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Abstract Let G be a perfect graph and let J be its ideal of vertex covers. We show
that the Rees algebra of J is normal and that this algebra is Gorenstein if G is un-
mixed. Then we give a description–in terms of cliques–of the symbolic Rees algebra
and the Simis cone of the edge ideal of G.
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1 Introduction

Let R = K[x1, . . . , xn] be a polynomial ring over a field K and let I be an ideal of
R of height g ≥ 2 minimally generated by a finite set F = {xv1, . . . , xvq } of square-
free monomials of degree at least two. As usual we use xa as an abbreviation for
x

a1
1 · · ·xan

n , where a = (a1, . . . , an) ∈ N
n. A clutter C with vertex set X is a family of

subsets of X, called edges, none of which is included in another. The set of vertices
and edges of C are denoted by V (C) and E(C) respectively. We can associate to the
ideal I a clutter C by taking the set of indeterminates X = {x1, . . . , xn} as vertex set
and E = {S1, . . . , Sq} as edge set, where Sk is the support of xvk , i.e., Sk is the set of
variables that occur in xvk . For this reason I is called the edge ideal of C. To stress
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the relationship between I and C we will use the notation I = I (C). The n×q matrix
with column vectors v1, . . . , vq will be denoted by A. It is called the incidence matrix
of C. It is usual to call vi the incidence vector or characteristic vector of Si .

The blowup algebras studied here are: (a) the Rees algebra

R[I t] = R ⊕ I t ⊕ · · · ⊕ I i t i ⊕ · · · ⊂ R[t],
where t is a new variable, and (b) the symbolic Rees algebra

Rs(I ) = R ⊕ I (1)t ⊕ · · · ⊕ I (i)t i ⊕ · · · ⊂ R[t],
where I (i) is the ith symbolic power of I .

The Rees cone of I , denoted by R+(I ), is the polyhedral cone consisting of the
non-negative linear combinations of the set

A′ = {e1, . . . , en, (v1,1), . . . , (vq,1)} ⊂ R
n+1,

where ei is the ith unit vector. It is well documented [9–11] that Rees cones are an
effective device to study algebraic and combinatorial properties of blowup algebras
of square-free monomial ideals and clutters. They will play an important role here
(Lemma 2.3). The normalization of R[I t] can be expressed in terms of Rees cones as
we now explain. Let NA′ be the subsemigroup of N

n+1 generated by A′, consisting
of the linear combinations of A′ with non-negative integer coefficients. The Rees
algebra of I can be written as

R[I t] = K[{xatb| (a, b) ∈ NA′}]. (1)

According to [20, Theorem 7.2.28] the integral closure of R[I t] in its field of frac-
tions can be expressed as

R[I t] = K[{xatb| (a, b) ∈ Z
n+1 ∩ R+(I )}]. (2)

Hence, by Eqs. (1) and (2), we get that R[I t] is a normal domain if and only if the
following equality holds:

NA′ = Z
n+1 ∩ R+(I ).

In geometric terms this means that R[I t] = R[I t] if and only if A′ is an integral
Hilbert basis, that is, a Hilbert basis for the cone it generates. Rees algebras and their
integral closures are important objects of study in commutative algebra and geometry
[19].

A subset C ⊂ X is a minimal vertex cover of the clutter C if: (i) every edge of C
contains at least one vertex of C, and (ii) there is no proper subset of C with the first
property. If C satisfies condition (i) only, then C is called a vertex cover of C. Let
C1, . . . ,Cs be the minimal vertex covers of C. The ideal of vertex covers of C is the
square-free monomial ideal

Ic(C) = (xu1, . . . , xus ) ⊂ R,
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where xuk = ∏
xi∈Ck

xi . The clutter associated to Ic(C) is the blocker of C, see [6].
Notice that the edges of the blocker are the minimal vertex covers of C.

We now describe the content of the paper. A characterization of perfect graphs–in
terms of Rees cones–is given (Proposition 2.2). We are able to prove that R[Ic(G)t] is
normal if G is a perfect graph (Theorem 2.10) and that R[Ic(G)t] is Gorenstein if G

is a perfect and unmixed graph (Corollary 2.12). To show the normality of R[Ic(G)t],
we study when the system x ≥ 0; xA ≤ 1 is TDI (Proposition 2.5), where TDI stands
for Totally Dual Integral (see Section 2). If this system is TDI and the monomials in
F have the same degree, it is shown that K[F t] is an Ehrhart ring (Proposition 2.7).
This is one of the results that will be used in the proof of Theorem 2.10.

