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Abstract We study central hyperplane arrangements with integral coefficients mod-
ulo positive integers q. We prove that the cardinality of the complement of the hyper-
planes is a quasi-polynomial in two ways, first via the theory of elementary divisors
and then via the theory of the Ehrhart quasi-polynomials. This result is useful for de-
termining the characteristic polynomial of the corresponding real arrangement. With
the former approach, we also prove that intersection lattices modulo q are periodic
except for a finite number of q’s.

Keywords Characteristic polynomial · Ehrhart quasi-polynomial · Elementary
divisor · Hyperplane arrangement · Intersection lattice

1 Introduction

When a linear form in x1, . . . , xm with integral coefficients is given, we may naturally
consider its “q-reduction” for any positive integer q . The q-reduction is the image by
the modulo q projection Z[x1, . . . , xm] −→ Zq [x1, . . . , xm], where Zq = Z/qZ. In
this paper, we call the kernel of the resulting linear form a “hyperplane” in V := Z

m
q .

Suppose that a finite set of nonzero linear forms with integral coefficients is given.
Then it not only defines a central hyperplane arrangement A in R

m, but also gives
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a “hyperplane arrangement” Aq in V through the q-reduction for each q ∈ Z>0.
A basic fact we prove in this paper is that the cardinality of the complement M(Aq)

of the arrangement Aq in V , as a function of q , is a quasi-polynomial in q . (In other
words, there exist a positive integer ρ (a period) and polynomials Pr(t) (1 ≤ r ≤ ρ)

such that |M(Aq)| = Pr(q) (q ∈ r + ρZ≥0) for all q ∈ Z>0.) We provide two proofs
of this fact. The first proof uses the theory of elementary divisors. The second proof
is based on the theory of the Ehrhart quasi-polynomials applied to each chamber of
the arrangement.

In our setting, the approach via elementary divisors is more powerful than the one
via the Ehrhart theory. The former gives more information on the coefficients of the
quasi-polynomials, and it also enables us to prove that the intersection lattices modulo
q are themselves periodic except for a finite number of q’s. Despite the advantage of
the approach via elementary divisors for our setting, we also consider the connection
to the Ehrhart theory an important aspect of our discussion, because many results in
the Ehrhart theory can be applied to further develop the arguments in this paper.

Especially when q is a prime, the arrangement Aq lies in the vector space V = Z
m
q .

In this case, it is well known (e.g., [9], [16, (4.10)], [10, Theorem 3.2]) that |M(Aq)|
is equal to χ(Aq, q) and that χ(Aq, t) coincides with χ(A, t) for a sufficiently large
prime q , where χ(−, t) stands for the characteristic polynomial (e.g., [13, Defini-
tion 2.52], [15, Chap. 3, Exercise 56]) of an arrangement. These facts provide the
“finite field method” to study the real arrangement A. The method was initiated and
systematically applied by Athanasiadis [1–3]. It has been used to solve problems re-
lated to hyperplane arrangements by Björner and Ekedahl [7], and Blass and Sagan
[8] among others. It was also used in [10] to find the characteristic polynomials of the
mid-hyperplane arrangements up to a certain dimension. Athanasiadis [4] studies a
problem similar to but different from the problem in the present paper. He proves that
the coefficients of the characteristic polynomial of a certain deformation of a central
arrangement are quasi-polynomials. A series of works by Athanasiadis on the finite
field method is worth a special mention as the driving force of the research on this
method.

For the theory of hyperplane arrangements, the reader is referred to [13]. For the
Ehrhart theory for counting lattice points in rational polytopes, see the book by Beck
and Robins [5]. Beck and Zaslavsky [6] study the extension of the Ehrhart theory to
counting lattice points in “inside-out polytopes.”

The organization of the paper is as follows. In the rest of this section, we set up our
notation. In Section 2, we prove that the cardinality of the complement M(Aq) is a
quasi-polynomial in q , via the theory of elementary divisors (Section 2.1) and via the
theory of the Ehrhart quasi-polynomials (Section 2.2). Based on this result, we con-
sider a way of calculating the characteristic polynomial χ(A, t) of the corresponding
real arrangement A (Section 2.3). In Section 3, we prove that the intersection lattices
modulo q are periodic except for a finite number of q’s.

