
J Algebr Comb (2008) 27: 383–398
DOI 10.1007/s10801-007-0095-y

Betti numbers of strongly color-stable ideals
and squarefree strongly color-stable ideals

Satoshi Murai

Received: 6 March 2007 / Accepted: 7 August 2007 / Published online: 13 September 2007
© Springer Science+Business Media, LLC 2007

Abstract In this paper, we will show that the color-squarefree operation does not
change the graded Betti numbers of strongly color-stable ideals. In addition, we will
give an example of a nonpure balanced complex which shows that colored algebraic
shifting, which was introduced by Babson and Novik, does not always preserve the
dimension of reduced homology groups of balanced simplicial complexes.
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Introduction

In the present paper, we study the graded Betti numbers of strongly color-stable ideals
and squarefree strongly color-stable ideals introduced in [5], and show that the graded
Betti numbers of a strongly color-stable ideal are equal to those of some squarefree
strongly color-stable ideal.

Algebraic shifting, which was introduced by Kalai, is a map that associates with
each simplicial complex another simplicial complex having a simpler structure, called
shifted. Algebraic shifting was used to give several remarkable results in the theory
of face numbers of simplicial complexes, such as the characterization of pairs of
face numbers and Betti numbers (i.e., the dimension of reduced homology groups) of
simplicial complexes (Björner and Kalai [8]). On the other hand, balanced complexes
were introduced by Stanley [17], and face vectors of balanced complexes have been
well studied. (See e.g., [7, 12, 17] and [18].) Since algebraic shifting is not effective
for balanced complexes because most of the shifted complexes are not balanced, it
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was asked in [15, Problem 48] to extend algebraic shifting to balanced complexes
and characterize pairs of face numbers and Betti numbers of balanced complexes.

For this problem, Babson and Novik [5] introduced a new operation, called colored
algebraic shifting, which associates with each balanced complex another balanced
complex having a simpler structure, called color-shifted. We will study color-shifted
complexes and the color-squarefree operation which plays an important role in the
theory of colored algebraic shifting.

Let K be an infinite field and V a set of variables. Write K[V ] for the polynomial
ring over the field K in the set of variables V and M[V ] for the set of monomials
in K[V ]. For each monomial x

a1
1 · · ·xak

k ∈ M[V ] where each xj ∈ V , the integer

deg(x
a1
1 · · ·xak

k ) = ∑k
j=1 aj will be called the standard degree of x

a1
1 · · ·xak

k . Assume
that V is a finite set endowed with an ordered partition (V1,V2, . . . , Vr), that is, V

is a set of the form V = ⋃̇r

j=1Vj , where
⋃̇

denotes a disjoint union. Set |Vj | = nj

and Vj = {xj,1, xj,2, . . . , xj,nj
} for all j , where |A| denotes the cardinality of a finite

set A. For any monomial u = �r
j=1(x

aj,1
j,1 · · ·xaj,nj

j,nj
) ∈ M[V ], we write

Degj (u) = aj,1 + aj,2 + · · · + aj,nj

and

Deg(u) = (Deg1(u),Deg2(u), . . . ,Degr (u)) ∈ Z
r .

The above Deg(u) ∈ Z
r will be called the multidegree of u. Define the Z

r -grading of
K[V ] by using multidegree, and define the Z-grading of K[V ] by using the standard
degree. We simply say ‘graded’ if we consider the Z-grading.

A multicomplex M on V is a set of monomials in K[V ] such that if u ∈ M and
v divides u then v ∈ M . A multicomplex M is called a simplicial complex if all
monomials in M are squarefree.

Let � be a simplicial complex on V . The elements of � are called faces, and the
maximal ones (under divisibility) are called facets. The dimension of � is the integer
dim� = max{deg(u) : u ∈ �} − 1. Let fi(�) be the number of monomials u ∈ � of
degree i + 1. The vector f (�) = (f−1(�), f0(�), . . . , fdim�(�)) will be called the
f -vector of �. Also, for c = (c1, . . . , cr ) ∈ N

r , let fc(�) be the number of monomials
u ∈ � with Deg(u) = c. The vector (fc(�) : c ∈ N

r ) is called the flag f-vector of �.
Let a = (a1, . . . , ar ) ∈ Z

r
>0. A simplicial complex � on V is said to be a-balanced if

dim� + 1 = ∑r
j=1 aj and Degj (u) ≤ aj for all j = 1,2, . . . , r and for all u ∈ �. In

particular � is said to be completely balanced if a = (1,1, . . . ,1).
We define the partial order <P on M[Vj ] by

xj,s1xj,s2 · · ·xj,sk ≤P xj,t1xj,t2 · · ·xj,tl ⇔ k ≤ l and si ≤ ti for i = 1,2, . . . , k

where s1 ≤ · · · ≤ sk and t1 ≤ · · · ≤ tl . Extend the partial order <P to M[V ] by setting
u1u2 · · ·ur ≤P v1v2 · · ·vr if uj ≤P vj for all j , where uj and vj are monomials in
M[Vj ]. A monomial ideal I ⊂ K[V ] is said to be strongly color-stable if, for all
monomials u ∈ I and v ≤P u with Deg(v) = Deg(u), it follows that v ∈ I . Set

A = {u1u2 · · ·ur : uj ∈M[Vj ] and deg(uj ) + max(uj ) ≤ nj + 1 for all j} (1)
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where max(uj ) = max{t : xj,t divides u}. The color-squarefree operation �̃ : A →
M[V ] is the map defined by

�̃

(
r∏

j=1

(xj,s(j,1)
xj,s(j,2)

· · ·xj,s(j,kj )
)

)

=
r∏

j=1

(xj,s(j,1)
xj,s(j,2)+1xj,s(j,3)+2 · · ·xj,s(j,kj )+kj −1)

where s(j,1) ≤ · · · ≤ s(j,kj ) for all j . Note that �̃ gives a one-to-one correspondence
between A and the set of squarefree monomials in K[V ]. Let I ⊂ K[V ] be a mono-
mial ideal. Then there exists the minimal set of monomials which generates I . We
write Gen(I ) for the set of minimal monomial generators of I . If Gen(I ) ⊂ A, then
write �̃(I ) for the squarefree monomial ideal generated by {�̃(u) : u ∈ Gen(I )}.