If A is a balanced matrix, i.e., A has no square submatrix of odd order with exactly
two 1’s in each row and column, and J = Ic(C), then R[I t] = Rs(I ) and R[J t] =
Rs(J ), see [10]. We complement these results by showing that the Rees algebra of
the dual I ∗ of I is normal if A is balanced (Proposition 2.14).

By a result of Lyubeznik [16], Rs(I (C)) is a K-algebra of finite type. Let G be a
graph. It is known that Rs(Ic(G)) is generated as a K-algebra by monomials whose
degree in t is at most two [12, Theorem 5.1], and one may even give an explicit graph
theoretical description of its minimal generators. Thus Rs(Ic(G)) is well understood
for graphs. In contrast, the minimal set of generators of Rs(I (G)) is very hard to
describe in terms of G (see [1]). If G is a perfect graph we compute the integral
Hilbert basis H of the Simis cone of I (G) (see Definition 3.1 and Theorem 3.2).
Then, using that Rs(I (G)) is the semigroup ring of NH over K , we are able to prove
that Rs(I (G)) is generated as a K-algebra by monomials associated to cliques of G

(Corollary 3.3).
Along the paper we introduce most of the notions that are relevant for our pur-

poses. For unexplained terminology and notation we refer to [7, 14] and [3, 19]. See
[6] for additional information about clutters and perfect graphs.

2 Perfect graphs, cones, and Rees algebras

We continue to use the notation and definitions used in the introduction. Let
p1, . . . ,ps be the minimal primes of I (C) and let Ck = {xi |xi ∈ pk} be the mini-
mal vertex cover of C that corresponds to pk , see [20, Proposition 6.1.16]. There is a
unique irreducible representation

R+(I ) = H+
e1

∩ H+
e2

∩ · · · ∩ H+
en+1

∩ H+
�1

∩ H+
�2

∩ · · · ∩ H+
�r

such that each �k is in Z
n+1, the non-zero entries of each �k are relatively prime,

and none of the closed halfspaces H+
e1

, . . . ,H+
en+1

,H+
�1

, . . . ,H+
�r

can be omitted from
the intersection. Here H+

a denotes the closed halfspace H+
a = {x| 〈x, a〉 ≥ 0} and

Ha stands for the hyperplane through the origin with normal vector a, where 〈 , 〉
denotes the standard inner product. According to [9, Lemma 3.1] we may always
assume that �k = −en+1 + ∑

xi∈Ck
ei for 1 ≤ k ≤ s. We shall be interested in the

irreducible representation of the Rees cone of the ideal of vertex covers of a perfect
graph G (see for instance Proposition 2.2).
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Let G be a simple graph with vertex set X = {x1, . . . , xn}. In what follows we shall
always assume that G has no isolated vertices. A colouring of the vertices of G is an
assignment of colours to the vertices of G in such a way that adjacent vertices have
distinct colours. The chromatic number of G is the minimal number of colours in a
colouring of G. A graph is perfect if for every induced subgraph H , the chromatic
number of H equals the size of the largest complete subgraph of H . The complement
of G is denoted by G′. Recall that two vertices are adjacent in the graph G if and
only if they are not adjacent in the graph G′.

Let S be a subset of the vertices of G. The set S is called independent if no two
vertices of S are adjacent. Notice the following duality: S is a maximal independent
set of G (with respect to inclusion) if and only if X \ S is a minimal vertex cover
of G. We denote a complete subgraph of G with r vertices by Kr . The empty set is
regarded as an independent set whose incidence vector is the zero vector.

Theorem 2.1 ([14, Theorem 16.14]) The following statements are equivalent:

(a) G is a perfect graph.
(b) The complement of G is perfect.
(c) The independence polytope of G, i.e., the convex hull of the incidence vectors of

the independent sets of G, is given by:

{
(ai) ∈ R

n+| ∑
xi∈Kr

ai ≤ 1; ∀Kr ⊂ G
}
.

