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Abstract The Richardson variety X
γ
α in the Grassmannian is defined to be the inter-

section of the Schubert variety Xγ and opposite Schubert variety Xα . We give an ex-
plicit Gröbner basis for the ideal of the tangent cone at any T -fixed point of X

γ
α , thus

generalizing a result of Kodiyalam-Raghavan (J. Algebra 270(1):28–54, 2003) and
Kreiman-Lakshmibai (Algebra, Arithmetic and Geometry with Applications, 2004).
Our proof is based on a generalization of the Robinson-Schensted-Knuth (RSK) cor-
respondence, which we call the bounded RSK (BRSK). We use the Gröbner basis
result to deduce a formula which computes the multiplicity of X

γ
α at any T -fixed

point by counting families of nonintersecting lattice paths, thus generalizing a result
first proved by Krattenthaler (Sém. Lothar. Comb. 45:B45c, 2000/2001; J. Algebr.
Comb. 22:273–288, 2005).

Keywords Schubert variety · Grassmannian · Multiplicity · Grobner basis ·
Robinson-Schensted-Knuth correspondence

1 Introduction

The Richardson variety X
γ
α in the Grassmannian1 is defined to be the intersection of

the Schubert variety Xγ and opposite Schubert variety Xα . In particular, Schubert and
opposite Schubert varieties are special cases of Richardson varieties. We derive local
properties of X

γ
α at any T -fixed point eβ . It should be noted that the local properties

of Schubert varieties at T -fixed points determine their local properties at all other
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1Richardson varieties in the Grassmannian are also studied by Stanley in [20], where these varieties are
called skew Schubert varieties. Discussion of these varieties also appears in [6].
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points, because of the B-action; but this does not extend to Richardson varieties,
since Richardson varieties only have a T -action.

In Kodiyalam-Raghavan [7] and Kreiman-Lakshmibai [11], an explicit Gröbner
basis for the ideal of the tangent cone of the Schubert variety Xγ at eβ is obtained.
The Gröbner basis is used to derive a formula for the multiplicity of Xγ at eβ . In
this paper, we generalize the results of [7] and [11] to the case of Richardson vari-
eties. The results of [7] and [11] were conjectured by Kreiman-Lakshmibai [12], al-
though in a different, group-theoretic form. The multiplicity formula (in both forms)
was first proved by Krattenthaler [8, 9] by showing its equivalence to the Rosenthal-
Zelevinsky determinantal multiplicity formula [18].

Sturmfels [21] and Herzog-Trung [5] proved results on a class of determinantal
varieties which are equivalent to the results of [7, 11], and this paper for the case
of Schubert varieties at the T -fixed point eid . The key to their proofs was to use a
version of the Robinson-Schensted-Knuth correspondence (which we shall call the
‘ordinary’ RSK) in order to establish a degree-preserving bijection between a set of
monomials defined by an initial ideal and a ‘standard monomial basis’.

The difficulty in generalizing this method of proof to the case of Schubert vari-
eties at an arbitrary T -fixed point eβ lies in generalizing this bijection. All three of [7,
11], and this paper obtain generalizations of this bijection. The three generalizations,
when restricted to Schubert varieties, are in fact the same bijection2, although this is
not immediately apparent. Although the formulations of the bijection in [7] and [11]
are similar to eachother, our formulation is in terms of different combinatorial index-
ing sets, and thus most of our combinatorial definitions and proofs are of a different
nature than those of [7] and [11]. The relationship between our formulation and the
formulations in [7] and [11] is analogous to the relationship between the Robinson-
Schensted correspondence and Viennot’s version of the Robinson-Schensted corre-
spondence [19, 22].

We formulate the bijection by introducing a generalization of the ordinary RSK,
which we call the bounded RSK. Because the definition of the bounded RSK is built
from that of the ordinary RSK, many properties of the bounded RSK are immedi-
ate consequences of analogous properties for the ordinary RSK (see [3, 19]). This
simplifies our proofs.

Results analogous to those of [7] and [11] have now been obtained for the sym-
plectic and orthogonal Grassmannians (see [4, 16]). We believe it is possible that the
methods of this paper can be adapted to these varieties as well. The results of [7, 11],
and this paper have been used to study the equivariant cohomology and equivariant
K-theory of the Grassmannian (see [10, 15]).

2 Statement of results

Let K be an algebraically closed field, and let d , n be fixed positive integers, 0 < d <

n. The Grassmannian Grd,n is the set of all d-dimensional subspaces of Kn. The

2This supports the conviction of the authors in [7] that this bijection is natural and that it is in some sense
the only natural bijection satisfying the required geometric conditions.
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Plücker map pl : Grd,n → P(∧dKn) is given by pl(W) = [w1 ∧ · · · ∧ wd ], where
{w1, . . . ,wd} is any basis for W . It is well known that pl is a bijection onto a closed
subset of P(∧dKn). Thus Grd,n inherits the structure of a projective variety.

Define Id,n to be the set of d-element subsets of {1, . . . , n}. Let α = {α1, . . . , αd} ∈
Id,n, α1 < · · · < αd . Define the complement of α by α = {1, . . . , n} \ α, and the
length of α by l(α) = α1 + · · · + αd − (

d+1
2

)
. If β = {β1, . . . , βd} ∈ Id,n, β1 < . . . <

βd , then we say that α ≤ β if αi ≤ βi , i = 1, . . . , d .
Let {e1, . . . , en} be the standard basis for Kn. For α ∈ Id,n, define eα =

Span{eα1, . . . , eαd
} ∈ Grd,n. Let

G = GLn(K),

B = {g ∈ G | g is upper triangular},
B− = {g ∈ G | g is lower triangular},
T = {g ∈ G | g is diagonal}.

The group G acts transitively on Grd,n with T -fixed points {eα | α ∈ Id,n}. The
Zariski closure of the B (resp. B−) orbit through eα , with canonical reduced scheme
structure, is called a Schubert variety (resp. opposite Schubert variety), and de-
noted by Xα (resp. Xα). For α,γ ∈ Id,n, the scheme-theoretic intersection X

γ
α =

Xα ∩Xγ is called a Richardson variety. It can be shown that X
γ
α is nonempty if and

only if α ≤ γ ; that eβ ∈ X
γ
α if and only if α ≤ β ≤ γ ; and that if X

γ
α is nonempty, it

is reduced and irreducible of dimension l(γ ) − l(α) (see [1, 13, 14, 17]).
For β ∈ Id,n define pβ to be homogeneous (Plücker) coordinate [eβ1 ∧ · · ·∧ eβd

]∗
of P(∧dKn). Let Oβ be the distinguished open set of Grd,n defined by pβ �= 0. Its
coordinate ring K[Oβ ] is isomorphic to the homogeneous localization K[Grd,n](pβ).
Define fθ,β to be pθ/pβ ∈ K[Oβ ].

The open set Oβ is isomorphic to the affine space Kd(n−d). Indeed, it can be
identified with the space of matrices in Mn×d in which rows β1, . . . , βd are the rows
of the d × d identity matrix, and rows β1, . . . , βn−d contain arbitrary elements of
K . The rows of Oβ are indexed by {1, . . . , n}, and the columns by β . Note that the
affine coordinates of K[Oβ ] are indexed by β × β . The coordinate fθ,β , θ ∈ Id,n, is
identified with plus or minus the d × d minor of Oβ with row-set θ1, . . . , θd .

Example 2.1 Let d = 3, n = 7, β = {2,5,7}. Then

Oβ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

x12 x15 x17
1 0 0

x32 x35 x37
x42 x45 x47
0 1 0

x62 x65 x67
0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, xij ∈ K

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

and

f{1,4,5},β =
∣∣∣∣
∣

x12 x15 x17
x42 x45 x47
0 1 0

∣∣∣∣
∣
= −

∣∣∣
∣
x12 x17
x42 x47

∣∣∣
∣ .
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In order to better understand the local properties of X
γ
α near eβ , we analyze Y

γ
α,β =

X
γ
α ∩Oβ , an open subset of X

γ
α centered at eβ , and a closed affine subvariety of Oβ .

Let G
γ
α,β = {fθ,β | α �≥ θ or θ �≤ γ } ⊂ K[Oβ ], and let 〈Gγ

α,β〉 be the ideal of K[Oβ ]
generated by G

γ
α,β . The following is a well known result (see [1, 14], for instance).

Theorem 2.2 K[Yγ
α,β ] = K[Oβ ]/〈Gγ

α,β〉.

As a consequence of Theorem 2.2, Y
γ
α,β is isomorphic to the tangent cone of X

γ
α at

eβ , and thus degY
γ
α,β = Multeβ X

γ
α , the multiplicity of X

γ
α at eβ . Indeed, since Y

γ
α,β

is an affine variety in Oβ defined by a homogeneous ideal, with eβ the origin of Oβ ,
Y

γ
α,β is isomorphic to the tangent cone of Y

γ
α,β at eβ ; since Y

γ
α,β is open in X

γ
α , the

tangent cone of Y
γ
α,β at eβ is isomorphic to the tangent cone of X

γ
α at eβ .

Any minor fθ,β can be expressed naturally as plus or minus a determinant all of
whose entries are xij ’s. Choose a monomial order on K[Oβ ] such that the initial term
of any minor fθ,β , in(fθ,β), is the Southwest-Northeast diagonal of this determinant.
The main result of this paper, which is also proven in [7] and [11], is the following.