The Stanley–Reisner ideal I� ⊂ K[V ] of a simplicial complex � on V is the
monomial ideal generated by all squarefree monomials u �∈ �. Let G = GLn1(K) ×
GLn2(K) × · · · × GLnr (K) where each GLnj

(K) is the general linear group with
coefficients in K . Roughly speaking, colored algebraic shifting is defined as fol-
lows: assume that char(K) = 0 from now on. Fix a total order ≺ on V satisfy-
ing xj,1 	 xj,2 	 · · · 	 xj,nj

for all j . The reverse lexicographic order ≺rev in-
duced by ≺ is the total order on M[V ] defined as follows, for all monomials
u = xi1,j1 · · ·xik,jk

∈ M[V ] and v = xi′1,j ′
1
· · ·xi′�,j ′

�
∈ M[V ] with xi1,j1 � · · · � xik,jk

and xi′1,j ′
1
� · · · � xi′�,j ′

�
, one has u 	rev v if k > � or k = � and there exists 1 ≤ r ≤ k

such that xir ,jr 	 xi′r ,j ′
r

and xit ,jt = xi′t ,j ′
t

for all t > r . Choose a generic matrix ϕ of G

and consider the initial ideal in≺ϕ(I�) with respect to the reverse lexicographic order
induced by ≺. This initial ideal is called the G-generic initial ideal of I with respect to
≺. G-generic initial ideals are strongly color-stable, and satisfy Gen(in≺ϕ(I�)) ⊂ A.
Colored algebraic shifting (with respect to ≺) is the map � → �̃≺(�) defined by
I�̃≺(�) = �̃(in≺ϕ(I�)). (The precise definition of �̃≺(�) will be given in Sect. 1.)

Let � be a simplicial complex on V . The following properties appeared in [5]:

(C1) �̃≺(�) is color-shifted, that is, if u ∈ �̃≺(�) and v ∈ M[V ] are squarefree
monomials satisfying v ≥P u and Deg(v) = Deg(u) then v ∈ �̃≺(�);

(C2) � and �̃≺(�) have the same flag f -vector;
(C3) If � ⊂ � then �̃≺(�) ⊂ �̃≺(�).

Colored algebraic shifting behaves nicely for balanced complexes. For example,
(C2) says that if � is a-balanced then �̃≺(�) is also a-balanced. Moreover, Babson
and Novik proved that if � is balanced and Cohen–Macaulay then �̃≺(�) is also
Cohen–Macaulay for a certain order ≺ on V . On the other hand, since algebraic
shifting does not change shifted complexes, it would be natural to ask whether the
following property holds:

(C4) If � is color-shifted then �̃≺(�) = �.

In this paper, we prove this property (Corollary 1.11).
For a graded ideal I ⊂ K[V ], the integers β

K[V ]
ij (I ) = dimK TorK[V ]

i (I,K)j are
called the graded Betti numbers of I . Since there are nice relations between algebraic
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shifting and graded Betti numbers (see [13]), it is also expected that there is a relation
between the graded Betti numbers of I� and those of I�̃≺(�). The main result of this
paper is the following.

Theorem 0.1 Let I ⊂ K[V ] be a strongly color-stable ideal with Gen(I ) ⊂ A. Then
β

K[V ]
ij (I ) = β

K[V ]
ij (�̃(I )) for all i and j .

The above theorem implies that the graded Betti numbers of I�̃≺(�) are equal
to those of the G-generic initial ideal of I� . Thus, an immediate consequence of
Theorem 0.1 is β

K[V ]
ij (I�) ≤ β

K[V ]
ij (I�̃≺(�)) for all i and j . Note that, in the case

when r = 1, Theorem 0.1 was shown in [4].
To prove Theorem 0.1, we use the exterior algebra and polarization (see Sect. 2).

Let I ⊂ K[V ] be a strongly color-stable ideal and pol(I ) its polarization. Since all
monomial ideals in the exterior algebra are squarefree monomial ideals, using the
exterior algebra is sometimes useful for studying squarefree monomial ideals. Indeed,
we find a nice relation between pol(I ) and �̃(I ) in terms of the exterior algebra. We
show that, regarding pol(I ) and �̃(I ) as ideals in the exterior algebra, the G-generic
initial ideal of pol(I ) is equal to �̃(I ) in the exterior algebra (by re-indexing the
variables). Theorem 0.1 follows from this relation and property (C4) by using the
relation between the graded Betti numbers of monomial ideals in the exterior algebra
and those of monomial ideals in the polynomial ring, which was given by Aramova–
Avramov–Herzog [1].

Since algebraic shifting preserves the Betti numbers of simplicial complexes, it
was expected that colored algebraic shifting preserves the Betti numbers of balanced
complexes if we choose a certain order ≺ on V . However, we will give a counter-
example to this problem in the last section of this paper.

This paper is organized as follows: In Sect. 1, we will recall colored algebraic
shifting, and prove property (C4). In Sect. 2, we will study the relationship between
polarization and generic initial ideals in the exterior algebra. The results in this sec-
tion play a crucial role in the proof of Theorem 0.1. The proof of Theorem 0.1 will
be given in Sect. 3. In Sect. 4, we will show that colored algebraic shifting does not
always preserve the Betti numbers of balanced complexes.

1 Colored algebraic shifting

In this section, we recall colored algebraic shifting defined by Babson and Novik [5].
Let V = ⋃̇r

j=1Vj be a set of variables with Vj = {xj,1, xj,2, . . . , xj,nj
}. Set G =

GLn1(K) × GLn2(K) × · · · × GLnr (K). Any ϕ = (ϕ1, . . . , ϕr ) ∈ G with each ϕj =
(a

(j)
st )1≤s,t≤nj

∈ GLnj
(K) defines the Z

r -graded automorphism of K[V ] induced by

ϕ(xj,l) = ∑nj

k=1 a
(j)
kl xj,k . We say that a total order ≺ on V is admissible if it satisfies

xj,1 	 xj,2 	 · · · 	 xj,nj
for all j . For a Z

r -graded ideal I ⊂ K[V ], we write in≺(I )

for the initial ideal of I w.r.t. the reverse lexicographic order induced by ≺. The
definition of colored algebraic shifting is based on the following generalization of
generic initial ideals.
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Lemma 1.1 ([5, Theorem 5.3]) Let I ⊂ K[V ] be a Z
r -graded ideal and ≺ a total

order on V . There are nonempty Zariski open subsets U1,U2, . . . ,Ur with each Uj ⊂
GLnj

(K) such that in≺ϕ(I) is constant for all ϕ ∈ U1 × · · · × Ur .

The above ideal in≺ϕ(I) with ϕ ∈ U1 × · · · × Ur is called the G-generic initial
ideal of I w.r.t. the admissible order ≺, and will be denoted G-gin≺(I ). Like generic
initial ideals, G-generic initial ideals have a simpler structure.