In our forthcoming paper [11], we discuss the results in the present paper for the
arrangements arising from root systems and the mid-hyperplane arrangements.
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1.1 Setup and notation

Let m,n ∈ Z>0 be positive integers. In this paper, m denotes the dimension and n is
the number of hyperplanes in an arrangement. Suppose we are given an m×n integer
matrix

C = (c1, . . . , cn) ∈ Matm×n(Z)

consisting of column vectors cj = (c1j , . . . , cmj )
T ∈ Z

m, 1 ≤ j ≤ n. Here, T denotes
the transpose and Matm×n(Z) stands for the set of m × n matrices with integer ele-
ments. We assume that integral vectors cj are nonzero:

cj �= (0, . . . ,0)T , 1 ≤ j ≤ n. (1)

Consider a real central hyperplane arrangement

A = AC := {Hj : 1 ≤ j ≤ n}

with

Hj = Hcj
:= {x = (x1, . . . , xm) ∈ R

m : xcj = 0}.
As an example, let us take m = 2, n = 3 and

C =
(

1 1 −2
−1 1 1

)
, (2)

i.e., c1 = (1,−1)T , c2 = (1,1)T , c3 = (−2,1)T . Then the corresponding hyperplane
arrangement in R

2 = {(x, y) : x, y ∈ R} is A = {H1,H2,H3} with

H1 : x − y = 0, H2 : x + y = 0, H3 : −2x + y = 0.

Since the coefficient vectors cj = (c1j , . . . , cmj )
T ∈ Z

m, 1 ≤ j ≤ n, defining Hj

are integral, we can consider the reductions of cj modulo positive integers q ∈ Z>0.
Fix q ∈ Z>0 and let

[cj ]q = ([c1j ]q, . . . , [cmj ]q)T ∈ Z
m
q

be the q-reduction of cj , i.e., [cij ]q = cij + qZ ∈ Zq, 1 ≤ i ≤ m, 1 ≤ j ≤ n. In
V = Z

m
q , let us consider

Hj,q = Hcj ,q := {x = (x1, . . . , xm) ∈ V : x[cj ]q = [0]q},

and define

Aq = AC,q := {Hj,q : 1 ≤ j ≤ n}.
We emphasize that Aq = AC,q is determined by C and q , but not by A = AC and q .
For a non-prime q , it may not be appropriate to call Hj,q a hyperplane, but by abusing
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the terminology we call Hj,q a hyperplane, and Aq an arrangement of hyperplanes.
In our previous example (2), Aq = {H1,q ,H2,q ,H3,q} with

H1,q = {([0]q, [0]q), ([1]q, [1]q), . . . , ([q − 1]q, [q − 1]q)},
H2,q = {([0]q, [0]q), ([1]q, [q − 1]q), . . . , ([q − 1]q, [1]q)}, (3)

H3,q = {([0]q, [0]q), ([1]q, [2]q), ([2]q, [4]q), . . . , ([q − 1]q, [q − 2]q)}.
In the finite field method and its generalization in the present paper, we are inter-

ested in the cardinality of the complement of Aq . We denote the complement by

M(Aq) := V \
⋃

1≤j≤n

Hj,q

and its cardinality by |M(Aq)|. We will prove that |M(Aq)| is an integral quasi-
polynomial in q of degree m and with the leading coefficient identically equal
to 1. That is, there exist a period ρ ∈ Z>0 and monic integral polynomials
P1(t), . . . ,Pρ(t) ∈ Z[t] of degree m such that

|M(Aq)| = Pr(q) (q ∈ Z>0, 1 ≤ r ≤ ρ, [q]ρ = [r]ρ). (4)

In this paper, we will call (4) the characteristic quasi-polynomial of Aq , because,
as we will see in Section 2.3, the value (4) coincides with χ(A, q) if q and ρ

are coprime, where χ(A, t) denotes the characteristic polynomial (e.g., [13, Defi-
nition 2.52], [15, Chap. 3, Exercise 56]) of the real arrangement A. The minimum
period is simply called the period of |M(Aq)|. Often it is not trivial to find the period
of |M(Aq)|, although it is relatively easy to evaluate some multiple of the period,
which we simply call a period.

This is because of the following. The sum χ1(q)+χ2(q) of two quasi-polynomials
χ1(q),χ2(q) is a quasi-polynomial having as a period the least common multiple of
the periods of χ1(q) and χ2(q). However, due to possible cancellations of terms,
the period of χ1(q) + χ2(q) may be smaller than this least common multiple. See
McAllister and Woods [12].

For a subset J = {j1, . . . , jk} ⊆ {1, . . . , n}, write

HJ,q :=
⋂
j∈J

Hj,q = Hj1,q ∩ · · · ∩ Hjk,q . (5)

When J is nonempty, HJ,q in (5) is determined by the q-reduction of the m × k

submatrix

CJ := (cj1 , . . . , cjk
) ∈ Matm×k(Z)

of C; when J is empty, we understand that H∅,q = V .
The Smith normal form of an integer matrix G ∈ Matm×k(Z), k ∈ Z>0, is

SGT =
(

E O

O O

)
∈ Matm×k(Z), E = diag(e1, . . . , e�), � = rankG,

e1, . . . , e� ∈ Z>0, e1|e2| · · · |e�, (6)
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where S ∈ Matm×m(Z) and T ∈ Matk×k(Z) are unimodular matrices. The positive
integers e1, . . . , e� are the elementary divisors of G. For simplicity, we often use the
following notation

diag({e1, . . . , e�};m,k) =
(

E O

O O

)
∈ Matm×k(Z).