Proposition 2.3 G
γ
α,β is a Gröbner basis for 〈Gγ

α,β〉.
If S is any subset of K[Oβ ], define inS to be the ideal 〈in(s) | s ∈ S〉.

Corollary 2.4 degY
γ
α,β (= Multeβ X

γ
α ) is the number of square-free monomials of

degree l(γ ) − l(α) in K[Oβ ] \ inG
γ
α,β .

We now briefly sketch the proof of Proposition 2.3 (omitting the details, which
can be found in Section 8), in order to introduce the main combinatorial objects of
interest and outline the structure of this paper. We wish to show that in any degree,
the number of monomials of inG

γ
α,β is at least as great as the number of monomials

of in〈Gγ
α,β〉 (the other inequality being trivial), or equivalently, that in any degree, the

number of monomials of K[Oβ ]\ inG
γ
α,β is no greater than the number of monomials

of K[Oβ ] \ in〈Gγ
α,β〉. Both the monomials of K[Oβ ] \ in〈Gγ

α,β〉 and the standard

monomials on Y
γ
α,β form a basis for K[Oβ ]/〈Gγ

α,β〉, and thus agree in cardinality
in any degree. Therefore, it suffices to give a degree-preserving injection from the
monomials of K[Oβ ] \ inG

γ
α,β to the standard monomials on Y

γ
α,β . We construct

such an injection, the bounded RSK (BRSK), from an indexing set of the former to
an indexing set of the latter. These indexing sets are given in Table 1.

In Sects. 3, 4, 5, 6, and 7, we define nonvanishing multisets on β × β bounded
by Tα,Wγ , nonvanishing semistandard notched bitableaux on β × β bounded by
Tα,Wγ , and the injection BRSK from the former to the latter. In Section 8, we prove
that these two combinatorial objects are indeed indexing sets for the monomials of
K[Oβ ] \ inG

γ
α,β and the standard monomials on Y

γ
α,β respectively, and use this to

prove Proposition 2.3 and Corollary 2.4. In Sections 9 and 10, we show how using
Corollary 2.4, Multeβ X

γ
α can be interpreted as counting certain families of noninter-

secting paths in the lattice β × β . In Section 11, we give two of the more detailed
proofs.
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Table 1 Two subsets of K[Oβ ] and their indexing sets

Set of elements in K[Oβ ] Indexing set

monomials of K[Oβ ] \ inG
γ
α,β nonvanishing multisets

on β × β bounded by Tα,Wγ

standard monomials on Y
γ
α,β nonvanishing semistandard notched bitableaux

on β × β bounded by Tα,Wγ

3 Notched tableaux and bounded insertion

A Young diagram (resp. notched diagram) is a collection of boxes arranged into a
left and top justified array (resp. into left justified rows). The empty Young diagram
is the Young diagram with no boxes. A notched diagram may contain rows with no
boxes; however, a Young diagram may not, unless it is the empty Young diagram.
A Young tableau (resp. notched tableau) is a filling of the boxes of a Young dia-
gram (resp. notched diagram) with positive integers. The empty Young tableau is the
Young tableau with no boxes. Let P be either a notched tableau or a Young tableau.
We denote by Pi the i-th row of P from the top, and by Pi,j the j -th entry from the
left of Pi . We say that P is row strict if the entries of any row of P strictly increase
as you move to the right. If P is a Young tableau, then we say that P is semistandard
if it is row strict and the entries of any column weakly increase as you move down.
By definition, the empty Young tableau is considered semistandard.

Example 3.1 A row strict notched tableau P , and a semistandard Young tableau R.

P = , R =

Let P be a row strict notched tableau, and b a positive integer. Since P is row
strict, its entries which are greater than or equal to b are right justified in each row.
Thus if we remove these entries (and their boxes) from P then we are left with a row
strict notched tableau, which we denote by P <b . We say that P is semistandard on
b if P <b is a semistandard Young tableau (note that if P is semistandard on b and
the first row of P <b has no boxes, then P <b must be the empty Young tableau). It
is clear that if P is semistandard on b, then it is semistandard on b′ for any positive
integer b′ < b.
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Example 3.2 Let

P = .

Then

P <5 = , P <6 = .

Thus P is semistandard on 5 but not on 6.

We next review the transpose of Schensted’s column insertion process, which we
shall call simply ‘ordinary’ Schensted insertion. It is an algorithm which takes as
input a semistandard Young tableau P and a positive integer a, and produces as output
a new semistandard Young tableau with the same shape as P plus one extra box, and
with the same entries as P (possibly in different locations) plus one additional entry,
namely a. To begin, insert a into the first row of R, as follows. If a is greater than
all entries in the first row of R, then place a in a new box on the right end of the first
row, and ordinary Schensted insertion terminates. Otherwise, find the smallest entry
of the first row of R which is greater than or equal to a, and replace that number
with a. We say that the number which was replaced was “bumped” from the first row.
Insert the bumped number into the second row in precisely the same fashion that a

was inserted into the first row. This process continues down the rows until, at some
point, a number is placed in a new box on the right end of some row, at which point
ordinary Schensted insertion terminates.

We next describe the bounded insertion algorithm, which takes as input a posi-
tive integer b, a notched tableau P which is semistandard on b, and a positive integer
a < b, and produces as output a notched tableau which is semistandard on b, which

we denote by P
b← a.

Bounded Insertion

Step 1. Remove all entries of P which are greater than or equal to b from P ,
resulting in the semistandard Young tableau P <b .

Step 2. Insert a into P <b using the ordinary Schensted insertion process.
Step 3. Place the entries of P which were removed when forming P <b in

Step 1 back into the Young tableau resulting from Step 2, in the same rows
from which they were removed.

This insertion process is effectively the ordinary Schensted insertion of a into P , but
acting only on the part of P which is “bounded” by b. The fact that bounded insertion
preserves the property of being semistandard on b follows immediately from the fact
that ordinary Schensted insertion preserves the property of being semistandard.
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Example 3.3 Let

P = ,

a = 3, b = 6. We compute P
b← a.

Step 1. Remove all entries of P which are greater than or equal than b, resulting in

P <b = .

Step 2. Insert a into P <b using the ordinary Schensted insertion process: a bumps 4
from the first row, which bumps 5 from the second row, which is placed in a new box
on the right end of the third row, to form

.

Step 3. Place the entries removed from P in Step 1 back into the Young tableau
resulting from Step 2, in the same rows from which they were removed, to obtain

P
b← a = .

We define the bumping route of the bounded insertion algorithm to be the se-
quence of boxes in P from which entries are bumped in Step 2, together with the
new box which is added at the end of Step 2.

Example 3.4 The bumping route in Example 3.3 is the set of boxes with •’s in the
following Young diagram:

The new box is the lowest box containing a •.

The bounded insertion algorithm is reversible: if P
b← a is computed, and we

know b and the location of the new box, then we can retrieve P and a by running the
bounded insertion algorithm in reverse. Note that the reverse of Step 2 is the ordinary
Schensted reverse insertion process.
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Suppose that P is semistandard on b, that a, a′ < b, and that bounded insertion

is performed twice in succession, resulting in (P
b← a)

b← a′. Let R and B be the
bumping route and new box of the first insertion, and let R′ and B ′ be the bumping
route and new box of the second insertion. We say that R′ is weakly left of R if for
every box of R, there is a box of R′ to the left of or equal to it; we say that R is
strictly left of R′ if for every box of R′, there is a box of R to the left of it. We say
that B ′ is strictly below B if B ′ lies in a lower row than B; we say that B is weakly
below B ′ if B lies in either the same row as B ′ or a lower row than B ′. The following
Lemma is an immediate consequence of the analogous result for ordinary Schensted
insertion (see [3]).

Lemma 3.5

(i) If a ≥ a′, then R′ is weakly left of R and B ′ is strictly below B .
(ii) If a < a′, then R is strictly left of R′ and B is weakly below B ′.

4 Multisets on N and on N
2

Let S be any set. A multiset E on S is defined to be a function E : S → {0,1,2, . . . , }.
One should think of E as consisting of the set S of elements, but with each s ∈ S

occurring E(s) times. Note that a set is a special type of multiset in which each
element occurs exactly once. Define the underlying set of E to be {s ∈ S | E(s) �= 0},
a subset of S. If T is a subset of S, then we write E ⊂ T if the underlying set of E is a
subset of T . We often write a multiset E by listing its elements, E = {e1, e2, e3, . . .},
where the ei ’s may not be distinct (in fact, each ei occurs E(ei) times in the list).

We call E(s) the degree or multiplicity of s in E. The multiset E is said to be
finite if E(s) is nonzero for only finitely many s ∈ S. If E is finite, then define the
degree of E, denoted by |E|, to be the sum of E(s) over all s ∈ S. If E is not finite,
then define the degree of E to be ∞. Define the multisets E ∪̇ F and E\F as follows:

(E ∪̇ F)(s) = E(s) + F(s), s ∈ S,

(E \ F)(s) = max{E(s) − F(s),0}, s ∈ S.

Example 4.1 Let E = {a, b, b, b, c, c, c}, F = {b, b, c, d}. Then |E| = 7, E ∪̇ F =
{a, b, b, b, b, b, c, c, c, c, d}, and E \ F = {a, b, c, c}.

Multisets on N

Let N denote the positive integers. Let E = {e1, e2, . . .} be a multiset on N, and let
z ∈ N. Define the multiset E≤z := {ej ∈ E | ej ≤ z}.