Lemma 1.2 ([5, Theorem 5.4]) If char(K) = 0 then, for any Z
r -graded ideal I ⊂

K[V ] and for any admissible order ≺, G-gin≺(I ) is strongly color-stable.

Remark 1.3 In case of r = 1, G-generic initial ideals are called generic initial ideals
and strongly color-stable ideals are called strongly stable ideals. See e.g., [13]. Also,
for r = 2, G-generic initial ideals and strongly color-stable ideals are considered
in [2].

Now we define colored algebraic shifting. Let � be a simplicial complex on V and
≺ an admissible order on V . Set B = {u ∈M[V ] : u �∈ G-gin≺(I�)} and let A be the
set of monomials defined in (1). The colored algebraic shifted complex �̃≺(�) of �

(w.r.t. ≺) is the collection of squarefree monomials defined by

�̃≺(�) = {�̃(u) : u ∈ B ∩A}.
It is not obvious that �̃≺(�) is a simplicial complex. However, it was proved in

[5, Theorem 5.6] that it is indeed a simplicial complex and satisfies properties (C1)–
(C3). The map � → �̃≺(�) is called colored algebraic shifting (w.r.t. ≺). In the rest
of this section, we will study fundamental properties of colored algebraic shifting
and the color-squarefree operation. First, we recall some results which appeared in
[5, Lemma 5.2 and Theorem 5.6].

Lemma 1.4 (Babson and Novik) Let ≺ be an admissible order on V .

(i) The set M[V ] of all monomials on V is the set of the form

M[V ] =
⋃̇

u∈A{uw1 · · ·wr : wj ∈M[xj,nj +1−Degj (u), . . . , xj,nj
] for each j}.

(ii) Let � be a simplicial complex on V and B = {u ∈ M[V ] : u �∈ G-gin≺(I�)}. If
char(K) = 0 then B is the multicomplex of the form

B =
⋃̇

u∈B∩A{uw1 · · ·wr : wj ∈M[xj,nj +1−Degj (u), . . . , xj,nj
] ∀j}. (2)

(iii) Let I be a strongly color-stable ideal in K[V ], B = {u ∈ M[V ] : u �∈ I } and � =
{�̃(u) : u ∈ B ∩A}. If B is a multicomplex of the form (2), then � is a simplicial
complex and I� has the same Hilbert function as I , that is, dimK(I�)t = dimK It

for all t .

Note that (ii) and (iii) imply that �̃≺(�) is a simplicial complex for any simplicial
complex � on V .
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Lemma 1.5 Let I ⊂ K[V ] be a strongly color-stable monomial ideal and B = {u ∈
M[V ] : u �∈ I }. The following conditions are equivalent.

(i) Gen(I ) ⊂ A;
(ii) B is a multicomplex of the form (2).

Proof ((i) ⇒ (ii)) Let u = u1u2 · · ·ur ∈ A where each uj ∈ K[Vj ], and wj ∈
M[xj,nj +1−Degj (u), . . . , xj,nj

] for j = 1,2, . . . , r . By Lemma 1.4 (i) it is enough to
show that u ∈ B if and only if uw1 · · ·wr ∈ B . The ‘if’ part immediately follows
since B is a multicomplex. We will show the ‘only if’ part.

Suppose uw1 · · ·wr �∈ B . We must prove that u �∈ B , that is, u ∈ I . Since
uw1 · · ·wr ∈ I , there exists v = v1 · · ·vr ∈ Gen(I ) with vj ∈ K[Vj ] such that v di-
vides uw1 · · ·wr . Notice that each vj ∈ A by assumption. Since I is strongly color-
stable, we may assume that vj ≤P ujwj . Let vj = xj,p1 · · ·xj,pk

, uj = xj,q1 · · ·xj,q�

and wj = xj,q�+1 · · ·xj,q�+s
, where p1 ≤ · · · ≤ pk , q1 ≤ · · · ≤ q� and q�+1 ≤ · · · ≤

q�+s . Since uj ∈ A we have q� ≤ q�+1. Also, since vj divides ujwj and vj ≤P

ujwj , we have pi = qi for i = 1,2, . . . , k. Thus vj divides uj if k ≤ � and uj

divides vj if k > �. On the other hand, by Lemma 1.4 (i), for any monomial
w ∈ K[xj,nj +1−Degj (u), . . . , xj,nj

], we have ujw �∈ A if w �= 1. Thus if uj divides
vj then uj = vj since vj ∈ A. Hence vj divides uj for j = 1,2, . . . , r . Since
v = v1 · · ·vr ∈ I , we have u = u1 · · ·ur ∈ I as desired.

((ii) ⇒ (i)) Let v ∈ Gen(I ). Then Lemma 1.4 (i) says that there exists a monomial
u ∈ A such that v ∈ {uw1 · · ·wr : wj ∈ M[xj,nj +1−Degj (u), . . . , xj,nj

] for each j}.
Since v ∈ I the assumption says that u ∈ I . Since v ∈ Gen(I ) and u divides v, we
have v = u ∈A as desired. �

If I ⊂ K[V ] is a monomial ideal satisfying Gen(I ) ⊂ A, then we write �̃(I ) for
the squarefree monomial ideal in K[V ] generated by {�̃(u) : u ∈ Gen(I )}. Similarly
for any squarefree monomial ideal J ⊂ K[V ], write �̃−1(J ) for the monomial ideal
generated by {�̃−1(u) : u ∈ Gen(J )}. The following result gives another definition of
colored algebraic shifting.

Corollary 1.6 Let � be a simplicial complex on V and ≺ an admissible order. Then
Gen(G-gin≺(I�)) ⊂ A and I�̃≺(�) = �̃(G-gin≺(I�)).