2 Characteristic quasi-polynomial

2.1 Via elementary divisors

In this subsection, we prove that |M(Aq)| = |V \⋃
1≤j≤n Hj,q | is a quasi-polynomial

in q ∈ Z>0 using the theory of elementary divisors.
Let Y( · ), Y ⊆ V , stand for the characteristic function (indicator function) of Y :

Y(x) = 1, x ∈ Y and Y(x) = 0, x ∈ V \ Y . Then for every x ∈ V ,

n∏
j=1

(1 − Hj,q(x)) =
∑

J⊆{1,...,n}
(−1)|J |HJ,q(x) = V (x) +

∑
∅�=J⊆{1,...,n}

(−1)|J |HJ,q(x),

which may be viewed as the inclusion-exclusion principle. Therefore, from the rela-
tion x ∈ M(Aq) ⇔ 1 = ∏n

j=1(1 − Hj,q(x)), we have

|M(Aq)| =
∑
x∈V

n∏
j=1

(1 − Hj,q(x)) = qm +
∑

∅�=J⊆{1,...,n}
(−1)|J ||HJ,q |. (7)

Hence it suffices to verify that for each nonempty subset J = {j1, . . . , jk} of
{1, . . . , n}, the cardinality |HJ,q | is a quasi-polynomial in q ∈ Z>0. Actually, we can
show that |HJ,q | is a quasi-monomial with an integral coefficient.

Fix J = {j1, . . . , jk} �= ∅ and consider CJ = (cj1, . . . , cjk
) ∈ Matm×k(Z). For each

q ∈ Z>0, let us define fJ,q : V = Z
m
q → Z

k
q by

x �→ x[CJ ]q, (8)

where [CJ ]q = ([cj1 ]q, . . . , [cjk
]q) ∈ Matm×k(Zq) is the q-reduction of CJ . Then

|HJ,q | = |kerfJ,q |, so the problem reduces to proving that |kerfJ,q | is a quasi-
monomial in q . This fact can be shown by using the following general lemma.

Lemma 2.1 Let m and k be positive integers. Let f : Z
m → Z

k be a Z-homo-
morphism. Then the cardinality of the kernel of the induced morphism fq : Z

m
q → Z

k
q

is a quasi-monomial of q ∈ Z>0. Furthermore, suppose f is represented by a matrix
G ∈ Matm×k(Z). Then this quasi-monomial |kerfq |, q ∈ Z>0, can be expressed as

|kerfq | = (d1(q) · · ·d�(q))qm−�, (9)

where � = rankG and dj (q) := gcd{ej , q}, 1 ≤ j ≤ �. Here, e1, . . . , e� ∈ Z>0,
e1|e2| · · · |e�, are the elementary divisors of G. In that case, the quasi-monomial
|kerfq |, q ∈ Z>0, has the minimum period e�, where we consider e0 to be one.
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Proof If f is the zero Z-homomorphism, then |kerfq | = |Zm
q | = qm and the theorem

is trivially true. So we may assume that f is not the zero Z-homomorphism. Since
|kerfq | = qm/|imfq |, we will study |imfq |.

Suppose f is represented by an m × k integer matrix G ∈ Matm×k(Z). Then, for
q ∈ Z>0, the induced morphism fq : Z

m
q → Z

k
q is given by x �→ x[G]q .

Consider the Smith normal form of G in (6). Since unimodularity is preserved
under q-reductions, we may assume that G is of the form

G = diag({e1, . . . , e�};m,k)

from the outset. Then we have

fq(x) = ([e1]qx1, . . . , [e�]qx�, [0]q, . . . , [0]q) ∈ Z
k
q

for x = (x1, . . . , xm) ∈ Z
m
q . Therefore, imfq = [e1]qZq × · · · × [e�]qZq and hence

|imfq | = q

d1(q)
× · · · × q

d�(q)
= q�

d1(q) · · ·d�(q)
,

where dj (q) = gcd{ej , q}, 1 ≤ j ≤ �. Consequently, we obtain (9).
Now, for any j = 1, . . . , �, we have dj (q + e�) = gcd{ej , q + e�} = gcd{ej , q} =

dj (q). Therefore, (9) is a quasi-monomial in q of degree m − � < m and with a
period e�. In fact, we can show that e� is the minimum period as follows.

Let e′ be the minimum period. Note that e′|e�. We have dj (e�) = ej ≥ dj (e
′) =

dj (e
′ + e�) > 0 for all j = 1, . . . , �. Since e′ is a period, d1(e�) · · ·d�(e�) = d1(e

′ +
e�) · · ·d�(e

′ + e�). Therefore e� = d�(e�) = d�(e
′ + e�) = e′. �

Now, fJ,q : V = Z
m
q → Z

k
q in (8) is induced from the Z-homomorphism fJ :

Z
m → Z

k represented by CJ . Thus, Lemma 2.1 implies that

|HJ,q | = |kerfJ,q | = (dJ,1(q) · · ·dJ,�(J )(q))qm−�(J ) (10)

is a quasi-monomial with the period eJ,�(J ), where �(J ) := rankCJ and dJ,j (q) :=
gcd{eJ,j , q}, 1 ≤ j ≤ �(J ). Here, eJ,1, . . . , eJ,�(J ) ∈ Z>0, eJ,1|eJ,2| · · · |eJ,�(J ), de-
note the elementary divisors of CJ . Note that �(J ) > 0 for all J , |J | ≥ 1, because of
the assumption (1).