Let A = {a1, a2, . . .} and B = {b1, b2, . . .} be two multisets on N of the same
degree, with ai ≤ ai+1, bi ≤ bi+1, for all i. We say that A is less than or equal to B in
the termwise order if ai ≤ bi for all i, or equivalently if |A<z| ≥ |B<z| for all z ∈ N.
We denote this by A ≤ B . We say that A is less than B in the strict termwise order
if ai < bi for all i. We denote this by A � B . Note that ≤ is a finer order than �.
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If A, B , C, and D are multisets on N such that |A ∪̇ D| = |B ∪̇ C|, then we write

A − C ≤ B − D to indicate that A ∪̇ D ≤ B ∪̇ C. (1)

Note that A − B ≤ C − D is a transitive relation.
In general no meaning is attached to the expression A−C by itself. However, if A

and C are both sets, then we may define A − C := A ∪̇ (N \ C). If in addition A ⊂ β

and C ⊂ β , then we may define A − C := A ∪̇ (β \ C). It is an easy check that both
of these definitions are consistent with (1) (e.g., A ∪̇ (N \ C) ≤ B ∪̇ (N \ D) if and
only if A ∪̇ D ≤ B ∪̇ C).

Multisets on N
2

Let U = {(e1, f1), (e2, f2), . . .} be a multiset on N
2. Define U(1) and U(2) to be the

multisets {e1, e2, . . .} and {f1, f2, . . .} respectively on N. Define the nonvanishing,
negative, and positive parts of U to be the following multisets:

U �=0 = {(ei, fi) ∈ U | ei − fi �= 0},
U− = {(ei, fi) ∈ U | ei − fi < 0},
U+ = {(ei, fi) ∈ U | ei − fi > 0}.

It is useful to visualize the e-axis pointing downward and the f -axis pointing to the
right, as illustrated below (the large squares cover the points of N

2 \ (N2)�=0):

We say that U is nonvanishing if U ⊂ (N2)�=0, negative if U ⊂ (N2)−, and posi-
tive if U ⊂ (N2)+. Impose the following transitive relation on multisets on N

2:

U ≤ V ⇐⇒ U(1) − U(2) ≤ V(1) − V(2). (2)

Let ι be the map on multisets on N
2 defined by ι({(e1, f1), (e2, f2), . . .}) =

{(f1, e1), (f2, e2), . . .}. Then ι is an involution, and it maps negative multisets on
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N
2 to positive ones and visa-versa. Thus ι is a bijective pairing between the sets of

negative and positive multisets on N
2. Note also that U ≤ V ⇐⇒ ι(V ) ≤ ι(U).

In this paper, all sets and multisets other than N, N
2, and multisets expressed

explicitly as A ∪̇ (N \ C) where A and C are finite subsets of N, are assumed to be
finite.

5 Semistandard notched bitableaux

A notched bitableau is a pair (P,Q) of notched tableaux of the same shape (i.e.,
the same number of rows and the same number of boxes in each row). The degree of
(P,Q) is the number of boxes in P (or Q). A notched bitableau (P,Q) is said to be
row strict if both P and Q are row strict. A row strict notched bitableau (P,Q) is
said to be semistandard if

P1 − Q1 ≤ · · · ≤ Pr − Qr. (3)

A row strict notched bitableau (P,Q) is said to be negative if Pi � Qi , i = 1, . . . , r ,
positive if Pi � Qi , i = 1, . . . , r , and nonvanishing if either

Pi � Qi or Pi � Qi, (4)

for each i = 1, . . . , r .

Example 5.1 Consider the notched bitableau

(P,Q) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

,

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We have that

1. (P,Q) is row strict.
2. P1 ∪̇ Q2 = {1,3,4,5,7,9} ≤ {2,3,5,5,7,9} = P2 ∪̇ Q1. Therefore, P1 − Q1 ≤

P2 − Q2. Similarly, one checks that Pi − Qi ≤ Pi+1 − Qi+1, i = 2, . . . ,7. Thus
(P,Q) is semistandard.

3. Pi � Qi , i = 1, . . . ,5, and Pi � Qi , i = 6, . . . ,8. Thus (P,Q) is nonvanishing.

Let (P,Q) be a semistandard notched bitableau. If, for subsets T and W of N
2,

T(1) − T(2) ≤ P1 − Q1 and Pr − Qr ≤ W(1) − W(2), (5)

then we say that (P,Q) is bounded by T,W. Note that (5) combined with (3) implies

T(1) − T(2) ≤ P1 − Q1 ≤ · · · ≤ Pr − Qr ≤ W(1) − W(2).
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Thus (5) means that if T(1) and T(2) are placed above the top rows of P and Q respec-
tively, and W(1) and W(2) are placed below the bottom rows of P and Q respectively,
the resulting bitableau still satisfies (3).

Let (P,Q) be a nonvanishing semistandard notched bitableau. Then all rows
(Pi,Qi) of (P,Q) for which Pi � Qi must lie above all rows (Pj ,Qj ) of (P,Q)

such that Pj � Qj . Let 0 ≤ i ≤ r be maximal such that Pi � Qi . Then the top i

rows of P and Q form a negative semistandard notched bitableau and the bottom
r − i rows of P and Q form a positive semistandard notched bitableau. These two
bitableaux are called respectively the negative and positive parts of (P,Q).

If (P,Q) is a nonvanishing semistandard notched bitableau, define ι(P ,Q) to be
the notched bitableau obtained by reversing the order of the rows of (Q,P ). One
checks that ι(P ,Q) is a nonvanishing semistandard notched bitableau. The map ι

is an involution, and it maps negative semistandard notched bitableaux to positive
ones and visa-versa. Thus ι gives a bijective pairing between the sets of negative and
positive semistandard notched bitableaux.

The definitions for semistandard notched tableaux and semistandard notched
bitableaux appear to be quite different. The following Lemma gives a relationship
between these two objects.

Lemma 5.2 Let (P,Q) be a negative semistandard notched bitableau, and let b be
the minimum value of all entries of Q. Then P is semistandard on b.

Proof Let r be the number of rows of P . Suppose that, for some i, 1 ≤ i ≤ r −1, Pi+1

has exactly x entries which are less than b, with x > 0. We must show that (i) Pi has at
least x entries which are less than b, and (ii) {Pi,1, . . . ,Pi,x} ≤ {Pi+1,1, . . . ,Pi+1,x}.

By (3),

Pi ∪̇ Qi+1 ≤ Pi+1 ∪̇ Qi. (6)

Therefore, since Pi+1 ∪̇ Qi has (exactly) x entries less than b, Pi ∪̇ Qi+1 must have
at least x entries less than b, which must all be in Pi , since b is the smallest entry of
Q. This proves (i). The x smallest entries of the left hand side and right hand side of
(6) are {Pi,1, . . . ,Pi,x} and {Pi+1,1, . . . ,Pi+1,x} respectively. Thus (6) implies (ii). �

6 The bounded RSK correspondence

We next define the bounded RSK correspondence, BRSK, a function which maps
negative multisets on N

2 to negative semistandard notched bitableaux. Let U =
{(a1, b1), . . . , (at , bt )} be a negative multiset on N

2, whose entries we assume are
listed in lexicographic order: (i) b1 ≥ · · · ≥ bt , and (ii) if for any i ∈ {1, . . . , t − 1},
bi = bi+1, then ai ≥ ai+1. We inductively form a sequence of notched bitableaux
(P (0),Q(0)), (P (1),Q(1)), . . . , (P (t),Q(t)), such that P (i) is semistandard on bi ,
i = 1, . . . , t , as follows:

Let (P (0),Q(0)) = (∅,∅), and let b0 = b1. Assume inductively that we have
formed (P (i),Q(i)), such that P (i) is semistandard on bi , and thus on bi+1,



362 J Algebr Comb (2008) 27: 351–382

since bi+1 ≤ bi . Define P (i+1) = P (i) bi+1← ai+1. Since bounded insertion pre-
serves semistandardness on bi+1, P (i+1) is also semistandard on bi+1. Let j be
the row number of the new box of this bounded insertion. Define Q(i+1) to be
the notched tableau obtained by placing bi+1 on the left end of row j of Q(i)

(and shifting all other entries of Q(i) to the right one box). Clearly P (i+1) and
Q(i+1) have the same shape.

Then BRSK(U) is defined to be (P (t),Q(t)). In the process above, we write

(P (i+1),Q(i+1)) = (P (i),Q(i))
bi+1← ai+1. In terms of this notation,

BRSK(U) = ((∅,∅)
b1← a1) · · · bt← at .

Example 6.1 Let U = {(7,8), (2,8), (6,7), (4,7), (1,7), (3,6), (2,4)}. Then

P (0) = ∅ Q(0) = ∅
P (1) = ∅ 8← 7 = Q(1) =

P (2) = 8← 2 = Q(2) =

P (3) = 7← 6 = Q(3) =

P (4) = 7← 4 = Q(4) =

P (5) = 7← 1 = Q(5) =

P (6) = 6← 3 = Q(6) =

P (7) = 4← 2 = Q(7) =

Therefore BRSK(U) =
⎛

⎝ ,

⎞

⎠.

Lemma 6.2 If U is a negative multiset on N
2, then BRSK(U) is a negative semistan-

dard notched bitableau.

Proof We use notation as in the definition of BRSK above. That Q(i) is row-strict
for all i follows from Lemma 3.5(i) and the fact that the entries of U are listed in
lexicographical order: if bi+1 = bi for some i, then since ai+1 ≤ ai , the new box of
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the (i + 1)st insertion must be strictly below the new box of ith insertion. That P (i)

is row strict and (P (i),Q(i)) is negative for all i follows easily from the definition of
BRSK, using induction. It remains to prove that (P (i),Q(i)) is semistandard for all i.