Proof The first statement follows from Lemma 1.4 (ii) and Lemma 1.5. We will con-
sider the second statement. By the definition of �̃≺(�), we have u ∈ G-gin≺(I�)∩A
if and only if �̃(u) �∈ �̃≺(�). Hence u ∈ Gen(G-gin≺(I�)) implies �̃(u) ∈ I�̃≺(�),

and v ∈ Gen(I�̃≺(�)) implies �̃−1(v) ∈ G-gin≺(I�) and v ∈ �̃(G-gin≺(I�)) (see

[16, Lemma 1.7]). This fact says that I�̃≺(�) ⊃ �̃(G-gin≺(I�)) and I�̃≺(�) ⊂
�̃(G-gin≺(I�)) as desired. �

Next we list some fundamental properties of �̃. A squarefree monomial ideal I ⊂
K[V ] is said to be squarefree strongly color-stable if, for all squarefree monomials
u ∈ I and v ≤P u with Deg(v) = Deg(u), it follows that v ∈ I .
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Lemma 1.7 Let I and J be strongly color-stable ideals in K[V ] satisfying Gen(I ) ⊂
A and Gen(J ) ⊂ A. Set � = {�̃(u) : u �∈ I and u ∈A}. Then

(a) If u ∈ I ∩A then �̃(u) ∈ �̃(I ).
(b) If u ∈ �̃(I ) is a squarefree monomial then �̃−1(u) ∈ I ∩A.
(c) I and �̃(I ) have the same Hilbert function.
(d) �̃(I ) is a squarefree strongly color-stable ideal.
(e) If I ′ is a squarefree strongly color-stable ideal in K[V ] then �̃−1(I ′) is strongly

color-stable.
(f) One has I ⊂ J if and only if �̃(I ) ⊂ �̃(J ).
(g) If u and v are monomials satisfying u ∈ Gen(I ), v ≤P u and Deg(v) = Deg(u)

then �̃(v) ∈ �̃(I ).

Proof ((a), (b) and (c)) Lemmas 1.4 (iii) and 1.5 say that � is a simplicial complex
and I� has the same Hilbert function as I . On the other hand we have �̃(I ) = I� in
the same way as in Corollary 1.6. Then statements follow from the definition of �.

(d) It suffices to show that if u ∈ Gen(�̃(I )) and v is a squarefree monomial satis-
fying v ≤P u and Deg(v) = Deg(u) then v ∈ �̃(I ). Since v ≤P u, Deg(v) = Deg(u)

and �̃−1(u) ∈ A, it follows that �̃−1(v) ≤P �̃−1(u) and �̃−1(v) ∈ A. Also, since I is
strongly color-stable, we have �−1(v) ∈ I ∩A. Then statement (a) implies v ∈ �̃(I ).

(e) This can be proved in the same way as (d).
(f) Since Gen(I ) ⊂ A and Gen(J ) ⊂ A the statement follows from (a) and (b).
(g) Since I is strongly color-stable, this is a special case of (a). �

Next, we will show that �̃≺(�) = � if � is color-shifted. Recall that if r = 1
then G-generic initial ideals are generic initial ideals and colored algebraic shifting
is called symmetric algebraic shifting. In this special case, the next fact was known
(see [4, Corollary 1.6] and [16, Theorem 1.6]).

Lemma 1.8 Fix 1 ≤ j ≤ r . Let I be a strongly colored-stable ideal in K[Vj ] with
Gen(I ) ⊂ A and ≺ an admissible order on V . Then there exists a nonempty Zariski
open subset U ⊂ GLnj

(K) such that in≺ϕ(�̃(I )) = I for all ϕ ∈ U.

Corollary 1.9 Let u ∈M[Vj ] ∩A, G = {v ∈ M[Vj ] : v ≤P u and deg(v) = deg(u)}
and ≺ an admissible order on V . Then there exists a nonempty Zariski open subset
U ⊂ GLnj

(K) such that, for each ϕ ∈ U , there exist monomials v1, . . . , vk in G and
elements a1, . . . , ak of K such that

in≺ϕ(a1�̃(v1) + a2�̃(v2) + · · · + ak�̃(vk)) = u.

Proof Let I be the monomial ideal in K[Vj ] generated by G. Then I is strongly
color-stable and Gen(I ) ⊂ A. Thus Lemma 1.8 says that there exists a nonempty
Zariski open subset U ⊂ GLnj

(K) such that in≺ϕ(�̃(I )) = I for any ϕ ∈ U . Then,

for each ϕ ∈ U , there are monomials v′
1, v

′
2, . . . , v

′
k of degree deg(u) in �̃(I ) and

elements a1, a2, . . . , ak of K such that

in≺(ϕ(a1v
′
1 + a2v

′
2 + · · · + akv

′
k)) = u.

On the other hand, by the definition of I , the set of all monomials of degree deg(u)

in �̃(I ) is {�̃(v) : v ∈ G}. Hence v′
t ∈ {�̃(v) : v ∈ G} for t = 1,2, . . . , k. �



390 J Algebr Comb (2008) 27: 383–398

Theorem 1.10 Let I ⊂ K[V ] be a strongly color-stable ideal with Gen(I ) ⊂ A.
Then, for any admissible order ≺ on V , one has G-gin≺(�̃(I )) = I.

Proof Since Lemma 1.7 says that I and G-gin≺(�̃(I )) have the same Hilbert func-
tion, it suffices to show that Gen(I ) ⊂ G-gin≺(�̃(I )).

Let u = u1u2 · · ·ur ∈ Gen(I ) where each uj ∈ M[Vj ]. We will show that u ∈
G-gin≺(�̃(I )). By Lemma 1.1 and Corollary 1.9, there exists a ϕ = (ϕ1, . . . , ϕr ) ∈
G with each ϕj ∈ GLnj

(K) such that in≺ϕ(�̃(I )) = G-gin≺(�̃(I )) and, for
j = 1,2, . . . , r , there exist monomials vj,1, . . . , vj,kj

∈ {v ∈ M[Vj ] : v ≤P uj and
deg(v) = deg(uj )} and elements aj,1, . . . , aj,kj

∈ K , such that

in≺(ϕj {aj,1�̃(vj,1) + · · · + aj,kj
�̃(vj,kj

)}) = uj .

Set

fj = aj,1�̃(vj,1) + · · · + aj,kj
�̃(vj,kj

) ∈ K[Vj ].
Since in≺ϕj (fj ) = uj , we have

in≺ϕ(f1f2 · · ·fr) = {in≺ϕ1(f1)}{in≺ϕ2(f2)} · · · {in≺ϕr(fr)} = u1u2 · · ·ur .

On the other hand, f1f2 · · ·fr is a linear combination of monomials in G = {�̃(v) :
v ≤P u and Deg(v) = Deg(u)}. Since Lemma 1.7 (g) says that G ⊂ �̃(I ), it follows
that f1f2 · · ·fr ∈ �̃(I ) and u = u1u2 · · ·ur ∈ in≺ϕ(�̃(I )) = G-gin≺(�̃(I )). Then
we have Gen(I ) ⊂ G-gin≺(�̃(I )) as desired. �

Corollary 1.11 If � is a color-shifted simplicial complex on V then �̃≺(�) = � for
any admissible order ≺ on V .