Remark 2.2 Assume that q is prime. Then each dJ,j (q) = gcd{eJ,j , q}, 1 ≤ j ≤
�(J ), is 1 or q , and dJ,j (q) = q if and only if [eJ,j ]q = 0. It follows from (10)
that X := HJ,q for any nonempty J satisfies |X| = qm−�′ = qdimX , where �′ = |{j :
1 ≤ j ≤ �(J ), [eJ,j ]q �= 0}|. Note that |X| = qdimX for X = HJ,q is true also when
J is empty: |Zm

q | = qm.

From the discussions so far, we reach the following conclusions. First, |M(Aq)|,
q ∈ Z>0, is a monic quasi-polynomial in q of degree m. Second, a period of this
quasi-polynomial can be obtained in the following way. For each m × k (1 ≤ k ≤ n)

submatrices CJ of C = (c1, . . . , cn) ∈ Matm×n(Z), find its largest elementary divisor
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e(J ) := eJ,�(J ). Let

ρ0 := lcm{e(J ) : J ⊆ {1, . . . , n}, J �= ∅}.
Then ρ0 is a period of |M(Aq)|.

For computing ρ0 when m < n, we can restrict the size of J as |J | ≤ m:

ρ0 = lcm{e(J ) : J ⊆ {1, . . . , n}, 1 ≤ |J | ≤ min{m,n}}. (11)

We can prove (11) in the following way. First, we note the next lemma.

Lemma 2.3 Let f1, f2 : Z
n → Z

m be two Z-homomorphisms with rank(imf1) =
rank(imf2) and imf2 ⊆ imf1. Then the largest elementary divisor of f1 divides the
largest elementary divisor of f2.

Proof Define Ii = Ann(cokerfi) := {p ∈ Z : p(cokerfi) = 0}, so the ideal Ii is gen-
erated by the largest elementary divisor of fi (i = 1,2). Since there is a natural pro-
jection cokerf2 → cokerf1, we have I2 ⊆ I1. This implies the lemma. �

Now, suppose m < n, and take an arbitrary J ⊆ {1, . . . , n} with m < |J | ≤ n.
Let � = �(J ) = rankCJ (≤ m). Then we can take a subset J̃ ⊂ J , |J̃ | = �, such
that rankC

J̃
= �. For this J̃ , we have img

J̃
⊆ imgJ , where gJ , g

J̃
: Z

n → Z
m are

the Z-homomorphisms defined by CJ and C
J̃

, respectively: gJ (x) = ∑
j∈J xj cj ,

g
J̃
(x) = ∑

j∈J̃
xj cj , x = (x1, . . . , xn)

T ∈ Z
n. Then Lemma 2.3 implies that

e(J )|e(J̃ ). From this observation, we obtain (11). When n is considerably larger
than m, the restriction |J | ≤ m is computationally very useful.

Let us find a period ρ0 for our example (2). Take J = {1,2}. Then we have

CJ =
(

1 1
−1 1

)

with the Smith normal form diag(1,2). Hence e(J ) = eJ,2 = 2. In a similar man-
ner, we can find e(J ) for the other J ’s with 1 ≤ |J | ≤ 2, and obtain ρ0 =
lcm{1,1,1,2,1,3} = 6.

Furthermore, for |J | ≥ 1, 1 ≤ j ≤ �(J ),

dJ,j (q) = gcd{eJ,j , q} = gcd{eJ,j , ρ0, q} = gcd{eJ,j ,gcd{ρ0, q}}. (12)

This implies that the coefficient dJ,1(q) · · ·dJ,�(J )(q) of each monomial |HJ,q |,
|J | ≥ 1, in (10) depends on q only through gcd{ρ0, q}. Therefore, the constituents
of the quasi-polynomial |M(Aq)| in (7) coincide for all q with the same gcd{ρ0, q}.

