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Abstract For positive integers k,n, we investigate the simplicial complex NMk(n)

of all graphs G on vertex set [n] such that every matching in G has size less than k.
This complex (along with other associated cell complexes) is found to be homotopy
equivalent to a wedge of spheres. The number and dimension of the spheres in the
wedge are determined, and (partially conjectural) links to other combinatorially de-
fined complexes are described. In addition we study for positive integers r, s and k the
simplicial complex BNMk(r, s) of all bipartite graphs G on bipartition [r] ∪ [s̄] such
that there is no matching of size k in G, and obtain results similar to those obtained
for NMk(n).
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1 Introduction

A monotone graph property is a collection � of (simple, loopless) graphs on a fixed
labelled vertex set V such that
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(C) if G ∈ � and H can be obtained from G by removing an edge then H ∈ �, and
(P) if G ∈ � and H can be obtained from G by relabeling the vertices then H ∈ �.

Condition (C) allows one to associate to each monotone graph property � an
abstract simplicial complex (also called �) whose k-dimensional faces are (indexed
by) those graphs in � which have k + 1 edges, and condition (P) then says that the
natural action of the symmetric group SV on V determines a simplicial action of SV

on �. Various classes of monotone graph properties arise naturally in problems from
topology, algebra and combinatorics (see [1, 11, 15, 16] for references).

If V = V1 ∪ V2 is a non-trivial partition of V then one can consider the following
variant of condition (P):

(P’) each G ∈ � is bipartite with fixed bipartition V1 ∪ V2. If G ∈ � and H can be
obtained from G by relabeling the vertices within V1 and within V2 then H ∈ �.

Graph properties satisfying (C) and (P’) admit a natural action of SV1 × SV2 . See
[1, 15]) for appearances of such properties in various settings.

Here we study the following two graph properties:

→ Let n and k be positive integers. The complex NMk(n) consists of all graphs on
vertex set [n] := {1, . . . , n} that contain no matching of size k.

→ Let r , s and k be positive integers. The complex BNMk(r, s) consist of all bipartite
graphs with bipartite vertex set [r] ∪ [s̄] := {1, . . . , r, 1̄, . . . , s̄} that do not contain
a matching of size k.

These complexes turn out to have very nice topological structure. They are (mys-
teriously and partially conjecturally) related to that of some other combinatorially
defined complexes, as will be described in Theorem 1.12 and Conjecture 1.13 below
and the discussion directly preceding them. Moreover, in proving one of our main
results, we introduce graphs called trees of triangles (see Sect. 2.2), which were ap-
proximately simultaneously found by Etingof, Henriques, Kamnitzer and Rains in
their examination of the space of real points in the moduli space of algebraic curves
of genus zero with a fixed number of marked points (see [4, Definition 4.12]). It
remains to be seen whether there are any close relations between their work and ours.

Our proofs make use of the discrete Morse theory of Forman (see [5]). This theory
has been applied several times in the study of monotone graph properties. We recom-
mend [10] as an excellent survey on this topic. However, our results seem to be the
first which make use of nonrudimentary results in graph theory. Namely, we use the
Gallai–Edmonds structure theorem (see for example [13]).

Our main results are as follows.

Theorem 1.1 For n, k ∈ N, let �1
n−1(k) be the set of all partitions τ of [n − 1] into

n − 2k + 1 subsets τ1, . . . , τn−2k+1 of odd size. Then NMk(n) has the homotopy type
of a wedge of spheres of dimension 3k − 4. The number of spheres in this wedge is

∑

τ∈�1
n−1(k)

(
n−2k+1∏

i=1

(τi − 2)!!
)2

.
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A special case of this theorem is the following.

Corollary 1.2 For k ∈ N, let NPM2k be the complex of all graphs on vertex set [2k]
which have no perfect matching. Then

NPM2k �
∨

(2k−3)!!2
S3k−4.

Calculating the (reduced) Euler characteristic of NMk(n) in two ways gives the
following enumerative result.

Corollary 1.3 For n, k ∈ N, we have

∑

G∈NMk(n)

(−1)|E(G)| = (−1)k−1
∑

τ∈�k
n−1

(
n−2k+1∏

i=1

(τi − 2)!!
)2

.

In particular,
∑

G∈NPM2k

(−1)|E(G)| = (−1)k−1(2k − 3)!!2.

Theorem 1.4 For r, s, k ∈ N, the homotopy type of BNMk(r, s) is a wedge of spheres
of dimension 2k − 3. The number of spheres in this wedge is

(
r−1
k−1

)(
s−1
k−1

)
.