Below we express the perfection of G in terms of a Rees cone. The next result is
just a dual reinterpretation of part (c) above, which is adequate to examine the nor-
mality and Gorensteiness of Rees algebras. We regard K0 as the empty set with zero
elements. A sum over an empty set is defined to be 0.

Proposition 2.2 Let J = Ic(G) be the ideal of vertex covers of G. Then G is perfect
if and only if the following equality holds

R+(J ) = {
(ai) ∈ R

n+1| ∑
xi∈Kr

ai ≥ (r − 1)an+1; ∀Kr ⊂ G
}
. (3)

Moreover this is the irreducible representation of R+(J ) if G is perfect.

Proof ⇒) The left hand side is contained in the right hand side because any minimal
vertex cover of G contains at least r − 1 vertices of any Kr . For the reverse inclusion
take a vector a = (ai) satisfying b = an+1 �= 0 and

∑
xi∈Kr

ai ≥ (r − 1)b; ∀Kr ⊂ G �⇒ ∑
xi∈Kr

(ai/b) ≥ r − 1; ∀Kr ⊂ G.

This implication follows because by making r = 0 we get b > 0. We may assume
that ai ≤ b for all i. Indeed if ai > b for some i, say i = 1, then we can write a =
e1 + (a − e1). From the inequality

∑

xi∈Kr
x1∈Kr

ai = a1 +
∑

xi∈Kr−1

ai ≥ a1 + (r − 2)b ≥ 1 + (r − 1)b
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it is seen that a − e1 belongs to the right hand side of Eq. (3). Thus, if necessary,
we may apply this observation again to a − e1 and so on till we get that ai ≤ b for
all i. Hence, by Theorem 2.1(c), the vector γ = 1 − (a1/b, . . . , an/b) belongs to the
independence polytope of G. Thus we can write

γ = λ1w1 + · · · + λsws; (λi ≥ 0; ∑
i λi = 1),

where w1, . . . ,ws are incidence vectors of independent sets of G. Hence

γ = λ1(1 − u′
1) + · · · + λs(1 − u′

s),

where u′
1, . . . , u

′
s are incidence vectors of vertex covers of G. Since any vertex cover

contains a minimal one, for each i we can write u′
i = ui +εi , where ui is the incidence

vector of a minimal vertex cover of G and εi ∈ {0,1}n. Therefore

1 − γ = λ1u
′
1 + · · · + λsu

′
s �⇒

a = bλ1(u1,1) + · · · + bλs(us,1) + bλ1ε1 + · · · + bλsεs .

Thus a ∈ R+(J ). If b = 0, clearly a ∈ R+(J ). Hence we get equality in Eq. (3), as
required. The converse follows using similar arguments.

To finish the proof it suffices to show that the set

F = {(ai) ∈ R
n+1| ∑

xi∈Kr
ai = (r − 1)an+1} ∩ R+(J )

is a facet of R+(J ). If Kr = ∅, then r = 0 and F = Hen+1 ∩ R+(J ), which is clearly
a facet because e1, . . . , en ∈ F . If r = 1, then F = Hei

∩ R+(J ) for some 1 ≤ i ≤ n,
which is a facet because ej ∈ F for j /∈ {i, n + 1} and there is at least one minimal
vertex cover of G not containing xi . We may assume that X′ = {x1, . . . , xr} is the
vertex set of Kr and r ≥ 2. For each 1 ≤ i ≤ r there is a minimal vertex cover Ci of
G not containing xi . Notice that Ci contains X′ \ {xi}. Let ui be the incidence vector
of Ci . Since the rank of u1, . . . , ur is r , it follows that the set

{(u1,1), . . . , (ur ,1), er+1, . . . , en}
is a linearly independent set contained in F , i.e., dim(F ) = n. Hence F is a facet of
R+(J ) because the hyperplane that defines F is a supporting hyperplane. �

There are computer programs that determine the irreducible representation of a
Rees cone [4]. Thus we may use Proposition 2.2 to determine whether a given graph
is perfect, and in the process we may also determine its complete subgraphs. How-
ever this proposition is useful mainly for theoretical reasons. A direct consequence
of this result (Lemma 2.3(b) below) will be used to prove one of our main results
(Theorem 2.10).