We summarize the results obtained so far as follows:

Theorem 2.4 The function |M(Aq)| is a monic quasi-polynomial in q ∈ Z>0 of de-
gree m with a period ρ0 given in (11). Furthermore, in (4) with ρ = ρ0, the monic in-
tegral polynomials Pr (1 ≤ r ≤ ρ) of degree m depend on r only through gcd{ρ0, r}.
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Let us find the characteristic quasi-polynomial for our example (2). Since ρ0 = 6,
we know by Theorem 2.4 that each of the sets {1,5}, {2,4}, {3,9}, {6,12} of values
of q determines a constituent of the characteristic quasi-polynomial |M(Aq)|. For
q = 1, we have V = H1,1 = H2,1 = H3,1 = {([0]1, [0]1)} and thus |M(A1)| = 0. For
q = 5, we can count |H1,5 ∪ H2,5 ∪ H3,5| = 13 and get |M(A5)| = 52 − 13 = 12. By
interpolation, we obtain the constituent q2 − 3q + 2 for gcd{6, q} = 1. In this way,
we can get the following characteristic quasi-polynomial:

|M(Aq)| =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q2 − 3q + 2 when gcd{6, q} = 1,

q2 − 3q + 3 when gcd{6, q} = 2,

q2 − 3q + 4 when gcd{6, q} = 3,

q2 − 3q + 5 when gcd{6, q} = 6.

(13)

From this characteristic quasi-polynomial, we can see that the minimum period is
6 = ρ0.

2.2 Via the Ehrhart theory

We want to show via the Ehrhart theory that |M(Aq)| = |V \⋃
1≤j≤n Hj,q | is a quasi-

polynomial in q ∈ Z>0. The Ehrhart theory is indeed useful for establishing that
|M(Aq)| is a quasi-polynomial, and gives a geometric insight into its period. How-
ever, it does not seem to give information on the constituents of the quasi-polynomial.

For j = 1, . . . , n, let

Sj := Z ∩ {xcj | x ∈ [0,1)m}.
For example, for cj = (1, . . . ,1)T ∈ Z

m

min
x∈[0,1)m

x1+···+xm∈Z

(x1 + · · · + xm) = 0, max
x∈[0,1)m

x1+···+xm∈Z

(x1 + · · · + xm) = m − 1,

and Sj = {0,1, . . . ,m − 1} for this cj . Now define the additional “translated” hyper-
planes

H
sj
j (q) = H

sj
cj

(q) := {x = (x1, . . . , xm) ∈ R
m : xcj = sj q} ⊂ R

m, sj ∈ Sj ,

for j = 1, . . . , n, and consider the real hyperplane arrangement

Adeform(q) = Adeform
C (q) := {Hsj

j (q) : sj ∈ Sj , 1 ≤ j ≤ n}.

For any positive integer q , we can express |M(Aq)| = |V \ ⋃
1≤j≤n Hj,q | as

|M(Aq)| = ∣∣Zm ∩ [0, q)m \ ∪Adeform(q)
∣∣

= ∣∣Zm ∩ (
q × ([0,1)m \ ∪Adeform)

)∣∣, (14)

where ∪Adeform(q) := ⋃
H∈Adeform(q) H and Adeform :=Adeform(1).
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Now, let us consider [0,1)m \ ∪Adeform in (14). We see that [0,1)m is cut by the
hyperplanes H

sj
j (1), sj ∈ Sj , 1 ≤ j ≤ n, into

P O(s1, . . . , sn) := {x ∈ [0,1)m : sj < xcj < sj + 1, 1 ≤ j ≤ n},
(s1, . . . , sn) ∈ S∗

1 ×· · ·×S∗
n =: S∗, where S∗

j := Sj ∪{minSj −1}, 1 ≤ j ≤ n. There-
fore

[0,1)m \ ∪Adeform =
⊔

(s1,...,sn)∈S∗
P O(s1, . . . , sn) (15)

is a disjoint union. From (14) and (15), we obtain

|M(Aq)| =
∑

(s1,...,sn)∈S∗
|Zm ∩ qP O(s1, . . . , sn)| =

∑
(s1,...,sn)∈S∗

i(P O(s1, . . . , sn), q),

where i(P O(s1, . . . , sn), q) := |Zm ∩ qP O(s1, . . . , sn)|.
It should be noted that P O(s1, . . . , sn), (s1, . . . , sn) ∈ S∗, are not necessarily

open in R
m. However, by applying the Ehrhart theory to some faces of each non-

empty P O(s1, . . . , sn), we can show that i(P O(s1, . . . , sn), q) is a quasi-polynomial
of q ∈ Z>0 with degree d = dim(P O(s1, . . . , sn)) and the leading coefficient equal
to the normalized volume of P O(s1, . . . , sn). When d = m, the normalized volume
is the same as the usual volume in R

m. Therefore, we can conclude that the sum∑
(s1,...,sn)∈S∗ i(P O(s1, . . . , sn), q) = |M(Aq)| is a quasi-polynomial of q ∈ Z>0 with

degree m and the leading coefficient
∑

volm(P O(s1, . . . , sn)) = volm([0,1)m) = 1,
where volm( · ) denotes the usual volume in R

m.
Let us move on to the investigation into periods of the characteristic quasi-

polynomial |M(Aq)|, q ∈ Z>0. From the above discussion, we see that a com-
mon multiple of periods of i(P O(s1, . . . , sn), q), (s1, . . . , sn) ∈ S∗, is a period of
|M(Aq)|. Let P̄ (s1, . . . , sn) denote the closure of P O(s1, . . . , sn). Define the denom-
inator D(Adeform) of Adeform by

D(Adeform) := min{q ∈ Z>0: all qP̄ (s1, . . . , sn), (s1, . . . , sn) ∈ S∗,

are integral polytopes}.
The Ehrhart theory now implies that D(Adeform) is a period of |M(Aq)|.