Proof Clearly I� is squarefree strongly color-stable. Thus Lemma 1.7 (e) says
that �̃−1(I�) is strongly color-stable. Then Theorem 1.10 says that G-gin≺(I�) =
�̃−1(I�) and Corollary 1.6 says that I�̃≺(�) = �̃(G-gin≺(I�)) = I� . �

2 Polarization and squarefree stable operators

First, we recall the notion of polarization of monomial ideals. Let 
 be a set of
indices, X = {xτ : τ ∈ 
} a set of variables and K[X] the polynomial ring over a
field K in the set of variables X. Consider the set of variables X̃ = {xτ,[k] : xτ ∈
X, k ∈ Z>0}. Define the map pol : M[X] →M[X̃] by

pol(xa1
τ1

xa2
τ2

. . . xak
τk

) =
k∏

j=1

(xτj ,[1]xτj ,[2] · · ·xτj ,[aj ]),

where each τt ∈ 
. For any monomial ideal I ⊂ K[X], write pol(I ) ⊂ K[X̃] for the
monomial ideal generated by {pol(u) : u ∈ Gen(I )}. The ideal pol(I ) is called the
polarization of I . Note that pol(I ) is always a squarefree monomial ideal.
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There is a nice relationship between polarization and graded Betti numbers. For a
finitely generated graded ideal I ⊂ K[X], we define the graded Betti numbers of I by

β
K[X]
ij (I ) = dimK TorK[X′]

i (I ∩K[X′],K)j where X′ ⊂ X is a finite subset satisfying
Gen(I ) ⊂ K[X′]. Note that these numbers are independent of the choice of X′ with
Gen(I ) ⊂ K[X′]. The following facts are known.

Lemma 2.1 Let I be a finitely generated monomial ideal in K[X].
(i) I and its polarization pol(I ) have the same graded Betti numbers, that is,

β
K[X]
ij (I ) = β

K[X̃]
ij (pol(I )) for all i and j ;

(ii) If I ⊂ J are monomial ideals in K[X] then pol(I ) ⊂ pol(J ).

See [10, Lemma 4.16] for the proof of statement (i). Also, statement (ii) follows
from the fact that if u,v ∈ M[X] and u divides v then pol(u) divides pol(v).

The following nice fact is known: Let I be a monomial ideal of K[x1,1, . . . , x1,n1 ].
Suppose that n1 is sufficiently large. Then we may assume that pol(I ) is an ideal of
K[x1,1, . . . , x1,n1 ]. It was proved in [6] that if I is strongly stable (see Remark 1.3)
then the generic initial ideal of pol(I ) with respect to the reverse lexicographic order
is equal to I .

The aim of this section is to give an analogue of the above fact for an exterior
algebra. Let, as before, V = ⋃̇r

j=1Vj be a set of variables with Vj = {xj,1, . . . , xj,nj
}

for j = 1, . . . , r , and let
∧〈V 〉 be the exterior algebra over a field K in the set of

variables V . Let N 〈V 〉 be the set of monomials in
∧〈V 〉, where a monomial of∧〈V 〉 is an element of

∧〈V 〉 of the form

xi1,j1 ∧ xi2,j2 ∧ · · · ∧ xip,jp

where i1 ≤ i2 ≤ · · · ≤ ip and where jt < jt+1 if it = it+1. Define the Z
r -grading of∧〈V 〉 in the same way as for the polynomial ring K[V ]. For an admissible order ≺

and for a Z
r -graded ideal J ⊂ ∧〈V 〉, write in≺J for the initial ideal of J w.r.t. the

reverse lexicographic order induced by ≺. We refer the reader to [3] for foundations
on the Gröbener basis theory in exterior algebras.

For each monomial u = xi1,j1 ∧ xi2,j2 ∧ · · · ∧ xip,jp ∈ ∧〈V 〉, set

u� = xi1,j1xi2,j2 · · ·xip,jp ∈ K[V ].
Similarly, for a squarefree monomial v = xi1,j1 · · ·xip,jp ∈ M[V ], where i1 ≤ · · · ≤
ip and jt < jt+1 if it = it+1 for all t , we write v = xi1,j1 ∧ · · · ∧ xip,jp ∈ ∧〈V 〉 (this
v is well-defined by the ordering of the variables). For a monomial ideal J ⊂ ∧〈V 〉,
let J � be the monomial ideal in K[V ] generated by {u� : u ∈ Gen(J )}. Also, for a
squarefree monomial ideal I ⊂ K[V ], define I  ⊂ ∧〈V 〉 similarly. We say that a
monomial ideal J ⊂ ∧〈V 〉 is squarefree strongly color-stable if J � is.

Definition 2.2 To simplify, set n1 = n and x1,t = xt for all t . Hence V1 =
{x1, . . . , xn}. Let W ⊃ V1 be the set of infinitely many variables x1, x2, . . . . We
define � and  on K[W ] and

∧〈W 〉 in the same way as for K[V ] and
∧〈V 〉. Ex-

tend the partial order <P on K[V1] to K[W ]. A monomial ideal I in K[W ] (or in
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∧〈W 〉) is called squarefree strongly stable if, for all squarefree monomials u ∈ I

and v <P u with deg(v) = deg(u), it follows that v ∈ I . A squarefree stable operator
σ :N 〈W 〉 → N 〈W 〉 is a map that satisfies

(i) if J ⊂ ∧〈W 〉 is a finitely generated squarefree strongly stable ideal then J � and
σ(J )� have the same graded Betti numbers, where σ(J ) is the monomial ideal
generated by {σ(u) : u ∈ Gen(J )};

(ii) if J ⊂ J ′ are finitely generated strongly stable monomial ideals in
∧〈W 〉 then

σ(J ) ⊂ σ(J ′).

If J is a finitely generated graded ideal in
∧〈V1〉 or in

∧〈W 〉 then we write
in(J ) for the initial ideal of J w.r.t. the reverse lexicographic order induced by
x1 > x2 > · · ·. The significance of squarefree stable operators is explained by the
following statement.

Lemma 2.3 ([16, Proposition 7.4]) Let σ : N 〈W 〉 → N 〈W 〉 be a squarefree sta-
ble operator and J ⊂ ∧〈V1〉 a squarefree strongly stable ideal satisfying {σ(u) :
u ∈ Gen(J )} ⊂ ∧〈V1〉. Let σ(J ) be the ideal in

∧〈V1〉 generated by {σ(u) : u ∈
Gen(J )}. Then there exists a nonempty Zariski open subset U ⊂ GLn(K) such that
in(ϕ(σ (J ))) = J for all ϕ ∈ U.