Let S be a set of vertices of a graph G. The induced subgraph 〈S〉 is the maximal
subgraph of G with vertex set S. A clique of a graph G is a subset of the set of
vertices that induces a complete subgraph. We will also call a complete subgraph of G

a clique. The support of xa = x
a1
1 · · ·xan

n is supp(xa) = {xi |ai > 0}. If ai ∈ {0,1} for
all i, xa is called a square-free monomial. We regard the empty set as an independent
set with zero elements.
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Lemma 2.3 (a) Ic(G
′) = ({xa|X \ supp(xa) is a maximal clique of G}).

(b) If G is perfect and J ′ = Ic(G
′), then R+(J ′) is equal to

{
(ai) ∈ R

n+1| ∑
xi∈S ai ≥ (|S| − 1)an+1; ∀S independent set of G

}
.

Proof (a) Let xa ∈ R and let S = supp(xa). Then xa is a minimal generator of Ic(G
′)

if and only if S is a minimal vertex cover of G′, which happens if and only if X \ S

is a maximal independent set of G′, which in turn happens if and only if 〈X \ S〉 is a
maximal complete subgraph of G. Thus the equality holds. (b) By Theorem 2.1 the
graph G′ is perfect. Hence the equality follows from Proposition 2.2. �

Let A be an integral matrix. The system x ≥ 0; xA ≤ 1 is called totally dual
integral (TDI) if the minimum in the LP-duality equation

max{〈α,x〉|x ≥ 0;xA ≤ 1} = min{〈y,1〉|y ≥ 0;Ay ≥ α} (4)

has an integral optimum solution y for each integral vector α with finite minimum.
An incidence matrix A of a clutter is called perfect if the polytope defined by the

system x ≥ 0; xA ≤ 1 is integral, i.e., it has only integral vertices. The vertex-clique
matrix of a graph G is the {0,1}-matrix whose rows are indexed by the vertices of G

and whose columns are the incidence vectors of the maximal cliques of G.

Theorem 2.4 ([5, 15]) Let A be the incidence matrix of a clutter. Then the following
are equivalent:

(a) The system x ≥ 0; xA ≤ 1 is TDI.
(b) A is perfect.
(c) A is the vertex-clique matrix of a perfect graph.

Proposition 2.5 Let A be an n × q matrix with entries in N and let v1, . . . , vq be its
column vectors. Then the system x ≥ 0; xA ≤ 1 is TDI if and only if

(i) the polyhedron {x|x ≥ 0; xA ≤ 1} is integral, and
(ii) R+B ∩ Z

n+1 = NB, where B = {(v1,1), . . . , (vq,1),−e1, . . . ,−en}.

Proof ⇒) By [17, Corollary 22.1c] we get that (i) holds. To prove (ii) take (α, b) ∈
R+B ∩ Z

n+1, where α ∈ Z
n and b ∈ Z. By hypothesis the minimum in Eq. (4) has

an integral optimum solution y = (yi) such that |y| = 〈y,1〉 ≤ b. Since y ≥ 0 and
α ≤ Ay we can write

α = y1v1 + · · · + yqvq − δ1e1 − · · · − δnen (δi ∈ N) �⇒
(α, b) = y1(v1,1) + · · · + yq−1(vq−1,1) + (yq + b − |y|)(vq,1) − (b − |y|)vq − δ,

where δ = (δi). As the entries of A are in N, the vector −vq can be written as a non-
negative integer combination of −e1, . . . ,−en. Thus (α, b) ∈ NB. This proves (ii).

⇐) Assume that the system x ≥ 0; xA ≤ 1 is not TDI. Then there exists an α0 ∈ Z
n

such that if y0 is an optimal solution of the linear program:

min{〈y,1〉| y ≥ 0; Ay ≥ α0}, (5)
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then y0 is not integral. We claim that also the optimal value |y0| = 〈y0,1〉 of this
linear program is not integral. If |y0| is integral, then (α0, |y0|) is in Z

n+1 ∩ R+B.
Hence by (ii), we get that (α0, |y0|) is in NB, but this readily yields that the linear
program of Eq. (5) has an integral optimal solution, a contradiction. This completes
the proof of the claim. Consider the dual linear program:

max{〈x,α0〉| x ≥ 0, xA ≤ 1}.
Its optimal value is attained at a vertex x0 of {x|x ≥ 0; xA ≤ 1}. Then by LP duality
we get 〈x0, α0〉 = |y0| /∈ Z. Hence x0 is not integral, a contradiction to the integrality
of {x|x ≥ 0; xA ≤ 1}. �

Remark 2.6 If A is a matrix with entries in Z satisfying (i) and (ii), then the system
x ≥ 0; xA ≤ 1 is TDI.