Put C̃ := (C, Im), where Im is the m × m identity matrix. For J ⊆ {1, . . . , n + m},
let C̃J denote the m×|J | submatrix of C̃ consisting of the columns corresponding to
the elements of J . Then, in view of Cramer’s formula, we see that D(Adeform) divides

ρE := lcm{det(C̃J ) : J ⊂ {1, . . . , n + m}
such that |J | = m and det(C̃J ) �= 0}.

Hence, the minimum period divides ρE. For J with |J ∩ {n + 1, . . . , n + m}| = h <

m, the determinant det(C̃J ) equals an (m − h) × (m − h) minor of C up to sign.
Therefore, we can also write

ρE = lcm{nonzero j -minors of C, 1 ≤ j ≤ m}. (16)
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Now, recall the well-known fact that ē(J ) := eJ,1 ×· · ·× eJ,�(J ) is equal to the great-
est common divisor of all the (nonzero) �(J )-minors of CJ , J �= ∅, and note the
relation e(J ) = eJ,�(J )|ē(J ), J �= ∅. Then we can easily see from (11) and (16) that
ρ0|ρE. Therefore, ρ0 gives a tighter bound for the period of the characteristic quasi-
polynomial |M(Aq)| than ρE.

In our working example (2), we have ρE = lcm{1,1,−2,−1,1,1,2,−1,3} = 6
and thus ρ0 = ρE. In general, if we obtain the characteristic quasi-polynomial by
interpolation using ρE as a period and find that ρE happens to be the minimum period,
then we know that ρ0 = ρE.

2.3 Characteristic polynomial of the real arrangement

Let χ(A, t) be the characteristic polynomial of the real hyperplane arrangement A =
{Hj : 1 ≤ j ≤ n}, where Hj = {x ∈ R

m : xcj = 0}, 1 ≤ j ≤ n.

Theorem 2.5 Let ρ be a period of the quasi-polynomial |M(Aq)| and q be a positive
integer relatively prime to ρ. Then |M(Aq)| = χ(A, q).

Proof Choose c ∈ Z≥0 and q ′ ∈ Z such that q = ρc + q ′ and 1 ≤ q ′ ≤ ρ. By Theo-
rem 2.4, there exist integers α0, . . . , αm−1 such that |M(Ak)| = km + αm−1k

m−1 +
· · · + α0 for all k ∈ q ′ + ρZ≥0. Since q ′ and ρ are relatively prime, then by Dirich-
let’s theorem on arithmetic progressions (e.g., [14]), q ′ + ρZ≥0 contains an infinite
number of primes. On the other hand, it is well known (e.g., [9], [16, (4.10)], [10,
Theorem 3.2]) that, when k is a sufficiently large prime, |M(Ak)| coincides with
χ(A, k). Recall that the characteristic polynomial χ(A, t) is a monic polynomial of
degree dim(Rm) = m. This implies that χ(A, t) = tm + αm−1t

m−1 + · · · + α0 and
thus χ(A, q) = qm + αm−1q

m−1 + · · · + α0 = |M(Aq)|. �

Remark 2.6 A result similar to (but less detailed than) Theorem 2.5 was obtained by
Athanasiadis [2, Theorem 2.1]. His proof is essentially by the method of elementary
divisors as in Section 2.1.

The argument in the proof of Theorem 2.5 implies that we can obtain the char-
acteristic polynomial χ(A, t) by counting |M(Aqi

)| = |Zm
qi

\ ⋃
1≤j≤n Hj,qi

| for an
arbitrary set of m distinct values q1, . . . , qm with gcd{ρ, qi} = 1 (1 ≤ i ≤ m). Note
that q1, . . . , qm need not be prime. When q ′ and ρ are not relatively prime, q ′ +ρZ≥0
contains at most one prime (and this prime is not necessarily “sufficiently large”), so
the above argument does not hold. For q ′ + ρZ≥0 with such q ′’s, we obtain different
polynomials than χ(A, t). In our example (2), the constituent of the characteristic
quasi-polynomial (13) for 1 + 6Z≥0 and 5 + 6Z≥0, i.e., gcd{6, q} = 1, is the charac-
teristic polynomial of A. Thus χ(A, t) = t2 − 3t + 2 = (t − 1)(t − 2).