Let P = P (i), Q = Q(i), P ′ = P (i+1), Q′ = Q(i+1), a = ai+1, b = bi+1, and
assume inductively that (P,Q) is a negative semistandard notched bitableau. Let
s be the number of rows of P ′ (and Q′). We show that (P ′,Q′) satisfies (3), or
equivalently, for any positive integer z,

|(P ′
j ∪̇ Q′

j+1)
<z| ≥ |(P ′

j+1 ∪̇ Q′
j )

<z|, j = 1, . . . , s − 1.

By Lemma 5.2, P is semistandard on b; hence so is P ′. Thus for z ≤ b,

|(P ′
j ∪̇ Q′

j+1)
<z| = |(P ′

j )
<z| ≥ |(P ′

j+1)
<z| = |(P ′

j+1 ∪̇ Q′
j )

<z|, j = 1, . . . , s − 1.

Let k be the row number of the new box (both in P ′ and Q′) of this bounded insertion.
Since (P,Q) is semistandard, for z > b, j �= k − 1, and j �= k,

|(P ′
j ∪̇ Q′

j+1)
<z| = |(Pj ∪̇ Qj+1)

<z| ≥ |(Pj+1 ∪̇ Qj)
<z| = |(P ′

j+1 ∪̇ Q′
j )

<z|.
For (z > b) and (j = k − 1 or j = k),

|(P ′
j ∪̇ Q′

j+1)
<z| = |(Pj ∪̇ Qj+1)

<z| + 1 ≥ |(Pj+1 ∪̇ Qj)
<z| + 1

= |(P ′
j+1 ∪̇ Q′

j )
<z|. �

Lemma 6.3 The map BRSK is a degree-preserving bijection from the set of negative
multisets on N

2 to the set of negative semistandard notched bitableaux.

Proof That BRSK is degree-preserving is obvious.
To show that BRSK is a bijection, we define its inverse, which we call the reverse

of BRSK, or RBRSK.
Note that the bounded insertion used to form (P (i+1),Q(i+1)) from (P (i),Q(i)),

i = 1, . . . , t − 1, is reversible. In other words, by knowing only (P (i+1),Q(i+1)), we
can retrieve (P (i),Q(i)), ai+1, and bi+1. First, we obtain bi+1; it is the minimum entry
of Q(i+1). Then, in the lowest row in which bi+1 appears in Q(i+1), select the greatest
entry of P (i+1) which is less than bi+1. This entry was the new box of the bounded
insertion. If we begin reverse bounded insertion with this entry, we retrieve P (i) and
ai+1. Finally, Q(i) is retrieved from Q(i+1) by removing the lowest occurrence of
bi+1 appearing in Q(i+1). This occurrence must be on the left end of some row. All
other entries of that row should be moved one box to the left, thus eliminating the
empty box vacated by bi+1.

It follows that we can reverse the entire sequence used to define BRSK by revers-
ing each step in the sequence. If we generate (P (t),Q(t)) via BRSK, we can retrieve
U using this procedure. We will call the process of obtaining (P (i−1),Q(i−1)), ai ,
and bi from (P (i),Q(i)) described in the paragraph above a reverse step and denote

it by (P (i−1),Q(i−1)) = (P (i),Q(i))
bi→ ai . We will call the process of applying all

the reverse steps sequentially to retrieve U from (P (t),Q(t)) the reverse of BRSK, or
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Fig. 1 The map BRSK

RBRSK. For example, if one applies RBRSK to the negative semistandard notched
bitableau appearing on the bottom line of Example 6.1, one obtains the negative mul-
tiset U from that example.

If (P (t),Q(t)) is an arbitrary semistandard notched bitableau (which we do not
assume to be BRSK(U), for some U ), then we can still apply a sequence of re-
verse steps to (P (t),Q(t)), to sequentially obtain (P (i),Q(i)), ai , bi , i = t, . . . ,1. For
this process to be well-defined, however, it must first be checked that the successive
(P (i),Q(i)) are negative semistandard notched bitableaux. It suffices to prove a state-
ment very similar to that proved in Lemma 6.2: if (P,Q) is a negative semistandard

notched bitableau, then (P ′,Q′) := (P,Q)
b→ a is a negative semistandard notched

bitableau, a < b are positive integers, and b is less than or equal to all entries of Q.
That a < b are positive integers and b is less than or equal to all entries of Q follow
immediately from the definition of a reverse step. That (P ′,Q′) is a negative semi-
standard notched bitableau follows in much the same manner as the proof of Lemma
6.2; we omit the details.

It remains to show that the elements {(a1, b1), . . . , (at , bt )} of the negative multiset
on N

2 produced by applying this sequence of reverse steps to the arbitrary semistan-
dard notched bitableau (P (t),Q(t)) are listed in lexicographic order. That bi ≥ bi+1
follows from the definition of RBRSK: bi+1 is the minimum entry of Q(i+1), which
also has bi as an entry. If bi = bi+1, then ai ≥ ai+1 is a consequence of Lemma 3.5(i)
and (ii).

At each step, BRSK and the reverse of RBRSK are inverse to eachother. Thus they
are inverse maps. �

The map BRSK can be extended to all nonvanishing multisets on N
2. If U is a

positive multisets on N
2, then define BRSK(U) to be ι(BRSK(ι(U))). If U is a non-

vanishing multisets on N
2, with negative and positive parts U− and U+, then define

BRSK(U) to be the semistandard notched bitableau whose negative and positive parts
are BRSK(U−) and BRSK(U+) (see Figure 1). As a consequence of Lemma 6.3, we
obtain

Proposition 6.4 The map BRSK is a degree-preserving bijection from the set of non-
vanishing (resp. negative, positive) multisets on N

2 to the set of nonvanishing (resp.
negative, positive) semistandard notched bitableaux.

The ordinary RSK correspondence is a degree-preserving bijection from the set
of multisets on N

2 to the set of semistandard bitableaux. The process used to define
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the bijection is similar to the process described above to define the BRSK. There are
two essential differences between the two processes. First, in the ordinary RSK, the
multiset is not first separated into its positive and negative parts. Indeed, the ordinary
RSK is oblivious as to whether elements of the multiset are positive or negative. Sec-
ondly, in the ordinary RSK, ordinary Schensted insertion is used rather than bounded
insertion. See [3] or [19] for more details on the ordinary RSK.

7 Restricting the bounded RSK correspondence

Thus far, there has been no reference to α, β , or γ in our definition or discussion
of the bounded RSK. In fact, each of α, β , and γ is used to impose restrictions on
the domain and codomain of the bounded RSK. It is the bounded RSK, with domain
and codomain restricted according to α, β , and γ , which is used in Section 8 to give
geometrical information about Y

γ
α,β .

In this section, we first show how β restricts the domain and codomain of the
bounded RSK. We then show how two subsets T and W of N

2, T negative and W

positive, restrict the domain and codomain of the bounded RSK. In Section 8, these
two subsets will be replaced by Tα and Wγ , subsets of N

2 determined by α and γ

respectively.

Restricting by β

Let β ∈ Id,n. We say that a notched bitableau (P,Q) is on β ×β if all entries of P are
in β and all entries of Q are in β . It is clear from the construction of BRSK that if U

is a nonvanishing multiset on β × β , then BRSK(U) is a nonvanishing semistandard
notched bitableau on β ×β , and visa-versa. Thus, as a consequence of Corollary 6.4,
we obtain

Corollary 7.1 The map BRSK restricts to a degree-preserving bijection from the set
of nonvanishing (resp. negative, positive) multisets on β ×β to the set of nonvanishing
(resp. negative, positive) notched bitableaux on β × β .

We remark that if β is the largest or smallest element of Id,n ({n − d + 1, . . . , n}
or {1, . . . , d} respectively), then the bounded RSK restricted to β × β is the same
algorithm as the ordinary RSK restricted to β × β .

Restricting by T and W

A chain in N
2 is a subset C = {(e1, f1), . . . , (em,fm)} of N

2 such that e1 < · · · < em

and f1 > · · · > fm. Let T and W be negative and positive subsets of N
2 respectively.

A nonempty multiset U on N
2 is said to be bounded by T,W if for every chain C

which is contained in the underlying set of U ,

T ≤ C ≤ W (7)

(where we use the order on multisets on N
2 defined in Section 4). We note that,

in general, this condition neither implies nor is implied by the condition T ≤ U ≤



366 J Algebr Comb (2008) 27: 351–382

W . For special cases, a geometric interpretation in terms of a chain order for U

being bounded by T ,W appears in Sect. 9 (this interpretation is not necessary for our
discussion here).

With this definition, the bounded RSK correspondence is a bounded function, in
the sense that it maps bounded sets to bounded sets. More precisely, we have the
following Lemma, whose proof appears in Sect. 11.

Lemma 7.2 If a nonvanishing multiset U on N
2 is bounded by T ,W , then BRSK(U)

is bounded by T ,W .

Let T and W be negative and positive subsets of β × β , respectively. Combining
Corollary 7.1 and Lemma 7.2, we obtain

Corollary 7.3 For any positive integer m, the number of degree m nonvanishing
multisets on β × β bounded by T ,W is less than or equal to the number of degree m

nonvanishing semistandard notched bitableaux on β × β bounded by T ,W .