Let v1, . . . , vq be a set of points in N
n and let P = conv(v1, . . . , vq). The Ehrhart

ring of the lattice polytope P is the K-subring of R[t] given by

A(P ) = K[{xatb|a ∈ bP ∩ Z
n}].

Proposition 2.7 Let A be a perfect matrix with column vectors v1, . . . , vq . If there
is x0 ∈ R

n such that all the entries of x0 are positive and 〈vi, x0〉 = 1 for all i, then
A(P ) = K[xv1 t, . . . , xvq t].
Proof Let xatb ∈ A(P ). Then we can write (a, b) = ∑q

i=1 λi(vi,1), where λi ≥ 0
for all i. Hence 〈a, x0〉 = b. By Theorem 2.4 the system x ≥ 0; xA ≤ 1 is TDI. Hence
applying Proposition 2.5(ii) we have:

(a, b) = η1(v1,1) + · · · + ηq(vq,1) − δ1e1 − · · · − δnen (ηi ∈ N; δi ∈ N).

Consequently b = 〈a, x0〉 = b − δ1〈x0, e1〉 − · · · − δn〈x0, en〉. Using that 〈x0, ei〉 > 0
for all i, we conclude that δi = 0 for all i, i.e., xatb ∈ K[xv1 t, . . . , xvq t]. �

Recall that the clutter C (or the edge ideal I (C)) is called unmixed if all the minimal
vertex covers of C have the same cardinality.

Corollary 2.8 If G is a perfect unmixed graph and v1, . . . , vq are the incidence vec-
tors of the maximal independent sets of G, then K[xv1 t, . . . , xvq t] is normal.

Proof The minimal vertex covers of G are exactly the complements of the maximal
independent sets of G. Thus |vi | = d for all i, where d = dim(R/I (G)). On the other
hand the maximal independent sets of G are exactly the maximal cliques of G′. Thus,
by Theorem 2.4 and Proposition 2.7, the subring K[xv1 t, . . . , xvq t] is an Ehrhart ring,
and consequently it is normal. �

Let C be a clutter and let A be its incidence matrix. The clutter C satisfies the
max-flow min-cut (MFMC) property if both sides of the LP-duality equation

min{〈α,x〉|x ≥ 0;xA ≥ 1} = max{〈y,1〉|y ≥ 0;Ay ≤ α}



300 J Algebr Comb (2008) 27: 293–305

have integral optimum solutions x and y for each non-negative integral vector α,
see [6]. Let I be the edge ideal of C. Closely related to R+(I ) is the set covering
polyhedron:

Q(A) = {x ∈ R
n | x ≥ 0, xA ≥ 1},

see [10, Theorem 3.1]. Its integral vertices are precisely the incidence vectors of the
minimal vertex covers of C [10, Proposition 2.2].

Corollary 2.9 Let C be a clutter and let A be its incidence matrix. If all the edges of
C have the same cardinality and the polyhedra

{x|x ≥ 0; xA ≤ 1} and {x|x ≥ 0; xA ≥ 1}
are integral, then C has the max-flow min-cut property.

Proof By [10, Proposition 4.4 and Theorem 4.6] we have that C has the max-flow
min-cut property if and only if Q(A) is integral and K[xv1 t, . . . , xvq t] = A(P ),
where v1, . . . , vq are the column vectors of A and P = conv(v1, . . . , vq). Thus the
result follows from Proposition 2.7. �

The clique clutter of a graph G, denoted by cl(G), is the clutter on V (G) whose
edges are the maximal cliques of G.

Theorem 2.10 If G is a perfect graph, then R[Ic(G)t] is normal.