3 Periodicity of the intersection lattice

In this section, we show that the intersection lattice Lq = L(Aq) (e.g., [13, 2.1], [15,
Chap. 3, Exercise 56]) is periodic for large enough q . Let us begin with our working
example to illustrate the periodicity of the intersection lattice Lq .
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Fig. 1 Hasse diagrams of intersection lattices for q ≥ 4

In our example (2), the “hyperplanes” H1,q ,H2,q ,H3,q were given in (3). For
q = 1, V = {([0]1, [0]1)} = H1,1 = H2,1 = H3,1. For q = 2, H1,2 = H2,2 and for
q = 3, H2,3 = H3,3. These are the exceptions. From q = 4 on, we have the periodicity
of the intersection lattice—the lattice of HJ,q = ⋂

j∈J Hj,q , J ⊆ {1,2,3}, ordered by
reverse inclusion. First, it is easily seen that for q ≥ 4, Hj,q , j = 1,2,3, are distinct,
proper subsets of V . Furthermore, for q ≥ 4,

H{1,2},q =
{ {([0]q, [0]q)}, q : odd,

{([0]q, [0]q), ([ q
2 ]q, [ q

2 ]q)}, q : even,

H{2,3},q =
{ {([0]q, [0]q)}, 3 � | q,

{([0]q, [0]q), ([ q
3 ]q, [ 2q

3 ]q), ([ 2q
3 ]q, [ q

3 ]q)}, 3 | q,

and H{1,3},q = H{1,2,3},q = {([0]q, [0]q)}. We see that the intersection lattice for this
example is periodic and has the period 6 for q ≥ 4. The Hasse diagrams for the four
types of the intersection lattices are illustrated in Fig. 1. In Fig. 1, the subscript q is
omitted for simplicity.

Let J = {j1, . . . , jk}, 1 ≤ j1 < · · · < jk ≤ n, 1 ≤ k ≤ n, be a nonempty subset of
{1, . . . , n}. We write the Smith normal form of CJ ∈ Matm×k(Z) as

SJ CJ TJ = diag({eJ,1, . . . , eJ,�(J )};m,k) =: ẼJ , (17)

�(J ) = rankCJ , eJ,1, . . . , eJ,�(J ) ∈ Z>0, eJ,1|eJ,2| · · · |eJ,�(J ).

As in Section 2.1, we write e(J ) = eJ,�(J ), the largest elementary divisor of CJ .
Let ρ0 be the least common multiple of all e(J )’s with 1 ≤ |J | ≤ min{m,n} as

in (11). Furthermore, define

q0 := max
∅�=J⊆{1,...,n}

min
SJ

max{|u| : u is an entry of SJ C or C},

where the minimization is over all possible choices of SJ in (17) for each fixed J .
We are now in a position to state the main theorem of this section.

Theorem 3.1 Let J be an arbitrary nonempty subset of {1, . . . , n}. Suppose q, q ′ ∈
Z>0 satisfy q, q ′ > q0 and gcd{ρ0, q} = gcd{ρ0, q

′}. Then, for any j ∈ {1, . . . , n}, we
have that Hj,q ⊇ HJ,q if and only if Hj,q ′ ⊇ HJ,q ′ .
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When j ∈ J , the theorem is trivially true.
In proving Theorem 3.1, we need the following proposition. Regard V = Z

m
q as a

Zq -module. Let V ∗ be the Zq -module consisting of the linear forms on V . For any
A ⊆ V , we denote by I (A) the set of linear forms vanishing on A:

I (A) = {α ∈ V ∗ : α(x) = 0 for all x ∈ A}.
Also, for any B ⊆ V ∗, let V (B) stand for the set of points at which each linear form
in B vanishes:

V (B) = {x ∈ V : α(x) = 0 for all α ∈ B}.
Evidently, I (A) and V (B) are submodules of V ∗ and V , respectively.

Proposition 3.2 For any B ⊆ V ∗, we have I (V (B)) = 〈B〉, where 〈B〉 denotes the
submodule of V ∗ spanned by B .

Proof It suffices to show that I (V (B)) = B for any submodule B of V ∗. It is trivially
true that I (V (B)) ⊇ B , so we will prove I (V (B)) ⊆ B .

Let Cq(B) ∈ Matm×k(Zq), k = |B|, be the coefficient matrix of B . We can find
an integral matrix C(B) ∈ Matm×k(Z) whose q-reduction is Cq(B), i.e., [C(B)]q =
Cq(B). Now, let e1|e2| · · · |e�, � = rankC(B), be the elementary divisors of C(B).
In Zq , we then have Cq(B) is equivalent to

diag({[e1], . . . , [e�′ ]};m,k) ∈ Matm×k(Zq), (18)

where [e1], . . . , [e�′ ] ∈ Zq \ {0}, �′ ≤ �. Here, we are writing [ · ] for [ · ]q for simplic-
ity. We can choose C(B) in such a way that �′ = �, and we decide to do so. From
(18) we see that we can assume B is spanned by [e1]y1, . . . , [e�]y� after a suitable
coordinate change, where {y1, . . . , y�, y�+1, . . . , ym} is a basis of V ∗. It follows that
V (B) is spanned by

p1 = ([q/d1(q)],0, . . . ,0), . . . , p� := (0, . . . ,0︸ ︷︷ ︸
�−1

, [q/d�(q)],0, . . . ,0),

p�+1 := (0, . . . ,0︸ ︷︷ ︸
�

,1,0, . . . ,0), . . . , pm := (0, . . . ,0,1)

with dj (q) = gcd{ej , q}, 1 ≤ j ≤ �.
Now, take an arbitrary α = [a1]y1 + · · · + [am]ym ∈ I (V (B)) = I (p1, . . . , pm)

with [a1], . . . , [am] ∈ Zq . Then we have 0 = α(p1) = [qa1/d1(q)], so a1 =
r1d1(q) for some r1 ∈ Z. This implies [a1] = [r1][d1(q)] = [r ′