We mention that the converse of Lemma 7.2 is not a priori true, i.e., the reverse
BRSK is not a priori bounded. Otherwise, we could state here that the two numbers
in Corollary 7.3 are equal. In fact, the reverse BRSK is indeed bounded, but since we
do not need this result for our purposes we omit the proof.

8 A Gröbner basis

We call f = fθ1,β · · ·fθr ,β ∈ K[Oβ ] a standard monomial if

θ1 ≤ · · · ≤ θr (8)

and for each i ∈ {1, . . . , r}, either

θi < β or θi > β. (9)

If in addition, for α,γ ∈ Id,n,

α ≤ θ1 and θr ≤ γ, (10)

then we say that f is standard on Y
γ
α,β .

We remark that, in general, a standard monomial is not a monomial in the affine
coordinates of Oβ (the xij ’s); rather, it is a polynomial. It is only a monomial in the
fθ,β ’s. Recall the following result (see [13]).

Theorem 8.1 The standard monomials on Y
γ
α,β form a basis for K[Yγ

α,β ].

We wish to give a different indexing set for the standard monomials on Y
γ
α,β . Let

Iβ be the pairs (R,S) such that R ⊂ β , S ⊂ β , and |R| = |S|. Defining R − S :=
R ∪̇ (β \ S) (see Section 4), we have the following fact, which is easily verified:

The map (R,S) �→ R − S is a bijection from Iβ to Id,n.
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(Indeed, the inverse map is given by θ �→ (θ \ β,β \ θ)). Thus, for instance, we may
write a Plucker coordinate in C[Oβ ] as fR−S instead of fθ,β . (In fact, fR−S is just
plus or minus the minor of C[Oβ ] with row set R and column set S; in Example 2.1,
f{1,4}−{2,7} = f{1,4,5},β .)

Note that under this bijection, (∅,∅) maps to β . Let (Rα,Sα) and (Rγ ,Sγ ) be the
preimages of α and γ respectively. Define Tα and Wγ to be any subsets of β ×β such
that (Tα)(1) = Rα , (Tα)(2) = Sα , (Wγ )(1) = Rγ , (Wγ )(2) = Sγ .

Given any notched bitableau (P,Q) which is on β × β , we can form the mono-
mial f = fP1−Q1 · · ·fPr−Qr ∈ K[Oβ ], where P1, . . . ,Pr are the rows of P and
Q1, . . . ,Qr the rows of Q. Conversely, given any monomial of the form f =
fP1−Q1 · · ·fPr−Qr ∈ K[Oβ ], where Pi and Qi are subsets of β and β respectively
of the same cardinality, i = 1, . . . , r , we can form the notched bitableau (P,Q) on
β × β whose rows are (P1,Q1), . . . , (Pr ,Qr). We have

(P,Q) is semistandard, nonvanishing, and bounded by Tα,Wγ

⇐⇒ (P,Q) satisfies (3), (4), and (5)

⇐⇒ (P1,Q1), . . . , (Pr ,Qr) satisfy (3), (4), and (5)

⇐⇒ P1 − Q1, . . . ,Pr − Qr satisfy (8), (9), and (10)

⇐⇒ fP1−Q1 · · ·fPr−Qr is standard on Y
γ
α,β .

When we write above that (P1,Q1), . . . , (Pr ,Qr) satisfy (3) and (5), we use (1) to
describe the order. When we write that P1 − Q1, . . . ,Pr − Qr satisfy (8) and (10),
we use the termwise order on the Pi ∪̇ (β \ Qi). The equivalence of these orders is
discussed in Section 4. To see that (Pi,Qi) satisfying (4) is equivalent to Pi − Qi

satisfying (9), note that since β ∩ β = ∅, Pi ∩ Qi = ∅, and therefore Pi � Qi ⇐⇒
Pi − Qi = Pi ∪̇ (β \ Qi) < β .

This proves the following lemma.

Lemma 8.2 The degree m nonvanishing semistandard notched bitableaux on β × β

bounded by Tα,Wγ form an indexing set for the degree m standard monomials on
Y

γ
α,β .

As discussed in Section 2, the affine coordinates of K[Oβ ] are indexed by β × β .
Thus monomials in the affine coordinates of K[Oβ ] are naturally indexed by mul-
tisets on β × β: the monomial xi1j1 . . . xit jt ∈ K[Oβ ] is indexed by the multiset
{(i1, j1), . . . , (it , jt )} ⊂ β × β . Letting U = {(i1, j1), . . . , (it , jt )} ⊂ β × β , we shall
denote xi1j1 . . . xit jt by xU . Note that xU is square-free if and only if the multiset U is
in fact a set. We define a monomial order on K[Oβ ] as follows: first declare xij < xi′j ′
if (i < i′) or (i = i′ and j > j ′), then impose the lexicographic order on monomials.
For our purposes, the critical feature of this monomial order is that the initial term
of any minor fR−S is the Southwest-Northeast monomial of fR−S (when fR−S is
written naturally as plus or minus a determinant all of whose entries are xij ’s). In
other words, infR−S = xC , where C is the chain in β × β with C(1) = R, C(2) = S
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(in Example 2.1, inf{1,4}−{2,7} = x17x42 = x{(1,7),(4,2)}). Any other monomial order
with this property would also suit our purposes.

Lemma 8.3 The degree m multisets on β × β bounded by Tα,Wγ form an indexing
set for the degree m monomials of K[Oβ ] \ inG

γ
α,β .

Proof

inG
γ
α,β = 〈infθ,β | α �≤ θ or θ �≤ γ 〉

= 〈infR−S | Rα − Sα �≤ R − S or R − S �≤ Rγ − Sγ 〉
= 〈xC | C a chain,Rα − Sα �≤ C(1) − C(2) or C(1) − C(2) �≤ Rγ − Sγ 〉
= 〈xC | C a chain, Tα �≤ C or C �≤ Wγ 〉.

Therefore,

xU is a monomial in K[Oβ ] \ inG
γ
α,β

⇐⇒ xU is not divisible by any xC , C a chain such that Tα �≤ C or C �≤ Wγ

⇐⇒ U contains no chains C such that Tα �≤ C or C �≤ Wγ

⇐⇒ Tα ≤ C ≤ Wγ , for any chain C in U

⇐⇒ U is bounded by Tα,Wγ .
�

We are now ready to prove the main result of the paper.

Proof of Proposition 2.3 We wish to show that inG
γ
α,β = in〈Gγ

α,β〉. Since G
γ
α,β ⊂

〈Gγ
α,β〉, inG

γ
α,β ⊂ in〈Gγ

α,β〉. For any m ≥ 1,

# of degree m monomials in K[Oβ ] \ inG
γ
α,β

a= # of degree m multisets on β × β bounded by Tα,Wγ

b≤ # of degree m semistandard notched bitableaux on β × β bounded by Tα,Wγ
c= # of degree m standard monomials on Y

γ
α,β

d= # of degree m monomials in K[Oβ ] \ in〈Gγ
α,β〉,

where a follows from Lemma 8.3, b from Corollary 7.3, c from Lemma 8.2, and
d from the fact that standard monomials on Y

γ
α,β and the monomials in K[Oβ ] \

in〈Gγ
α,β〉 both induce homogeneous bases for K[Oβ ]/〈Gγ

α,β〉. Thus inG
γ
α,β ⊃

in〈Gγ
α,β〉.

We point out that, as a consequence of this proof, inequality b is actually an equal-
ity. �
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Example 8.4 Let n = 6, d = 3, β = {3,5,6}. Then

Oβ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜
⎝

x13 x15 x16
x23 x25 x26
1 0 0

x43 x45 x46
0 1 0
0 0 1

⎞

⎟⎟⎟⎟⎟
⎠

, xij ∈ K

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

Let α = {1,2,4}, γ = {4,5,6}. We list all objects identified with the monomial
x26 x2

45 x15 x13 x43 ∈ K[Oβ ] \ inG
γ
α,β in the preceding discussion: (a) monomial in

K[Oβ ]\ inG
γ
α,β , (b) multiset on β ×β bounded by Tα,Wγ , (c) semistandard notched

bitableau on β ×β bounded by Tα,Wγ , (d) standard monomial on Y
γ
α,β , and (e) stan-

dard monomial on Y
γ
α,β (different indices).

(a) x26 x2
45 x15 x13 x43

(b) {(2,6), (4,5), (4,5), (1,5), (1,3), (4,3)}

(c)

⎛

⎜⎜
⎝ ,

⎞

⎟⎟
⎠

(d) f{1,4}−{5,6} f{1}−{5} f{2,4}−{3,5} f{4}−{3}
(e) f{1,3,4},β f{1,3,6},β f{2,4,6},β f{4,5,6},β .

Note that the semistandard notched tableau in (c) is obtained from the multiset in (b)
by applying the BRSK.

Consider the following general Lemma on Gröbner Bases (see [2]).

Lemma 8.5 Let R = K[x1, . . . , xm] be a polynomial ring, let I ⊂ R be a homo-
geneous ideal, and let G = {g1, . . . , gk} be a Gröbner basis for I , such that in(gi)

is square-free, i = 1, . . . , k. Let M be the maximum degree of a square-free mono-
mial in R \ in(G). Then dim(R/I) = M , and deg(R/I) is the number of square-free
monomials of degree M in R \ in(G).

Since the initial term of fR−S is square-free for any (R,S) ∈ Iβ , Lemma 8.5 may
be applied to our situation in order to obtain Corollary 2.4. Indeed, by Lemma 8.5,
deg(Y

γ
α,β) is the number of square-free monomials of degree M in K[Oβ ] \ inG

γ
α,β ,

where M = dim(Y
γ
α,β) = l(γ ) − l(α). We remark that, in Lemma 8.5, we use the

convention that 1 is the only square-free monomial of degree zero.