Proof Let G′ be the complement of G and let J ′ = Ic(G
′). Since G′ is perfect it

suffices to prove that R[J ′t] is normal.
Case (A): Assume that all the maximal cliques of G have the same number of

elements. Let F = {xv1, . . . , xvq } be the set of monomials of R whose support is a
maximal clique of G. We set F ′ = {xw1, . . . , xwq }, where xwi = x1 · · ·xn/x

vi . By
Lemma 2.3(a) we have J ′ = (F ′). Consider the matrices

B =
(

v1 · · · vq

1 · · · 1

)

and B ′ =
(

w1 · · · wq

1 · · · 1

)

,

where the vi ’s and wj ’s are regarded as column vectors. Using the last row of B as
a pivot it is seen that B is equivalent over Z to B ′. Let A be the incidence matrix
of cl(G), the clique clutter of G, whose columns are v1, . . . , vq . As the matrix A

is perfect, by Proposition 2.7, we obtain that K[F t] = A(P ), where A(P ) is the
Ehrhart ring of P = conv(v1, . . . , vq). In particular K[F t] is normal because Ehrhart
rings are normal. According to [8, Theorem 3.9] we have that K[F t] = A(P ) if
and only if K[F t] is normal and B diagonalizes over Z to an “identity” matrix.
Consequently the matrix B ′ diagonalizes to an identity matrix along with B . Since
the rings K[F ′t] and K[F t] are isomorphic, we get that K[F ′t] is normal. Thus,
again by [8, Theorem 3.9], we obtain the equality K[F ′t] = A(P ′), where A(P ′) is
the Ehrhart ring of P ′ = conv(w1, . . . ,wq). Let H+

a be any of the halfspaces that
occur in the irreducible representation of the Rees cone R+(J ′). By Lemma 2.3(b)



J Algebr Comb (2008) 27: 293–305 301

the first n entries of a are either 0 or 1. Hence by [10, Proposition 4.2] we get the
equality

A(P ′)[x1, . . . , xn] = R[J ′t].
Therefore R[J ′t] = K[F ′t][x1, . . . , xn] = A(P ′)[x1, . . . , xn] = R[J ′t], that is, R[J ′t]
is normal.

Case (B): Assume that not all the maximal cliques of G have the same number of
elements. Let C be a maximal clique of G of lowest size and let w be its incidence
vector. For simplicity of notation assume that C = {x1, . . . , xr}. Let z = xn+1 /∈ V (G)

be a new vertex. We construct a new graph H as follows. Its vertex set is V (H) =
V (G) ∪ {z} and its edge set is

E(H) = E(G) ∪ {{z, x1}, . . . , {z, xr }}.
Notice that C ∪ {z} is the only maximal clique of H containing z. Thus it is seen that
the edges of the clique clutter of H are related to those of the clique clutter of G as
follows:

E(cl(H)) = (E(cl(G)) \ {C}) ∪ {C ∪ {z}}.
From the proof of [7, Proposition 5.5.2] it follows that if we paste together G and
the complete subgraph induced by C ∪ {z} along the complete subgraph induced
by C we obtain a perfect graph, i.e., H is perfect. This construction is different
from the famous Lovász replication of a vertex, as explained in [6, Lemma 3.3].
The contraction of cl(H) at z, denoted by cl(H)/z, is the clutter of minimal el-
ements of {S \ {z}|S ∈ cl(H)}. In our case we have cl(H)/z = cl(G), i.e., cl(G)

is a minor of cl(H) obtained by contraction. By successively adding new vertices
z1 = z, z2, . . . , zr , following the construction above, we obtain a perfect graph H

whose maximal cliques have the same size and such that cl(G) is a minor of cl(H)

obtained by contraction of the vertices z1, . . . , zs . By case (A) we obtain that the ideal
L = Ic(H

′) of minimal vertex covers of H ′ is normal. Since L is generated by all the
square-free monomials m of R[z1, . . . , zs] such that V (H) \ supp(m) is a maximal
clique of H , it follows that J ′ is obtained from L by making zi = 1 for all i. Hence
R[J ′t] is normal because the normality property of Rees algebras of edge ideals is
closed under taking minors [9, Proposition 4.3]. �

Example 2.11 If G is a pentagon, then the Rees algebra of Ic(G) is normal and G is
not perfect.

Corollary 2.12 If G is perfect and unmixed, then R[Ic(G)t] is a Gorenstein standard
graded K-algebra.