Calculating the (reduced) Euler characteristic of BNMk(r, s) in two ways gives the
following enumerative result.

Corollary 1.5 For r, s, k ∈ N, we have

∑

G∈BNMk(r,s)

(−1)|E(G)| =
(

r − 1

k − 1

)(
s − 1

k − 1

)
.

In order to prove Theorem 1.1, we are forced to examine a certain quotient CW-
complex. Let n = 2m − 1 be odd. A graph G on vertex set [n] is called factor critical
if for each vertex v of G, the graph obtained from G by removing v and all edges con-
taining v has a perfect matching. The classification of bipartite factor critical graphs
is very simple.

Remark 1.6 A factor critical bipartite graph consists of a single vertex.

The set NFCn of not factor critical graphs on [n] is a monotone graph property
and therefore a subcomplex of the simplex �(n) whose vertices are the

(
n
2

)
edges
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([n]
2

) := {{i, j} | 1 ≤ i < j ≤ n} of the complete graph on vertex set [n]. The complex
FCn of factor critical graphs is the quotient space �(n)/NFCn. This space admits an
obvious cell decomposition, as described in Sect. 2.3.

Theorem 1.7 Let n = 2m − 1 ∈ N. Then FCn has the homotopy type of a wedge of
(n − 2)!!2 spheres of dimension 3m − 4.

We need the following topological fact.

Lemma 1.8 (see Example 0.14 [8]) If � is a nonempty subcomplex of the simplex �

then �/� is homotopy equivalent to the suspension of �.

One can prove this by showing that the mapping cone of the identity embedding
of � into � is the union of two contractible subspaces whose intersection is �.

Lemma 1.8 allows us to deduce the following result.

Corollary 1.9 Let n = 2m− 1 ∈ N. Then NFCn has the homotopy type of a wedge of
(n − 2)!!2 spheres of dimension 3m − 5.

Proof Our claim can be confirmed by direct observation when n < 5, so assume
that n ≥ 5. We have FCn = �(n)/NFCn, and it follows from Theorem 1.7 and the
following remark that NFCn has the same homology as the given wedge of spheres.
Since no graph on [n] with three edges is factor critical, the complex NFCn contains
the entire 2-skeleton of �(n) and is therefore simply connected. The corollary now
follows from the uniqueness of Moore spaces (see for example [8, p. 368]). �

By Remark 1.6 the only factor critical bipartite graphs are singletons. Thus for our
purposes it is useful to replace the concept of factor critical graphs by a new concept
in the bipartite setting. We say a bipartite graph with bipartition X ∪ Y is q-factor
critical if |X| = q , |Y | > q and for each y ∈ Y the graph G − y has a matching of
size q . In the sequel we will mostly speak of factor critical graphs since the number
q will be clear from the context. The set NBFC(q, s) of bipartite graphs on vertex
set [q] ∪ [s] which are not factor critical form a subcomplex of the simplex �(q, s)

whose vertices are the edges in the complete bipartite graph on bipartition [q] ∪ [s].
(Here [s] := {1, . . . , s}.) The complex BFC(q, s) of factor critical bipartite graphs
on [q] ∪ [s] is the quotient complex �(q, s)/NBFC(q, s). Once again, this complex
admits an obvious cell decomposition (see Sect. 2.3). We will prove the following
result, from which Theorem 1.4 will follow after some straightforward additional
arguments.

Theorem 1.10 For 1 ≤ q < s the complex BFC(q, s) is homotopy equivalent to a
wedge of

(
s−1
q

)
spheres of dimension 2q − 1.

As in the non-bipartite case we deduce the following corollary.

Corollary 1.11 For 1 ≤ q < s the complex NBFC(q, s) is homotopy equivalent to a
wedge of

(
s−1
q

)
spheres of dimension 2q − 2.
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All of the complexes NPMn, FCn and NFCn have homology concentrated in a sin-
gle dimension, and in each case the rank of the unique nontrivial homology group
is (n − 3)!!2 if n is even and (n − 2)!!2 if n is odd. Moreover, in each case the ac-
tion of Sn on the vertex set [n] determines a simplicial (or cellular) action of Sn on
the given complex. This action determines a representation of Sn on the nontrivial
homology group. Representations of the groups Sn whose degrees are the ranks of
these homology groups have arisen previously in work of Calderbank, Hanlon and
Robinson ([3]), Hanlon and Wachs ([7]), and Hanlon ([6]). Fix k ∈ N and for each
n ∈ N let �

1,k
n be the subposet of the partition lattice �n consisting of those non-

trivial proper partitions in which each part has size equal to 1 mod k. In [2], Björner
showed that the order complex ��

1,k
n is Cohen-Macaulay and therefore has a unique

nontrivial homology group, which occurs in the top dimension t := �n−2
k

	−1. In [7],

it is shown that character realized by the representation of Sn on H̃t (��
1,k
n ) is equal

to the character lie(k)
n realized by the action of Sn on a particular subspace of a vector

space with a (k + 1)-ary operation, called a Lie-k-algebra. In [3], the character lie(2)
n

is determined. It is shown that if n is odd then this character has degree (n − 2)!!2.
In [6], when n ≡ 2 mod k a poset L(k)

n whose elements are trees with n leaves la-
belled bijectively with [n] and nonleaves having degree equal to 2 mod k (but not
equal to 2) is defined. It is shown that this poset is Cohen-Macaulay of dimension t

and that the character for the representation of Sn on H̃t (�L(k)
n ) is

lie(k)
n−1 ↑Sn

Sn−1
−lie(k)

n .

Here ↑ denotes induction of representations or characters, and below ↓ will represent
restriction. Moreover, the dimension of H̃t (�L(2)

n ) is (n − 3)!!2. Let εn be the sign
character of Sn. Wachs and the second author of this paper have proved the following
result

Theorem 1.12 (Shareshian-Wachs) Let n = 2k ∈ N be even. Then

H̃3k−4(NPMn) ↓Sn

Sn−1
∼=Sn−1 H̃3k−5(NFCn−1) ∼=Sn−1 H̃t (��

1,2
n−1) ⊗ εn.

We conjecture the following stronger result.

Conjecture 1.13 Let n = 2k be even. Then

H̃3k−4(NPMn) ∼=Sn H̃t (�L(2)
n ) ⊗ εn.

More generally, it would be interesting to know an answer to the following ques-
tion.

Question 1.14 What is the Sn-module structure of H̃3k−4(NMk(n))?
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The complex BNMk(r, s) also has homology concentrated in a single dimension.
This time the complex is invariant under the natural action of Sr × Ss . Experiments
in small cases and the rank of the homology groups given by Theorem 1.4 suggest
the following conjecture.

Conjecture 1.15 As an (Sr × Ss)-module the reduced homology group
H̃2k−3(BNMk(r, s)) is isomorphic to the tensor product H(r, k) ⊗ H(s, k), where
H(n, l) is the irreducible Sn-module corresponding to the hook Young diagram with
l rows and n − l + 1 columns.

One can consider the complex NMk(n) as the complex of all n-partite graphs on n

vertices that do not have a matching of size k. Let t−NMk(s1, . . . , st) be the complex
of t-partite graphs on a t-partition with parts of size s1, . . . , st with no matching of
size k. Computational evidence indicates that in general this complex has homology
concentrated in a single dimension.

Question 1.16 What is the homotopy type of t−NMk(s1, . . . , st)? Is it homotopic to
a wedge of spheres, all of the same dimension?

The remainder of this paper is organized as follows. In Sect. 2.1 we introduce
our graph theoretic notation and discuss the Gallai–Edmonds structure theorem. In
Sect. 2.2 we introduce certain graphs, called forests of triangles, which will play a
prominent role in our arguments. Namely, these graphs will represent critical cells
of discrete Morse functions on some of our complexes. Discrete Morse theory is
discussed briefly in Sect. 2.3. In Sect. 3 we give the proofs of Theorems 1.7 and 1.10.
Then in Sect. 4 we deduce Theorems 1.1 and 1.4 from these theorems.

2 Preliminaries

2.1 Graph theory

By a graph we always mean G = (V (G),E(G)) where V = V (G) is a finite vertex
set and E = E(G) ⊆ (

V
2

)
is the edge set of G. An edge {x, y} ∈ E will often be

denoted by xy. For X ⊆ V , the subgraph of G induced on X will be denoted by
G|X , so G|X = (X,E ∩ (

X
2

)
). For v ∈ V , G − v will denote G|V −{v}. For distinct

v,w ∈ V , G + vw will denote the graph (V ,E ∪ {vw}) obtained by adding vw to
E(G) and G − vw will denote the graph (V ,E \ {vw}) obtained by removing vw

from E(G) (so G + vw = G if vw ∈ E and G − vw = G if vw �∈ E). A matching
in G is a subset M of E(G) such that each v ∈ V is contained in at most one e ∈ M .
We say a matching M covers v ∈ V if some e ∈ M contains v. A matching M is
perfect if every v ∈ V is covered by M . Thus we can reformulate the definition of
being factor critical from Sect. 1 as follows. If |V | is odd, we call G factor critical if
for each v ∈ V , G−v contains a perfect matching. A maximum matching in G is one
which contains at least as many edges as every other matching in G. The size of each
maximum matching of G will be denoted by ν(G). For v ∈ V (G), the neighborhood
NG(v) is the set of all w ∈ V (G) such that vw ∈ E(G).
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For a graph G = (V ,E), set