9 Twisted chains and multiplicities

The goal of this section and the next one is to establish Proposition 10.6, which
also appears in [7–9], and [11]. Proposition 10.6 gives a combinatorial formula for
multiplicities which involves counting families of nonintersecting lattice paths. Pro-
position 10.6 is essentially a reformulation of Corollary 2.4 in more combinatorial
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language. We establish Proposition 10.6 in two steps. In this section, we show that
Corollary 2.4 implies Lemma 9.6; in Section 10, we show that Lemma 9.6 implies
Proposition 10.6.

We begin by introducing twisted chains and chain boundedness, notions which
allow us to place earlier results on combinatorial footing. We define the following
partial orders on the negative elements of N

2: if (e, f ), (g,h) ∈ N
2, both negative,

then

(e, f ) ≺ (g,h) if f < h and e > g,

(e, f ) � (g,h) if f ≤ h and e ≥ g.

Note that � is a finer order than ≺. If (c, d), (e, f ) ∈ (N2)−, then define

(c, d) ∧ (e, f ) = (max(c, e),min(d, f )) ∈ N
2.

If T = {(e1, e2), . . . , (em, em+1)} is a subset of N
2, then we say that T is completely

disjointed if ei �= ej when i �= j . A negative twisted chain is a completely disjointed
negative subset of N

2 such that for any u,v ∈ T , u �= v, either u ≺ v, v ≺ u, or
u ∧ v �∈ (N2)−.

Example 9.1 A negative chain in N
2, defined in Section 7, can alternatively be de-

scribed as a negative subset {u1, . . . , um} of N
2 such that u1 ≺ · · · ≺ um. A negative

chain is a negative twisted chain.

Let T = {(e1, f1), . . . , (em,fm)} be a completely disjointed negative subset of
N

2 such that f1 < · · · < ft . For σ ∈ Sm, the permutation group on m elements,
we define σ(T ) = {(eσ(1), f1), . . . , (eσ(m), fm)}. Let T = {σ(T ) | σ ∈ Sn,σ (T )

negative}. Impose the following total order on T : if R = {(a1, f1), . . . , (at , ft )},
S = {(b1, f1), . . . , (bt , ft )} ∈ T , then R

lex
< S if, for the smallest i for which ai �= bi ,

ai > bi . Since
lex
< is a total order, T has a unique minimal element, which we denote

by T̃ .

Lemma 9.2 T̃ is a negative twisted chain.

Proof Suppose that T̃ = {(c1, f1), . . . , (cm,fm)} is not a negative twisted chain.
Then there exists i < j such that (ci, fi) �≺ (cj , fj ), (cj , fj ) �≺ (ci, fi), and
(ci, fi) ∧ (cj , fj ) ∈ (N2)−. This implies that ci < cj < fi < fj . Letting σi,j be
the transposition which switches i and j , we have that σi,j (T̃ ) = {(c1, f1), . . . ,

(cj , fi), . . . , (ci, fj ), . . . , (cm,fm)}. Since cj < fi and ci < fj , σi,j (T̃ ) is negative,

and hence σi,j (T̃ ) ∈ T . The fact that ci < cj implies that σi,j (T̃ )
lex
< T̃ , which contra-

dicts the minimality of T̃ . �

Example 9.3 The set N
2 is plotted in both (a) and (b) below. The large squares cover

the points of N
2 \ (N2)�=0, and thus separate the points of (N2)− from those of (N2)+.
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In (a), the ×’s form a completely disjointed negative subset T of N
2. In (b), the ×’s

form T̃ . Note that T̃ is a negative twisted chain, as required by Lemma 9.2.

If T is a positive subset of N
2, then we say that T is a positive twisted chain if

ι(T ) is a negative twisted chain. A twisted chain is a subset of N
2 which is either a

positive or a negative twisted chain.
For R a negative subset of N

2 and x ∈ N
2 negative, define depthR(x) to be the

maximum r such that there exists a chain u1 ≺ · · · ≺ ur in R with ur � x. We extend
� to a transitive relation on subsets of N

2 as follows. If R, S are negative subsets of
N

2, then R � S (or S � R) if depthR(x) ≥ depthS(x) for every negative x ∈ N
2. Note

that this is equivalent to depthR(x) ≥ depthS(x) for every x ∈ S. If R, S are positive
subsets of N

2, then we say that S � R if ι(S) � ι(R). If R is a negative subset of N
2

and S is a positive subset, then we say that R � S.
Recall the relation ≤ on multisets on N

2 defined in Section 4. The following
Lemma, whose proof appears in Section 11, provides the key step in the proof of
Lemma 9.6.

Lemma 9.4 Let R and S be twisted chains. Then R � S ⇐⇒ R ≤ S.

Let R and S be negative and positive twisted chains respectively. We say that a
multiset U on N

2 is chain-bounded by R,S if R �U− and U+ �S, or equivalently,
if for every chain C in U ,

R � C− and C+ � S.

In (7), one can replace R ≤ C ≤ S by R ≤ C− and C+ ≤ S. Thus, by Lemma 9.4, U

is chain-bounded by R,S if and only if U is bounded by R,S.
For the remainder of this section and the next one, we will be interested in twisted

chains which are contained in β × β , a subset of N
2. Example 9.5 illustrates two

negative twisted chains in β × β .
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Example 9.5 The set β × β ⊂ N
2, for d = 8, n = 17, β = {2,7,8,9,12,13,16,17},

is plotted below. The dotted line separates the negative from positive elements of
β × β . The ×’s form a negative twisted chain R in β × β; the •’s form a negative
twisted chain S in β × β; and R � S.

Lemma 9.6 Multeβ X
γ
α is the number of subsets U of β × β which are of maximal

degree among those which are chain-bounded by T̃α, W̃γ .

Proof Recall that if U is a multiset on β × β , then the monomial xU is square-
free if and only if U is a subset of β × β , i.e., each of its elements has degree 1.
By Corollary 2.4, Multeβ X

γ
α is the number of square-free monomials of maximal

degree in K[Oβ ] \ inG
γ
α,β . By Lemma 8.3, this equals the number of subsets U of

β × β which are of maximal degree among those bounded by Tα,Wγ . However,
a subset of β × β is bounded by Tα,Wγ if and only if it is bounded by T̃α, W̃γ

if and only if it is chain-bounded by T̃α, W̃γ , where the last equivalence is due to
Lemma 9.4. �

10 Path families and multiplicities

For this section, we let R and S be fixed negative and positive twisted chains con-
tained in β × β respectively. Let

MR = max{U ⊂ (β × β)− | R � U},
MS = max{V ⊂ (β × β)+ | V � S},
MS

R = max{W ⊂ β × β | R � W− and W+ � S}
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where in each case by ‘max’ we mean the subsets U , V , or W respectively of maximal
degree. For example, MS

R consists of the collection of subsets W of β ×β which are
of maximal degree among those which are chain-bounded by R,S. When R = T̃α and
S = W̃γ , MS

R consists precisely of the subsets U of Lemma 9.6. In this section, in
order to give a better formulation of Lemma 9.6 (see Proposition 10.6), we study the
combinatorics of MS

R . Many of the definitions and ideas in this section are illustrated
in Examples 10.7, 10.8, and 10.9.

Note that

MS
R = {U ∪̇V | U ∈MR,V ∈ MS}. (11)

To study MS
R , we begin by considering MR , and thus restricting attention to negative

subsets of β × β . We say that a subset P ⊂ (β × β)− is depth-one if it contains no
two-element chains. If P is depth-one, then we say that it is a negative-path if the
consecutive points are ‘as close as possible’ to each other, so that the points form a
contiguous path on (β × β)− which moves only down or to the right.

For r = (e, f ) ∈ (β × β)−, define

�r� = (e, f ′), where f ′ = min{y ∈ β | (e, y) ∈ (β × β)−},
�r� = (e′, f ), where e′ = max{x ∈ β | (x, f ) ∈ (β × β)−}.

We form the path Pr , which begins at �r�, moves horizontally to r , then vertically to
�r�. Note that since R is a twisted chain, if r ′ �= r then Pr ′ ∩ Pr = ∅. Furthermore,
R �

⋃̇
r∈RPr . Define dR = ∑

r∈R |Pr |. The following lemma is a straightforward
consequence of the definitions.

Lemma 10.1 Let Q be a depth-one negative subset of β ×β such that Pr � Q. Then
|Q| ≤ |Pr |, with equality if and only if Q is a negative-path from �r� to �r�.

If U ⊂ (β × β)−, R � U , and r ∈ R, then define

UR,r := {u ∈ U | r � u,depthU(u) = depthR(r)}.

It follows from this definition that UR,r is depth-one. Indeed, if u and u′ are two
elements of U which form a chain, then without loss of generality u ≺ u′. Thus
depthU(u) < depthU(u′), and in particular depthU(u) �= depthU(u′). Thus u and u′
cannot both lie in UR,r .

Lemma 10.2 Let U ⊂ (β × β)−.

(i) If R � U , then U = ⋃̇
r∈RUR,r .