Proof Let g be the height of the edge ideal I (G) and let J = Ic(G). By assigning
deg(xi) = 1 and deg(t) = −(g − 1), the Rees algebra R[J t] becomes a graded K-
algebra generated by monomials of degree 1. The Rees ring R[J t] is a normal domain
by Theorem 2.10. Then according to a formula of Danilov-Stanley [3, Theorem 6.3.5]
its canonical module is the ideal of R[J t] given by

ωR[J t] = ({xa1
1 · · ·xan

n tan+1 |a = (ai) ∈ R+(J )o ∩ Z
n+1}),
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where R+(J )o denotes the topological interior of the Rees cone of J . By a result
of Hochster [13] the ring R[J t] is Cohen-Macaulay. Using Eq. (3) it is seen that
the vector (1, . . . ,1) is in the interior of the Rees cone, i.e., x1 · · ·xnt belongs to
ωR[J t]. Take an arbitrary monomial xatb = x

a1
1 · · ·xan

n tb in the ideal ωR[J t], that is
(a, b) ∈ R+(J )o. Hence the vector (a, b) has positive integer entries and satisfies

∑
xi∈Kr

ai ≥ (r − 1)b + 1 (6)

for every complete subgraph Kr of G. If b = 1, clearly xatb is a multiple of x1 · · ·xnt .
Now assume b ≥ 2. Using the normality of R[J t] and Eqs. (3) and (6) it follows that
the monomial m = x

a1−1
1 · · ·xan−1

n tb−1 belongs to R[J t]. Since xatb = mx1 · · ·xnt ,
we obtain that ωR[J t] is generated by x1 · · ·xnt and thus R[J t] is a Gorenstein ring. �

A graph G is chordal if every cycle of G of length n ≥ 4 has a chord. A chord of
a cycle is an edge joining two non adjacent vertices of the cycle.

Corollary 2.13 If J is a Cohen-Macaulay square-free monomial ideal of height two,
then R[J t] is normal.

Proof Consider the graph G whose edges are the pairs {xi, xj } such that (xi, xj ) is
a minimal prime of J . Notice that J = Ic(G). By [20, Theorem 6.7.13], the ideal
Ic(G) is Cohen-Macaulay if and only if G′ is a chordal graph. Since chordal graphs
are perfect [7, Proposition 5.5.2], we obtain that G′ is perfect. Thus G is a perfect
graph by Theorem 2.1. Applying Theorem 2.10 we conclude that R[J t] is normal. �

Recall that a matrix with {0,1}-entries is called balanced if A has no square sub-
matrix of odd order with exactly two 1’s in each row and column,

Proposition 2.14 Let A be a {0,1}-matrix with column vectors v1, . . . , vq and let
wi = 1 − vi . If A is balanced, then the Rees algebra of I ∗ = (xw1 , . . . , xwq ) is a
normal domain.

Proof According to [2], [18, Corollary 83.1a(vii), p. 1441] A is balanced if and only
if every submatrix of A is perfect. By adjoining rows of unit vectors to A and since the
normality property of edge ideals is closed under taking minors [9, Proposition 4.3]
we may assume that |vi | = d for all i. By Theorem 2.4 there is a perfect graph G

such that A is the vertex-clique matrix of G. Thus following the first part of the proof
of Theorem 2.10, we obtain that R[I ∗t] is normal. �

Consider the ideals I = (xv1 , . . . , xvq ) and I ∗ = (xw1 , . . . , xwq ). Following the
terminology of matroid theory we call I ∗ the dual of I . Notice the following duality.
If A is the vertex-clique matrix of a graph G, then I ∗ is precisely the ideal of vertex
covers of G′.
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3 Symbolic Rees algebras of edge ideals

Let G be a graph with vertex set X = {x1, . . . , xn} and let I = I (G) be its edge
ideal [20, Chapter 6]. The main purpose of this section is to study the symbolic Rees
algebra of I and the Simis cone of I when G is a perfect graph. We show that the
cliques of a perfect graph G completely determine both the Hilbert basis of the Simis
cone and the symbolic Rees algebra of I (G).

Definition 3.1 Let C1, . . . ,Cs be the minimal vertex covers of G. The symbolic Rees
cone or Simis cone of I is the rational polyhedral cone:

Cn(I ) = H+
e1

∩ · · · ∩ H+
en+1

∩ H+
(u1,−1) ∩ · · · ∩ H+

(us ,−1),

where uk = ∑
xi∈Ck

ei for 1 ≤ k ≤ s.