• D = D(G) := {v ∈ V : Some maximum matching of G does not cover v},
• A = A(G) := {v ∈ V − D | NG(v) ∩ D �= ∅}, and
• C = C(G) := V \ (A ∪ D).

Theorem 2.1 (Gallai–Edmonds structure theorem, see [13]) For every graph G,
the following conditions hold.

(1) Each connected component of G|D is factor critical.
(2) Each maximum matching of G consists of

• a perfect matching on G|C ,
• for each a ∈ A an edge ada , such that da ∈ D and for distinct a, b ∈ A, da and

db are in distinct connected components of G|D , and
• a matching of size |V (X)|−1

2 on each connected component X of G|D .

(3) Let con(G) be the number of connected components of G|D . The number of ver-
tices of G not covered by a given maximum matching is con(G) − |A|. In other
words,

ν(G) = 1

2
(|V | − con(G) + |A|) .

2.2 Trees of triangles

Definition 2.2 Let V = {v1, v2, . . . , vn} ⊆ N with vi < vi+1 for all i < n. A con-
nected graph G on vertex set V is a tree of triangles if either |V | = 1 or

• v1v2 ∈ E(G),
• there exists a unique m ∈ {3, . . . , n} such that v1vm ∈ E(G) and v2vm ∈ E(G), and
• the graph obtained from G by removing edges v1v2, v1vm, v2vm has three con-

nected components, each of which is a tree of triangles.

A forest of triangles on V is a graph F on V such that each connected component of
F is a tree of triangles on its vertex set.

Induction on n shows that if there is a tree of triangles with n vertices then n is
odd. For odd n ∈ N we write n!! for the product of all odd j ∈ N such that j ≤ n. By
convention, (−1)!! = 1.

Proposition 2.3 Let V ⊆ N with |V | = 2k − 1 for some k ∈ N. Then the number
TT(|V |) of trees of triangles on vertex set V is (2k − 3)!!2. Each tree of triangles on
V is factor critical and has 3k − 3 edges.

Proof We proceed by induction on k, the case k = 1 being trivial. Assume k > 1. We
may assume that V = [2k − 1]. Note that

(2k − 3)!! = (2k − 2)!
(k − 1)!2k−1

. (1)
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In each tree of triangles G on vertex set V , there is a unique v ∈ {3, . . . ,2k − 1}
such that 12,1v,2v ∈ E(G). We may choose v in 2k − 3 ways, and having chosen
v, the removal of edges 12,1v,2v leaves a graph with three connected components
D1,D2,Dv , such that i ∈ Di and the subgraph of G induced on each Di is a tree of
triangles. It now follows that |E(G)| = 3k − 3 as claimed, and that if we let �0(v) be
the set of all ordered partitions of {3, . . . ,2k − 1} \ {v} into three parts of even size,
then we have

TT(|V |) = (2k − 3)
∑

(I,J,L)∈�0(v)

TT(|I | + 1)TT(|J | + 1)TT(|L| + 1)

= (2k − 3)

×
∑

i+j+l=k−2

(
2k − 4

2i,2j,2l

)
TT(2i + 1)TT(2j + 1)TT(2l + 1)

= (2k − 3)!
22k−4

∑

i+j+l=k−2

(
2i

i

)(
2j

j

)(
2l

l

)
,

the last equality following from the inductive hypothesis and equation (1). Our for-
mula for the number of trees of triangles now follows from the facts (easily verified
using Taylor’s theorem) that

(1 − 4x)−1/2 =
∑

i≥0

(
2i

i

)
xi

and

(1 − 4x)−3/2 =
∑

j≥0

(
2j

j

)
(2j + 1)xj .