(ii) If R �U , then |U | ≤ dR , with equality if and only if U = ⋃̇
r∈RQr , where Qr is

a negative-path from �r� to �r�.
(iii) Let U = ⋃̇

r∈RQr ⊂ (β × β)−, where Qr is a negative-path from �r� to �r�.
Then R � U .
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Proof (i) Let u ∈ U . Then since R � U , depthU(u) ≤ depthR(u). Thus depthU(u) =
depthR(r) for some r � u. This proves that U = ⋃

r∈R UR,r . To prove that the union
is disjoint, let r, r ′ ∈ R, r �= r ′, and let v ∈ UR,r ∩ UR,r ′ . By definition of UR,r and
UR,r ′ , depthR(r) = depthU(v) = depthR(r ′). Thus r �≺ r ′ and r ′ �≺ r . Since R is a
twisted chain, r ∧ r ′ �∈ (N2)−. But this implies that v �∈ (N2)−, a contradiction.
(ii) For each u ∈ UR,r , r � u; thus since UR,r is depth-one, Pr � UR,r . By Lem-
mas 10.1 and 10.2(i), |U | = |⋃̇r∈RUR,r | = ∑

r∈R |UR,r | ≤ ∑
r∈R |Pr | = dR , with

equality if and only if for all r ∈ R, UR,r is a negative-path from �r� to �r�. We
denote UR,r by Qr .

(iii) For each r ∈ R, {r} � Qr . Thus R �
⋃̇

r∈Rr �
⋃̇

r∈RQr = U . �

Lemma 10.2(ii) implies that any U ∈ MR is a disjoint union U = ⋃̇
r∈RQr , where

Qr is a negative-path from �r� to �r�. Lemma 10.2(iii) implies that any disjoint union
U = ⋃̇

r∈RQr , where Qr is a negative-path from �r� to �r�, is an element of Mr .
Consequently we have

Corollary 10.3 MR consists of the set of all possible disjoint unions U = ⋃̇
r∈RQr ,

where Qr is a negative-path from �r� to �r�.

Similar analysis can be done on positive subsets of β × β . Here the notion of
a positive-path is identical to that of a negative-path, except that it is contained in
(β × β)+ instead of (β ×β)−. Likewise, the notions of �s� and �s� for s ∈ (β ×β)+
are defined analogously as for s ∈ (β × β)− (see Example 10.7). We obtain

Corollary 10.4 MS consists of the set of all possible disjoint unions V = ⋃̇
s∈SQs ,

where Qs is a positive-path from �s� to �s�.

The preceding two corollaries and (11) imply

Corollary 10.5 MS
R consists of the set of all possible disjoint unions W =

⋃̇
r∈R∪SQr , where Qr is either a negative-path or a positive-path from �r� to �r�,

depending on whether r is negative or positive.

The subsets U of Lemma 9.6 are precisely the elements of MS
R , when R = T̃α and

S = W̃γ . Therefore combining Lemma 9.6 and Corollary 10.5, we obtain

Proposition 10.6 Multeβ X
γ
α is the number of disjoint unions

⋃̇
r∈T̃α∪W̃β

Pr , where
Pr is either a negative-path or a positive-path from �r� to �r�, depending on whether
r is negative or positive.
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We call a disjoint union as in Proposition 10.6 a family of nonintersecting paths in
β × β . Proposition 10.6 also appears in [7–9], and [11].

Example 10.7 Let d = 8, n = 17, α = {1,2,3,5,6,8,11,14}, β = {2,7,8,9,12,13,
16,17}, γ = {8,9,11,13,14,15,16,17}.

(a) The negative and positive twisted chains T̃α = {r1, . . . , r6} and W̃γ =
{s1, . . . , s3} in β × β .

(b) The set of �r�’s and �r�’s, for all r ∈ T̃α ∪ W̃γ . Note that �r4� = �r4� = r4 and
�r5� = �r5� = r5.

(c), (d) Two families of nonintersecting paths from �r� to �r�, r ∈ T̃α ∪ W̃γ .
Multeβ X

γ
α is the number of such families. Note that the path family in (c) consists of

the paths {Pr | r ∈ T̃α ∪ W̃γ }.
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Example 10.8 Let d = 4, n = 9, α = {1,2,3,5}, β = {1,5,6,8}, γ = {3,6,8,9}.
We compute Multeβ X

γ
α . The following two diagrams show the negative and positive

twisted chains T̃α = {r1, r2} and W̃γ = {s1, s2} in β × β; and the set of �r�’s and

�r�’s, for all r ∈ T̃α ∪ W̃γ .

There are six nonintersecting path families from �r� to �r�, r ∈ T̃α ∪ W̃γ , as shown

below. Thus Multeβ X
γ
α = 6.

Example 10.9 Let d = 4, n = 9, α = {1,2,3,5}, β = {1,5,6,8}, γ = {3,6,8,9}. We

compute multiplicities at eβ of the Schubert variety Xγ and the opposite Schubert

variety Xα . Note that α, β , and γ are the same as in the previous example.

Observe that Xγ = X
γ

id and Xα = X
ω0
α , where id = {1,2,3,4} and ω0 =

{6,7,8,9}. We have that T̃id = {σ2,8, σ3,6, σ4,5} and W̃ω0 = {σ9,1, σ7,5}, where σi,j is

the transposition exchanging i and j . (Both T̃id and W̃ω0 are in fact chains.)
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There are two nonintersecting path families from �r� to �r�, r ∈ T̃id ∪ W̃γ , as
shown below. Thus Multeβ Xγ = Multeβ X

γ

id = 2.

There are three nonintersecting path families from �r� to �r�, r ∈ T̃α ∪W̃ω0 , as shown
below. Thus Multeβ Xα = Multeβ X

ω0
α = 3.

From this example and the previous one, we see that Multeβ X
γ
α equals the product

Multeβ Xγ · Multeβ Xα . It is not difficult to show that this equality holds in general.
This fact is also proven in [13], using different methods.

11 Proofs

In this section, we give proofs of Lemmas 7.2 and 9.4.

Proof of Lemma 7.2

Let U be a nonvanishing multiset on N
2, and let T and W be negative and positive

subsets of N
2 respectively with the property that T(1), T(2),W(1), and W(2) are both

subsets of N, i.e., multisets such that each value has cardinality one. Lemma 7.2 is
part (v) of the following.

Lemma 11.1

(i) Suppose that U = {(a1, b1), . . . , (at , bt )} is a negative multiset on N
2 whose en-

tries are listed in lexicographic order. For k = 1, . . . , t , let U(k) := {(a1, b1), . . . ,

(ak, bk)}, and let (P (k),Q(k)) = BRSK(U(k)) (note that (P (t),Q(t)) =
BRSK(U)). Define {p(k)

1 , . . . , p
(k)
ck

} to be the first row of P (k) and {q(k)
1 , . . . , q

(k)
ck

}
the first row of Q(k), both listed in increasing order. Let m(k) := max{m ∈
{1, . . . , ck} | p

(k)
m < q

(k)
1 } = |(P (k)

1 )<q
(k)
1 |. Then for 1 ≤ j ≤ m(k), there exists a
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chain Ck,j in U(k) which has j elements, the last of which has first component

p
(k)
j .

(ii) If U is bounded by T ,∅, then (P (k),Q(k)) is bounded by T ,∅, k = 1, . . . , t .
(iii) If U is bounded by T ,∅, then BRSK(U) is bounded by T ,∅.
(iv) If U is bounded by ∅,W , then BRSK(U) is bounded by ∅,W .
(v) If U is bounded by T ,W , then BRSK(U) is bounded by T ,W .

Proof We prove (i) and (ii) together by induction on k, with k = 1 the starting point
for the induction. This case is technically covered by Case 2 below, although it can
be checked quite easily: U(1) = {(a1, b1)}, P (1) contains the sole entry a1, and Q(1)

contains the sole entry b1. For (i), m(1) = 1, C1,1 = (a1, b1). For (ii), U bounded
by T ,∅ implies U(1) bounded by T ,∅, which is clearly equivalent to (P (1),Q(1))

bounded by T ,∅.
Let k ∈ 2, . . . , t − 1. Let (P,Q) = (P (k),Q(k)), a = ak+1, b = bk+1, (P ′,Q′) =

(P (k+1),Q(k+1)), U = U(k), U ′ = U(k+1), {p1, . . . , pc} = {p(k)
1 , . . . , p

(k)
ck

}, {q1, . . . ,

qc} = {q(k)
1 , . . . , q

(k)
ck

}. Note that {p1, . . . , pc} ⊂ {a1, . . . , ak}, {q1, . . . , qc} ⊂ {b1, . . . ,

bk}. Thus since b is less than or equal to all elements of {b1, . . . , bk}, a < b ≤ q1. We
assume inductively that

T(1) − T(2) ≤ P1 − Q1,

and prove that

T(1) − T(2) ≤ P ′
1 − Q′

1.

Equivalently, we prove that for all positive integers z,

|(T(1) − T(2))
≤z| ≥ |(P ′

1 − Q′
1)

≤z|,
where we use the definition A − B := A ∪̇ (N \ B), where A and B are both subsets
of N (see Sect. 4).