We will define a new squarefree stable operator by using polarization. Re-
call that the squarefree operation � : M[W ] → M[W ] is the map defined by
�(xi1xi2 · · ·xik ) = xi1xi2+1 · · ·xik+k−1 where i1 ≤ i2 ≤ · · · ≤ ik . Hence this is a
special case of the color-squarefree operation and we have �(u) = �̃(u) if u ∈
M[V1] ∩A. The following fact is known.

Lemma 2.4 ([4, Lemma 2.2]) If I ⊂ K[W ] is a finitely generated strongly stable
ideal then I and �(I) have the same graded Betti numbers.

Let pol∗ : N 〈W 〉 → N 〈W̃ 〉, where W̃ = {xi,[k] : i ≥ 1, k ≥ 1}, be the map defined
by

pol∗(u) = pol(�−1(u�)) for any u ∈ N 〈W 〉.
The next fact easily follows from Lemmas 2.1 and 2.4.

Lemma 2.5 Let J and J ′ be finitely generated squarefree strongly stable ideals in∧〈W 〉. Then

(i) J � and (pol∗(J ))� have the same graded Betti numbers;
(ii) if J ⊂ J ′ then pol∗(J ) ⊂ pol∗(J ′).

Proof Clearly (pol∗(J ))� = pol(�−1(J �)) ⊂ K[W̃ ]. Since � is a special case of the
color-squarefree operation, Lemma 1.7 (e) says that �−1(J �) is strongly stable. Then
Lemma 2.4 says that J � and �−1(J �) have the same graded Betti numbers. Hence
J � and (pol∗(J ))� have the same graded Betti numbers by Lemma 2.1 (i).

If J ⊂ J ′ then �−1(J �) ⊂ �−1((J ′)�) by Corollary 1.7 (f). Then we have
pol∗(J ) ⊂ pol∗(J ′) by Lemma 2.1 (ii). �
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Example 2.6 Let J = (x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x4). Then

pol∗(J ) = (pol(�−1(x1x2x3)),pol(�−1(x1x2x4)))


= (pol(x3
1),pol(x2

1x2))


= (x1,[1] ∧ x1,[2] ∧ x1,[3], x1,[1] ∧ x1,[2] ∧ x2,[1]).

Fix a bijection π : Z>0 × Z>0 → Z>0. Then π induces an isomorphism of Z-
graded K-algebras from

∧〈W̃ 〉 to
∧〈W 〉 by setting π(xi,[k]) = xπ(i,k). Let � :

N 〈W 〉 → N 〈W 〉 be the map defined by � = π ◦ pol∗. Then, by Lemma 2.5, we
have

Proposition 2.7 The map � :N 〈W 〉 → N 〈W 〉 is a squarefree stable operator.

Corollary 2.8 Let u ∈ N 〈V1〉 and G = {v ∈ N 〈V1〉 : v ≤P u and deg(v) = deg(u)}.
Assume that �(v) ∈ N 〈V1〉 for all v ∈ G. Then, there exists a nonempty Zariski
open subset U ⊂ GLn1(K) which satisfies that, for each ϕ ∈ U , there are monomials
v1, . . . , vk of G and elements a1, . . . , ak of K such that

inϕ(a1�(v1) + · · · + ak�(vk)) = u.

Proof Let J ⊂ ∧〈V1〉 be the squarefree strongly stable ideal generated by G. Then,
since � is a squarefree stable operator, Lemma 2.3 says that there exists a nonempty
Zariski open subset U ⊂ GLn1(K) such that inϕ(�(J )) = J for any ϕ ∈ U . Then
the claim follows in the same way as Corollary 1.9. �

Now, we return to the case V = ⋃̇r

j=1Vj with Vj = {xj,1, . . . , xj,nj
}. Set Ṽ =

{xs,t,[k] : xs,t ∈ V, k ≥ 1}. Consider infinitely many variables xj,t with 1 ≤ j ≤ r and
t ≥ 1, and set π(xj,t,[k]) = xj,π(t,k). For any monomial u ∈ N 〈V 〉, define

�̃(u) = (π ◦ pol ◦ �̃−1(u�)).

The next statement, which is an analogue of Theorem 1.10, plays an important role
in the proof of the main theorem of the next section.

Proposition 2.9 Let J ⊂ ∧〈V 〉 be a squarefree strongly color-stable ideal, G = {v ∈
N 〈V 〉 : v ≤P u and Deg(v) = Deg(u) for some u ∈ Gen(J )} and ≺ an admissible
order on V . Assume that �̃(v) ∈ N 〈V 〉 for all v ∈ G. Then there exists a ϕ ∈ G =
GLn1(K) × · · · × GLnr (K) such that in≺ϕ(�̃(J )) = J , where �̃(J ) is the ideal in
∧〈V 〉 generated by {�̃(u) : u ∈ Gen(J )} ⊂ ∧〈V 〉.

Proof The idea of the proof is essentially the same as that of Theorem 1.10. Recall
that if graded ideals have the same graded Betti numbers then they have the same
Hilbert functions. Since �̃(J ) = π(pol(�̃−1(J �))), Lemmas 1.7 (c) and 2.1 say that
J and �̃(J ) have the same Hilbert function. Thus it is enough to show that there
exists ϕ ∈ G such that Gen(J ) ⊂ in≺ϕ(�̃(J )).
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For any u = u1 · · ·ur ∈ Gen(J ) where each uj ∈ N 〈Vj 〉, Corollary 2.8 says that
there exists a nonempty Zariski open subset Uj,u ⊂ GLnj

(K) with the property
that, for any ϕj ∈ Uj,u, there are monomials vj,1, . . . , vj,kj

satisfying Deg(vj,t ) =
Deg(uj ) and vj,t ≤P uj for all t , and elements aj,1, . . . , aj,kj

of K such that

in≺ϕj {aj,1�̃(vj,1) + · · · + aj,kj
�̃(vj,kj

)} = uj . (3)

Set Uj = ⋂
u∈Gen(J ) Uj,u for j = 1, . . . , r . Then Uj ⊂ GLnj

(K) is a nonempty
Zariski open subset. Choose ϕ = (ϕ1, . . . , ϕr ) ∈ G with each ϕj ∈ Uj . Then, as we
saw in (3), for every u = u1 · · ·ur ∈ Gen(J ) with each uj ∈ ∧〈Vj 〉, there are ele-
ments f1, . . . , fr in

∧〈V 〉 satisfying that

(a) each fj is a linear combination of monomials in {�̃(v) : v ≤P uj , Deg(v) =
Deg(uj )} ⊂ N 〈Vj 〉;

(b) in≺ϕj (fj ) = uj .