1][e1] with [r ′
1] :=

[r1][e1/d1(q)]−1 ∈ Zq , where [e1/d1(q)]−1 exists because gcd{e1/d1(q), q} = 1.
Similarly, for each j = 2, . . . , �, we have [aj ] = [r ′

j ][ej ] for some [r ′
j ] ∈ Zq .

Moreover, for j = � + 1, . . . ,m, we obtain 0 = α(pj ) = [aj ]. Therefore, we have
α = [r ′

1][e1]y1 + · · · + [r ′
�][e�]y� ∈ B , and the proof is complete. �

Proof of Theorem 3.1 Without loss of generality, we may assume j = 1. Let
[SJ ]q, [CJ ]q, [TJ ]q and [ẼJ ]q be the q-reductions of SJ ,CJ ,TJ and ẼJ in (17),
respectively.
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First, we know by Proposition 3.2 that H1,q ⊇ HJ,q if and only if [c1]q lies in
the column space of [CJ ]q in Z

m
q . Since S−1

J and T −1
J exist in Matm×m(Z) and

Matk×k(Z), respectively, the latter condition is equivalent to [c1]q being in the col-
umn space of [CJ ]q [TJ ]q = [S−1

J ]q [ẼJ ]q , which in turn is equivalent to [SJ ]q [c1]q
being in the column space of [ẼJ ]q in Z

m
q .

Next, let us paraphrase the above condition in Z
m
q as a condition in Z

m. The

condition holds if and only if SJ c1 ∈ Z
m is in the column space of (ẼJ , qIm) ∈

Matm×(k+m)(Z) in Z
m. Noting that eJ,jZ + qZ = dJ,j (q)Z with dJ,j (q) =

gcd{eJ,j , q}, 1 ≤ j ≤ �(J ), we see that the condition holds if and only if SJ c1 is
in the column space of diag(dJ,1(q), . . . , dJ,�(J )(q), q, . . . , q) ∈ Matm×m(Z). Since
the absolute value of each entry of SJ c1 ∈ Z

m is less than q , the condition is equiva-
lent to SJ c1 being in the column space of

diag({dJ,1(q), . . . , dJ,�(J )(q)};m,�(J )) ∈ Matm×�(J )(Z). (19)

Now, since the absolute value of each entry of SJ c1 is less than q ′ as well, the
preceding argument holds true also for q ′. Moreover, we see from (12) that dJ,j (q) =
dJ,j (q

′) for j = 1, . . . , �(J ). Thus (19) remains the same when q is replaced by q ′.
Therefore, we obtain the desired result. �

Our assumption (1) implies that Hj,q �⊇ H∅,q = V , 1 ≤ j ≤ n, for all q > q0.
From this observation and Theorem 3.1, it follows immediately that Lq = L(Aq) for
q > q0 is periodic in q with a period ρ0.

Corollary 3.3 The intersection lattice Lq = L(Aq) is periodic in q > q0 with a pe-
riod ρ0:

Lq+sρ0 � Lq for all q > q0 and s ∈ Z≥0.

Finally, we make a remark on the coarseness of the intersection lattices for dif-
ferent q’s. In Fig. 1 we see that the intersection lattice for the case gcd{6, q} = 6 is
the most detailed and that the coarseness is nested according to the divisibility of
gcd{6, q}. This observation can be generally stated as follows.

Proposition 3.4 Let I, J ⊆ {1, . . . , n} and suppose that HI,q = HJ,q for some
q > q0. Then HI,q ′ = HJ,q ′ for every q ′ > q0 such that gcd{ρ0, q

′}|gcd{ρ0, q}.

Proof It suffices to show that for any i ∈ I , if [ci]q lies in the column space of [CJ ]q
in Z

m
q , then [ci]q ′ lies in the column space of [CJ ]q ′ in Z

m
q ′ . Without loss of generality,

take i = 1 and assume that [c1]q lies in the column space of [CJ ]q in Z
m
q . Then SJ c1

is in the column space of (19). Now, because gcd{ρ0, q
′}|gcd{ρ0, q} by assumption,

we can see from (12) that dJ,j (q
′)|dJ,j (q), 1 ≤ j ≤ �(J ). This implies that SJ c1 is in

the column space of (19) with q replaced by q ′. Therefore, [c1]q ′ lies in the column
space of [CJ ]q ′ in Z

m
q ′ . �
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