We consider two cases, corresponding to the two ways in which (P ′
1,Q

′
1) can be

obtained from (P1,Q1).
Case 1. P ′

1 is obtained by a bumping pl in P1, for some 1 ≤ l ≤ c, i.e.,

P ′
1 = P1 \ {pl} ∪̇ {a},

Q′
1 = Q1

(i) The fact that a bumps pl implies both a ≤ pl and pl < b. Hence a ≤ pl <

b ≤ q1, which implies (P ′
1)

<q1 = (P1)
<q1 \ {pl} ∪ {a}. Thus m(k + 1) = m(k). For

j ∈ {1, . . . ,m(k)} \ {l}, set Ck+1,j = Ck,j . If l = 1 then set Ck+1,l = {(a, b)}. Oth-
erwise, consider the chain Ck,l−1 = {(g1, h1), . . . , (pl−1, hl−1)}. Since a bumps pl ,
a > pl−1. Thus b < hl−1, since (a, b) comes after (pl−1, hl−1) in the ordered list of
elements of U ′. Therefore C := Ck,l−1 ∪ {(a, b)} is a chain in U ′. We let Ck+1,l be
this chain.
(ii) For z < a or z ≥ pl ,

|(T(1) − T(2))
≤z| ≥ |(P1 − Q1)

≤z| = |(P ′
1 − Q′

1)
≤z|. (12)
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If a = pl then we are done. Thus we assume that a < pl . We claim that for a ≤ z <

pl , |(C(1) − C(2))
≤z| = |(P ′

1 − Q′
1)

≤z|. Assuming the claim (and using the fact that
T ≤ C ≤ ∅, since U is bounded by T ,∅) we have that for a ≤ z < pl ,

|(T(1) − T(2))
≤z| ≥ |(C(1) − C(2))

≤z| = |(P ′
1 − Q′

1)
≤z|. (13)

Now (12) and (13) prove the inductive step of (ii).
We now prove the claim. From the proof of (i), we have that C = Ck+1,l=

{(g1, h1), . . . , (gl−1, hl−1), (a, b)}, where g1 < · · · < gl−1 < a < pl < b < hl−1 <

· · · < h1. Thus for a ≤ z < pl ,

|(C(1) − C(2))
≤z| = |(C(1) ∪̇ (N \ C(2)))

≤z| = |(C(1) ∪̇ N)≤z| = l + z.

Also, p1 < · · · < pl−1 < a < pl < b ≤ q1 < · · · < qc. Thus for a ≤ z < pl ,

|(P ′
1 − Q′

1)
≤z| = |(P ′

1 ∪̇ (N \ Q′
1))

≤z| = |(P ′
1 ∪̇ N)≤z| = l + z.

Case 2. P ′
1 is obtained by adding a to P1 in position l from the left and Q′

1 is obtained
by adding b to the left end of Q1 (and shifting all other entries of Q1 to the right by
one box), i.e.,

P ′
1 = P1 ∪̇ {a},

Q′
1 = Q1 ∪̇ {b}.

(i) We have that P ′
1 = {p1, . . . , pl−1, a,pl, . . . , pc}, Q′

1 = {b, q1, . . . , qc}, where
the elements of both sets are listed in strictly increasing order (note that b <

q1 follows from the fact that Q′ is row-strict, which is proven in Lemma 6.2).
Now pl−1 < a < b < q1 implies that m(k) ≥ l − 1. Note that a < b ≤ pl (since
b > pl would require that a bump pl in the bounded insertion process). Thus
m(k + 1) = l. For j ∈ {1, . . . , l − 1}, set Ck+1,j = Ck,j . Consider the chain Ck,l−1 =
{(g1, h1), . . . , (gl−2, hl−2), (pl−1, hl−1)}. Now a > pl−1, and this implies that b <

hl−1, since (a, b) comes after (pl−1, hl−1) in the ordered list of elements of U ′.
Therefore C := Ck,l−1 ∪ {(a, b)} is a chain in U ′. We let Ck+1,l be this chain.
(ii) For z < a,

|(T(1) − T(2))
≤z| ≥ |(P1 − Q1)

≤z| = |(P ′
1 − Q′

1)
≤z|. (14)

In fact, (14) holds for z ≥ b as well, since for such z,

|(P ′
1 − Q′

1)
≤z| = |(P ′

1 ∪̇ (N \ Q′
1))

≤z|
= |(P ′

1)
≤z| + |(N \ Q′

1)
≤z|

= (|(P1)
≤z| + 1) + (|(N \ Q1)

≤z| − 1)

= |(P1)
≤z| + |(N \ Q1)

≤z|
= |(P1 − Q1)

≤z|.
We claim that for a ≤ z < b, |(C(1) − C(2))

≤z| = |(P ′
1 − Q′

1)
≤z|. Assuming the claim

(and using the fact that T ≤ C ≤ ∅, since U is bounded by T ,∅) we have that for
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a ≤ z < b,

|(T(1) − T(2))
≤z| ≥ |(C(1) − C(2))

≤z| = |(P ′
1 − Q′

1)
≤z|. (15)

Now (14) and (15) prove the inductive step of (ii).
We now prove the claim. From the proof of (i), we have that C = Ck+1,l=

{(g1, h1), . . . , (gl−1, hl−1), (a, b)}, where g1 < · · · < gl−1 < a < b < hl−1 < · · · <

h1. Thus for a ≤ z < b,

|(C(1) − C(2))
≤z| = |(C(1) ∪̇ (N \ C(2)))

≤z| = |(C(1) ∪̇ N)≤z| = l + z.

Also, p1 < · · · < pl−1 < a < b ≤ pl , b < q1 < · · · < qc. Thus for a ≤ z < b,

|(P ′
1 − Q′

1)
≤z| = |(P ′

1 ∪̇ (N \ Q′
1))

≤z| = |(P ′
1 ∪̇ N)≤z| = l + z.

(iii) Set k = t in (ii).
(iv) Use arguments similar to (i), (ii), and (iii), but for U positive. Alternatively, one
could apply the involution ι to (iii).
(v) Use (iii), (iv), and the fact that U is bounded by T ,W if and only if U− is bounded
by T ,∅ and U+ is bounded by ∅,W ; and similarly for BRSK(U). �

Proof of Lemma 9.4

Parts (iii) and (iv) of the Lemma below imply Lemma 9.4. In this proof, for R a subset
of N

2, we define R(1) −R(2) to be the (infinite) multiset R(1) ∪̇ N \R(2) (see Sect. 4).

Lemma 11.2

(i) Let R,S be negative twisted chains. Then R � S if and only if depthR((z, z +
1)) ≥ depthS((z, z + 1)) for all z ∈ N.

(ii) Let R be a negative twisted chain, and let z ∈ N. Then depthR(z, z + 1) =
|(R(1) − R(2))

≤z| − z.
(iii) Let R,S be negative twisted chains. Then R � S ⇐⇒ R ≤ S.
(iv) Let R,S be positive twisted chains. Then R � S ⇐⇒ R ≤ S.

Proof (i) The “only if” direction is obvious. For (e, f ) ∈ (N2)−, define D((e,f )) =
depthR((e, f )) − depthS((e, f )). Suppose that D((e,f )) < 0 for some (e, f ) ∈
(N2)−. We must show that D((z, z + 1)) < 0 for some z ∈ N. Suppose that D((e, e +
1)) ≥ 0. Then depthR((e, e + 1)) > depthR((e, f )). Thus, there exists (e′, f ′) ∈ R

such that e′ ≤ e and e + 1 ≤ f ′ < f . Let (g,h) be the one such with maximal f ′.
We claim that depthR((h,h + 1)) = depthR((e, f )). If not, then there exists

(p, q) ∈ R such that either (a) e < p < h, h + 1 ≤ q , (b) p = h, h + 1 ≤ q ,
or (c) p ≤ e, h + 1 ≤ q < f . In case (a), (p, q) �≺ (g,h), (g,h) �≺ (p, q), and
(g,h) ∧ (p, q) = (p,h) ∈ (N2)− (since p < h), contradicting the fact that R is a
negative twisted chain. In case (b), p = h, and thus (g,h), (h, q) ∈ R contradicts the
fact that R is completely disjointed. In case (c), the maximality of h is violated.

Since (e, f ) � (h,h + 1), depthS((h,h + 1)) ≥ depthS((e, f )). Thus D((h,h +
1)) ≤ D((e,f )) < 0.
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(ii) Let R = {(e1, f1), . . . , (em,fm)}, with e1 < · · · < em. Note that {(ei, fi) ∈ R |
ei ≤ z < z + 1 ≤ fi} consists of all the (ei, fi) ∈ R such that (ei, fi) � (z, z + 1).
Thus, since R is a twisted chain, {(ei, fi) ∈ R | ei ≤ z < z + 1 ≤ fi} must form a
chain. Hence depthR(z, z + 1) = |{(ei, fi) ∈ R | ei ≤ z < z + 1 ≤ fi}|.

Recall that R(1) − R(2) = {e1, . . . , em} ∪̇ (N \ {f1, . . . , fm}). The result now fol-
lows from the fact that

|{(ei, fi) ∈ R | ei ≤ z < z + 1 ≤ fi}| = |(R(1) − R(2))
≤z \ N

≤z|.
To see why this equality holds, observe that R(1) − R(2) can be obtained by starting
with N and then successively replacing fi by ei , i = 1, . . . ,m. Such a replacement
adds 1 to the number of elements less than or equal to z if and only if ei ≤ z and
fi ≥ z + 1 (and never subtracts 1 from the number of elements less than or equal to
z, since ei < fi ).
(iii)

R � S ⇐⇒ depthR((z, z + 1)) ≥ depthS((z, z + 1)), z ∈ N

⇐⇒ |(R(1) − R(2))
≤z| ≥ |(S(1) − S(2))

≤z|, z ∈ N

⇐⇒ R(1) − R(2) ≤ S(1) − S(2)

⇐⇒ R ≤ S,

where the first and second equivalences follow from (i) and (ii) respectively.
(iv) is obtained by applying ι to both sides of (iii). �
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