodes of μ:

A′
j1

· · ·A′
js

R′
i1
R′

i2
· · · ,

where j1 < j2 < · · · < i1 < i2 < · · ·.
Now, by the above observations, it is easy to verify that this sequence corresponds

to the sequence S′ of the removable and addable i-nodes of μ, written in increasing
order with respect to <(s0,s1+e) and where the occurrences RA have been deleted.

The only problem may appear in the following situation. We have an i-node corre-
sponding to an element β

(1)
a which is not removable. There exists d ∈ {1, . . . ,m + s0}

such that θ(β
(0)
d ) = β

(1)
a < β

(0)
d and β

(0)
d−1 < β

(1)
a −1. In this situation, to obtain Ss(μ),

we must permute β
(0)
d and β

(1)
a . Moreover, β

(1)
a−1 is not permuted with any elements

of β(0). Thus the i-node R′ associated to β
(1)
a in α(0) must be removable for μ.

Example 4.13 In the following example, we put β
(1)
a = j , β

(0)
d = j + 1, and β

(0)
d−1 =

j − 2:

Ss(λ) =
( · · · j − 3 j − 1 j · · ·

· · · j − 2 j + 1 · · ·
)

.

Then

Ss(μ) =
( · · · j − 2 j − 1 j + 1 · · ·

· · · j − 3 j · · ·
)

.

Note that in this case, we have an addable i-node A′ on the part of μ(1) associated
to β

(1)
a−1 such that A′ >(s0,s1+e) R′. Thus, to obtain S′, the occurrence R′A′ must be

deleted.
Now the leftmost removable i-node Ri1 in S is a good i-node for λ (with respect

to <(s0,s1)), and the above discussion shows that this corresponds to a removable
i-node R′

i1
in S′ which must be a good i-node for μ (with respect to <(s0,s1+e)).

Similarly, one easily shows that if we have an i-node which is not addable for λ

and if this node corresponds to an addable i-node A′ for μ, then we have a removable
i-node R′ for μ such that A′ >(s0,s1+e) R′ and to obtain S′, the occurrence R′A′ must
be deleted.

Finally, let ν be the bipartition obtained by removing Ri1 from λ. Note that in
case (2) above, the normal i-node Ril cannot be a good i-node. Indeed, we have a
removable i-node R such that R <(s0,s1) Ril and no addable i-node between these
two nodes. Hence R is a normal i-node such that R <(s0,s1) Ril , and thus Ril is not
a good i-node. Studying the other cases above, one can verify that Υ(s0,s1)(ν) is the
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bipartition obtained by removing R′
i1

from μ. This concludes the proof of the main
theorem.

4.5 Example

In this subsection, we give an example for the computation of the bijection Ψ
(s0,s1+e)
(s0,s1)

.

We put s = (0,1) and e = 4 and we consider the bipartition λ := ((8), (4)) ∈ Φ
(0,1)
4,12

(this is a FLOTW bipartition, see Proposition 2.4). We compute the (0,1)-symbol of
((8), (4)) (with m = 2):

S(0,1)((8), (4)) =
(

0 1 6
0 9

)

.

Then, the injection θ : {0,9} → {0,1,6} is such that θ(0) = 0 and θ(9) = 1. Thus, the
(0,1)-symbol of Ψ

(0,5)
(0,1) ((8), (4)) is:

(

0 1 9
0 6

)

.

Thus, we have Ψ
(0,5)
(0,1) ((8), (4)) = ((5), (7)). We now want to find Ψ

(0,9)
(0,5) ((5), (7)).

The (0,9)-symbol of ((5), (7)) is:

S(0,5)((5), (7))) =
(

0 1 2 3 4 5 13
0 6

)

.

Then, the injection θ : {0,6} → {0,1,2,3,4,5,13} is such that θ(0) = 0 and
θ(6) = 5. Thus, the (0,5)-symbol of Ψ

(0,9)
(0,5) ((8), (4)) is:

(

0 1 2 3 4 6 13
0 5

)

.