Simis cones were introduced in [9] to study symbolic Rees algebras of square-free
monomial ideals. If H is an integral Hilbert basis of Cn(I ), then Rs(I (G)) equals
K[NH], the semigroup ring of NH (see [9]). This result is interesting because it
allows us to compute the minimal generators of Rs(I (G)) using Hilbert basis. Next
we describe H when G is perfect.

Theorem 3.2 Let ω1, . . . ,ωp be the incidence vectors of the non-empty cliques of a
perfect graph G and let

H = {(ω1, |ω1| − 1), . . . , (ωp, |ωp| − 1)}.
Then NH = Cn(I ) ∩ Z

n+1, where NH is the subsemigroup of N
n+1 generated by H,

that is, H is the integral Hilbert basis of Cn(I ).

Proof The inclusion NH ⊂ Cn(I )∩Z
n+1 is clear because each clique of size r inter-

sects any minimal vertex cover in at least r − 1 vertices. Let us show the reverse in-
clusion. Let (a, b) be a minimal generator of Cn(I )∩Z

n+1, where 0 �= a = (ai) ∈ N
n

and b ∈ N. Then
∑

xi∈Ck
ai = 〈a,uk〉 ≥ b, (7)

for all k. If b = 0 or b = 1, then (a, b) = ei for some i ≤ n or (a, b) = (ei + ej ,1) for
some edge {xi, xj } respectively. In both cases (a, b) ∈ H. Thus we may assume that
b ≥ 2 and aj ≥ 1 for some j . Using Eq. (7) we obtain

∑

xi∈Ck

ai +
∑

xi∈X\Ck

ai = |a| ≥ b +
∑

xi∈X\Ck

ai = b + 〈1 − uk, a〉, (8)

for all k, where X = {x1, . . . , xn} is the vertex set of G. Set c = |a| − b. Notice that
c ≥ 1 because a �= 0. Indeed if c = 0, from Eq. (8) we get

∑
xi∈X\Ck

ai = 0 for all k,
i.e., a = 0, a contradiction. Consider the vertex-clique matrix of G′:

A′ = (1 − u1 · · ·1 − us) ,
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where 1 − u1, . . . ,1 − us are regarded as column vectors. From Eq. (8) we get
(a/c)A′ ≤ 1. Hence by Theorem 2.1(c) we obtain that a/c belongs to
conv(ω0,ω1, . . . ,ωp), where ω0 = 0, i.e., we can write a/c = λ0ω0 + · · · + λpωp ,
where λi ≥ 0 for all i and

∑
i λi = 1. Thus we can write

(a, c) = cλ0(ω0,1) + · · · + cλp(ωp,1).

Using Theorem 2.4(a) it is not hard to see that the subring K[{xωi t |0 ≤ i ≤ p}] is
normal. Hence there are η0, . . . , ηp in N such that

(a, c) = η0(ω0,1) + · · · + ηp(ωp,1).

Thus |a| = η0|ω0| + · · · + ηp|ωp| and c = η0 + · · · + ηp = |a| − b, consequently:

(a, b) = η0(ω0, |ω0| − 1) + η1(ω1, |ω1| − 1) + · · · + ηp(ωp, |ωp| − 1).

Notice that there is u� such that 〈a,u�〉 = b; otherwise since aj ≥ 1, by Eq. (7) the
vector (a, b) − ej would be in Cn(I ) ∩ Z

n+1, contradicting the minimality of (a, b).
Therefore from the equality

0 = 〈(a, b), (u�,−1)〉 = η0 + ∑p

i=1 ηi〈(ωi, |ωi | − 1), (u�,−1)〉
we conclude that η0 = 0, i.e., (a, b) ∈ NH, as required. �

Corollary 3.3 If G is a perfect graph, then

Rs(I (G)) = K[xatr |xa is square-free; 〈supp(xa)〉 = Kr+1; 0 ≤ r < n].

Proof Let K[NH] be the semigroup ring with coefficients in K of the semigroup
NH. By [9, Theorem 3.5] we have the equality Rs(I (G)) = K[NH], thus the formula
follows from Theorem 3.2. �

Corollary 3.4 ([1]) If G is a complete graph, then

Rs(I (G)) = K[xatr |xa is square-free; deg(xa) = r + 1; r ≥ 0].
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