Then g = f1f2 · · ·fr satisfies in≺ϕ(g) = {in≺ϕ1(f1)} · · · {in≺ϕr(fr)} = u and g is a
linear combination of monomials in {�̃(v) : v ∈ G}.

We will show that the set {�̃(v) : v ∈ G} is contained in �̃(J ). Let v ∈ G. Re-
call that �̃(v) = π(pol(�̃−1(v�))). It follows from Lemma 1.7 (g) that �̃−1(v�) ∈
�̃−1(J �). Then there exists a monomial w ∈ Gen(J ) such that �̃−1(w�) divides
�̃−1(v�). By the definition of the polarization, �̃(w) = π(pol(�̃−1(w�))) divides
�̃(v). Thus �̃(v) ∈ �̃(J ) for all v ∈ G.

The above fact implies that g ∈ �̃(J ) and in≺ϕ(g) = u ∈ in≺ϕ(�̃(J )). Hence
u ∈ in≺ϕ(�̃(J )) for all u ∈ Gen(J ) as desired. �

Remark 2.10 Let I ⊂ K[V1] be a strongly stable ideal. The generic initial ideal of
pol(I ) w.r.t. the reverse lexicographic order was determined in [6]. On the other
hand, Proposition 2.9 determines the generic initial ideal of pol∗(�(I)) = pol(I )

w.r.t. the reverse lexicographic order in the exterior algebra. In particular, this re-
sult determines the exterior algebraic shifted complex (see [13]) of some nontriv-
ial simplicial complexes. For example, if � is the simplicial complex defined by
I� = pol(〈x1, x2, . . . , xn〉t ) ⊂ K[xi,[j ] : 1 ≤ i ≤ n, 1 ≤ j ≤ t], then it is known that �

is a simplicial ball (see [14, Theorem 3.1]). Then we can easily determine the exterior
algebraic shifted complex of those simplicial balls.

One may expect a similar relationship for the generic initial ideal of �(I) and that
of pol(I ) when I is not strongly stable. However, pol(I ) and �(I) do not have such
a nice relationship when I is not strongly stable. Indeed, if I = 〈x2

1 , x2
2〉 then pol(I )

and �(I) = 〈x1x2, x2x3〉 do not have the same Hilbert function.

3 The proof of Theorem 0.1

In this section, we will give a proof of Theorem 0.1. Let, as before, V = ⋃̇r

j=1Vj

be a set of variables with Vj = {xj,1, . . . , xj,nj
} for j = 1, . . . , r . Throughout this

section, we set S = K[V ] and E = ∧〈V 〉. First, we recall two known results. See
[13, Theorem 3.1] and [1, Proposition 2.1].
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Lemma 3.1 Let A = S or A = E and J a graded ideal of A. For any admissible
order ≺, one has βA

ij (in≺(J )) ≥ βA
ij (J ) for all i and j .

Lemma 3.2 (Aramova–Avramov–Herzog) Let J ⊂ E be a monomial ideal. Then

∑

i

∑

j

βE
ij (E/J )t isj =

∑

i

∑

j

βS
ij (S/J �)

t isj

(1 − ts)j
.

Lemma 3.2 implies the following useful fact.

Corollary 3.3 Let I and J be monomial ideals in E.

(i) βS
ij (I

�) = βS
ij (J

�) for all i and j if and only if βE
ij (I ) = βE

ij (J ) for all i and j .

(ii) If βS
ij (I

�) ≤ βS
ij (J

�) for all i and j then βE
ij (I ) ≤ βE

ij (J ) for all i and j .

Now, we will prove Theorem 0.1.

Proof of Theorem 0.1 We may assume that each |Vj | = nj is sufficiently large.
Then the squarefree strongly color-stable ideal �̃(I ) ⊂ E satisfies the assumption
of Proposition 2.9. Set J = �̃(�̃(I ))�. Notice that J = π(pol(I )) by the definition
of �̃ . Then Proposition 2.9 and Lemma 3.1 say that

βE
ij (�̃(I )) ≥ βE

ij (J ) for all i and j. (4)

On the other hand, by Theorem 1.10 and Lemma 3.1, we have

βS
ij (I ) ≥ βS

ij (�̃(I )) for all i and j. (5)

Since I and pol(I ) have the same graded Betti numbers, I and J = π(pol(I ))

have the same graded Betti numbers. Hence (5) says

βS
ij (J ) ≥ βS

ij (�̃(I )) for all i and j.

Then Corollary 3.3 (ii) says that βE
ij (J ) ≥ βE

ij (�̃(I )) for all i and j . Thus, by (4),

J  ⊂ E and �̃(I ) ⊂ E have the same graded Betti numbers, and Corollary 3.3 (i)
says that J ⊂ S and �̃(I ) ⊂ S have the same graded Betti numbers. Since I and
J = π(pol(I )) have the same graded Betti numbers, the claim follows. �

Corollary 3.4 Let K be a field of characteristic 0, � a simplicial complex on V and
≺ an admissible order. Then β

K[V ]
ij (I�̃≺(�)) = β

K[V ]
ij (G-gin≺(I�)) for all i and j .

Proof The statement immediately follows from Corollary 1.6 and Theorem 0.1. �

Example 3.5 Let V1 = {x1, x2, x3, x4}, V2 = {y1, y2, . . . , y5} and V = V1 ∪ V2. Set

I = (x3
1 , y4

1 , y3
1y2, y

2
1y2

2 , x2
1y2

1 , x1x2y
2
1 , x2

1y1y2, x1x2y1y2).
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Then I is strongly color-stable and

�̃(I ) = (x1x2x3, y1y2y3y4, y1y2y3y5, y1y2y4y5, x1x2y1y2, x1x3y1y2,

x1x2y1y3, x1x3y1y3).

By Theorem 0.1, the Betti diagram of I and that of �̃(I ) coincide. It is

0 1 2 3

3: 1 - - -
4: 7 8 2 -
5: - 6 7 2

total: 8 14 9 2

(In the diagram the element at the i-th column and j -th row is βii+j .)

4 Betti numbers and colored algebraic shifting

In this section, we give an example of a color-shifted complex which shows some
important facts on colored algebraic shifting.