Thus, we have Ψ
(0,9)
(0,5) ((8), (4)) = ((4), (7,1)). We want now to find the Uglov bipar-

tition Ψ
(0,13)
(0,9) ((4), (7,1)). The (0,9)-symbol of ((4), (7,1)) is:

S(0,9)((4), (7,1))) =
(

0 1 2 3 4 5 6 7 8 9 17
0 6

)

.

Then, the injection θ : {0,6} → {0,1,2,3,4,5,6,7,8,9,17} is such that θ(0) = 0
and θ(6) = 6.

Thus, the (0,9)-symbol of Ψ
(0,9)
(0,5)

((8), (4)) is S(0,9)((4), (7,1)). Hence we have

Ψ
(0,13)
(0,9)

((4), (7,1)) = ((4), (7,1)). Now, we have Φ
(0,13)
4,12 = Φ

(0,1)+
4,12 because 13−0 >

n − 1.

5 Relation with results of Leclerc and Miyachi

Following the works of Leclerc and Miyachi and using the above results, it is possible
to describe the bijection Ψ

(s0,s1+e)
(s0,s1)

by using the theory of canonical basis for Uv(sl∞)-
modules. We first recall the results of [15].
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Let Uv(sl∞) be the quantum algebra associated to the doubly infinite diagram
of type A∞. The fundamental weights are denoted by Λi with i ∈ Z. Let s :=
(s0, s1) ∈ N

2 with s0 ≤ s1, and let Ls be the irreducible highest-weight module with
highest weight Λs0 + Λs1 . Then the theory of Kashiwara and Lusztig provides us
with a canonical basis for Ls. This basis is naturally labeled by the vertices of the
associated crystal graph which can be constructed as in Sect. 2.2. It is easy to see that
the class of bipartitions which label this graph is given by:

Φs∞,n = {

λ = (

λ(0), λ(1)
) ∈ Π2,n | λ

(0)
i ≥ λ

(1)
i+s1−s0

, i = 1,2,3, . . .
}

with n ≥ 0. Thus, if λ ∈ Φs∞,n, the associated element of the canonical basis is given
by:

b(λ) =
∑

μ∈Π2,n

cλ,μ(v)μ

with cλ,λ(v) = 1 and cλ,μ(v) ∈ vZ[v] if μ �= λ.
Let λ := (λ(0), λ(1)) ∈ Φs∞,n, and let Ss(λ) be its associated symbol. By the above

characterization of Φs∞,n, this symbol is standard. Let p be the number of pairs in this
symbol (see Sect. 4.2), and let C(λ) be the set of bipartitions μ of n such that Ss(μ)

is obtained from Ss(λ) by permuting some pairs in Ss(λ) and reordering the rows.
For μ ∈ C(λ), we denote by l(μ) the number of pairs permuted in Ss(λ) to obtain
Ss(μ). In particular, we have l(λ) = 0. Then, the following result gives an explicit
description of the canonical basis.

Theorem 5.1 (Leclerc–Miyachi [15, Theorem 3]) Let λ ∈ Φs∞,n, and let b(λ) be the
associated element of the canonical basis of Ls. Then we have:

b(λ) =
∑

μ∈C(λ)

vl(μ)μ.

Now, let e be a positive integer such that e > 1, and let s := (s0, s1) ∈ N
2 with

s0 ≤ s1. Let λ ∈ Φs
e,n. By Proposition 4.1, we have λ ∈ Φs∞,n. Thus λ is labeling

the element of the canonical basis of the irreducible highest-weight module Ls with
highest weight Λs0 + Λs1 . Hence Theorem 4.6 together with Theorem 5.1 yields the
following remarkable property:

Theorem 5.2 Let λ ∈ Φs
e,n. Then we have Ψ

(s0,s1+e)
(s0,s1)

(λ) = μ if and only if the degree
of cλ,μ(v) is maximal in b(λ).

It could be interesting to obtain a noncombinatorial proof of the above theorem

which shows why the bijections Ψ
(s′

0,s
′
1)

(s0,s1)
are controlled by the canonical basis of irre-

ducible Uv(sl∞)-modules.
Another open problem is obtaining similar statements for the irreducible highest-

weight Uv(sl∞)-modules of level l > 2. In this case, relations between the sets of
Uglov multipartitions and the representation theory of Ariki-Koike algebras have
been established in [13].
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