Let, as before, V = ⋃̇r

j=1Vj with Vj = {xj,1, xj,2, . . . , xj,nj
}. A simplicial com-

plex is called pure if all its faces have the same degree. Let � be a simplicial complex
and H̃i(�;K) the reduced homology groups of � with respect to the field K . The
integers bi(�) = dimK H̃i(�;K) are called the Betti numbers of �. Since symmetric
algebraic shifting (that is, colored algebraic shifting in the case of r = 1) preserves
Betti numbers, it was asked in [5] whether there exists an admissible order ≺ such
that bi(�) = bi(�̃≺(�)) for all balanced complexes �. However, the next example
shows that there are no such admissible orders. (Note that Hochster’s formula [10,
Theorem 5.5.1] and Corollary 3.4 imply bi(�) ≤ bi(�̃≺(�)).)

Example 4.1 Let V1 = {x1, x2, x3}, V2 = {y1}, V3 = {z1} and V = ⋃3
j=1 Vj . Set � =

〈x3y1z1, x1y1, x2z1〉. Then � is a completely balanced complex on V and bi(�) = 0
for all i (see Fig. 1 below). Let � = 〈x3y1z1, x2y1, x2z1, x1〉. Then � is a color-
shifted complex with the same flag f -vector as � and b0(�) = b1(�) = 1.

However, it is easy to see that � is the only color-shifted complex on V with the
same flag f -vector as �. Indeed, if � is a color-shifted complex on V with the same
flag f -vector as � then � must contain x3y1z1 since f(1,1,1)(�) = 1 and must contain
x2y1 and x2z1 since f(1,1,0)(�) = f(1,0,1)(�) = 2.

Fig. 1 A nonpure balanced
complex and its colored
algebraic shifted complex which
do not have the same Betti
numbers
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This fact says that �̃≺(�) = � for any admissible order ≺ but b1(�) < b1(�).
(More generally, we can replace �̃≺(-) by any operation �(-) satisfying (C1) and
(C2).)

The above example also implies another fact. It was stated in [5, Theorem 5.7] that
if � is a balanced color-shifted complex on V then

bi−1(�) = |{u ∈ Facet(�) : deg(u) = i and u is not divisible by xj,nj
∀j}| (6)

where Facet(�) is the set of facets of �. Now, in the above example, � is a com-
pletely balanced color-shifted simplicial complex and all its facets of degree 2 are
divisible by y1 or z1. Then, since V2 = {y1} and V3 = {z1}, the right-hand-side of
(6) is 0 if i = 2. However Fig. 1 says that b1(�) = 1. Hence (6) is a misstate-
ment. The error appeared in the third line of the proof of [5, Theorem 5.7]. They
stated that, for any L ⊂ [r], ⋂

i∈L st�(xi,ni
) = st�(

∏
i∈L xi,ni

), where st�(v) = {v′u :
v′ divides v and vu ∈ �}. However, this is not true if � is not pure. Indeed, in Fig. 1,
st�(y1) ∩ st�(z1) = 〈x2〉 ∪ 〈x3y1z1〉.

Actually equation (6) holds if � is a pure balanced color-shifted complex. Indeed
it is not hard to see that the proof in [5] works under this assumption. We also notice
that the above misstatement does not affect to other statements of [5] since (6) was
used only for pure balanced color-shifted complexes. Babson and Novik [5] used the
Nerve Theorem, which is a topological technique, for the proof of (6). In the rest of
this section, we give a combinatorial proof of this equation for pure balanced color-
shifted complexes.

A simplicial complex � is called shellable if its facets can be ordered F1,

F2, . . . ,Fk so that 〈F1, . . . ,Fi−1〉 ∩ 〈Fi〉 is generated by monomials of degree
deg(Fi) − 1 for all i > 1 (we do not assume that � is pure). The order F1,F2, . . . ,Fk

is called a shelling of �.

Proposition 4.2 Let a ∈ Z
r
>0. If � is a pure a-balanced color-shifted complex on V

then � is shellable and hence satisfies (6).

Proof Consider an order F1,F2, . . . ,Fk of facets of � satisfying Fi ≤P Fj if j ≤ i.
It is clear that there exists such an order. We will show that this order is a shelling.

For each facet F of �, let dj (F ) be the largest integer 0 ≤ t ≤ nj such
that xj,t does not divide F for j = 1,2, . . . , r , and set D(F) = {xs,t ∈ V : t <

ds(F ), xs,t divides F }. Let �i = 〈F1, . . . ,Fi〉 for i ≥ 1. We claim that �i−1 ∩ 〈Fi〉
is generated by W = {Fi/xs,t : xs,t ∈ D(Fi)} for all 1 < i ≤ k.

First, we will show that W ⊂ �i−1 ∩ 〈Fi〉. Let xj,t ∈ D(Fi). Since � is pure
and color-shifted, there exists F� ∈ Facets(�) such that F� = Fi(xj,dj (Fi )/xj,t ). Since
F� >P Fi , the assumption on the order of facets implies that � < i. Hence F� ∈ �i−1

and Fi/xj,t = F�/xj,dj (Fi) ∈ �i−1 ∩ 〈Fi〉.
Next, we will show 〈W 〉 ⊃ �i−1 ∩ 〈Fi〉. Let u ∈ �i−1 ∩ 〈Fi〉. Suppose u �∈ 〈W 〉.

Set G1 = ∏r
j=1(xj,dj (Fi )+1 · · ·xj,nj

) and G2 = ∏
v∈D(Fi)

v. Hence Fi = G1G2.
Then, since u divides Fi and u �∈ 〈W 〉, if follows that G2 divides u. Since u ∈ �i−1,
there exists 1 ≤ t < i such that u divides Ft . However, since Deg(Ft ) = Deg(Fi),
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we have G1 ≥P (Ft/G2) by the construction of G1. Hence Ft ≤P Fi but t < i. This
contradicts the assumption on the order of facets.

Thus � is shellable with the shelling F1,F2, . . . ,Fk . Also equation (6) immedi-
ately follows from this shelling (see e.g., [9, Theorem 4.1]). �

Finally, we give a completely balanced color-shifted complex which is not
shellable. Let V1 = {x1, x2}, V2 = {y1}, V3 = {z1}, V4 = {u1}, V5 = {v1} and V =⋃5

j=1 Vj . Set � = 〈x1y1z1u1v1, x2y1z1, x2u1v1〉. This simplicial complex is com-
pletely balanced and color-shifted, however, is not shellable. Indeed, if F1,F2,F3
is a shelling then we may assume that F1 = x1y1z1u1v1 (e.g. by [9, Lemma 2.6])
and F3 = x2u1v1 by the symmetry. However 〈x1y1z1u1v1, x2y1z1〉 ∩ 〈x2u1v1〉 =
〈x2, u1v1〉.
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