It remains to show that every tree of triangles G is factor critical. For any x ∈ V ,
take i ∈ {1,2, v} with x ∈ Di (where the Di are as defined above). Then Di − x has
a perfect matching by inductive hypothesis, as do both Dj − j for j �= i. A perfect
matching on G − x is obtained by taking these three perfect matchings and the edge
jk, where {i, j, k} = {1,2, v}. �

2.3 Discrete Morse theory

Here we give a brief summary of some results from discrete Morse theory for reg-
ular cell complexes as developed by Forman (see [5]). We will only consider cell
complexes which are obtained by starting with a simplicial complex � and taking its
quotient by a (possibly empty) subcomplex �. A simplicial complex � is realized as
a CW-complex with one k-cell for each of its k-dimensional faces and gluing maps
determined by its face structure. Note that we do not distinguish between an (abstract)
simplicial complex and its geometric realization.

Let � be any simplicial subcomplex of �. If � is empty then we define �/� = �.
Otherwise, �/� is a cell complex with one point p0 and one k-cell σ for each face
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σ of � which is not contained in �. If σ, τ are two such faces, then any portion of the
boundary ∂σ of σ which was glued to τ in � remains glued to τ in the same manner,
while any portion of ∂σ which was glued in � to a face of � is now glued to p0.

In order to formulate discrete Morse theory we need to introduce some concepts
from the theory of directed graphs. A directed graph D = (V ,A) on vertex set V is
determined by its set of arcs (i.e. directed edges) A ⊆ V × V . If W ⊆ V then we
denote by D|W = (W,A∩W ×W) the digraph induced by D on W . Let D = (V ,A)

be any directed graph (digraph) which has no directed cycle, in particular D has no
loops. A Morse matching on D is a subset M of A such that

(M1) each vertex of D is the head or tail of at most one arc in M, and
(M2) the digraph DM obtained from D by reversing the direction of each arc in M

has no directed cycle.

A critical cell of a Morse matching M on D is a vertex of D which is not the head
or tail of an arc in M.

If P is a partially ordered set (poset), D(P) = (V (P),A(P)) is the digraph obtained
by directing each edge in the Hasse diagram of P downwards, that is, the arcs in A(P)

are pairs (x, y) where x covers y in P. If � is a simplicial complex, let D = D(�) be
the directed graph with one vertex for each face of � (including the empty face) and
an arc (σ, τ ) (directed from σ to τ ) whenever τ is a codimension one face of σ . That
is, D(�) = D(P�), where P� is the poset of faces of �. The following proposition
is a version of Forman’s main result from [5] formulated for quotient complexes.
A direct proof of the proposition can be found in [12].

Proposition 2.4 Let � be a simplicial complex and let � be a subcomplex of �. Let
M be a Morse matching on D(�) such that every face of � is a critical cell of M. If
� is the empty complex, assume that the empty face is not a critical cell of M. Then
the quotient complex �/� has the homotopy type of a CW-complex with one vertex p

along with one k-cell for each k-dimensional critical cell of M that does not lie in �.
In particular, if the critical cells of M all have the same dimension k then the given
complex has the homotopy type of a wedge of k-dimensional spheres, one sphere for
each critical cell.

The previous theorem is not stated explicitly in the work of Forman, but it is an
immediate consequence of Forman’s theory and the fact that the incidence of two
adjacent cells in �/� none of which is the distinguished cell p0 is regular.

The next two elementary results are useful in confirming that a set M of arcs
is a Morse matching. For the formulation we adopt the following standard notation.
A subset S ⊆ P of a poset P is called convex if x ≤ y ≤ z and x, z ∈ S implies y ∈ S.

Lemma 2.5 (Cluster Lemma—[9, Lemma 2]) Let P1, . . . ,Pr be pairwise disjoint,
order convex subposets of P. For each i ∈ [r], let Mi be a Morse matching on D(Pi ).
Define a relation on the Pi by Pi ≤c Pj if there exist x ∈ Pi and y ∈ Pj such that
x ≤ y. Assume that the Pi satisfy the condition

(P) The relation ≤c defines a partial order on the Pi ’s.
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Then

M :=
r⋃

i=1

Mi

is a Morse matching on D(P).

Lemma 2.6 (Cycle Lemma—[14, Proposition 3.1]) Let P be an order convex sub-
poset of the face poset of a simplicial complex � and assume that M ⊆ A(P)

satisfies condition (M1). Then every directed cycle in DM(P) is of the form
σ1, τ1, σ2, τ2, . . . , σr−1, τr−1, σr = σ1, where

(1) r ≥ 3,
(2) for each i ∈ [r − 1], there is some xi ∈ τi such that τi = σi ∪ {xi} and (τi, σi) ∈

M,
(3) for each i ∈ [r − 1], there is some yi ∈ τi such that σi+1 = τi \ {yi}, and
(4) the multisets {xi | i ∈ [r]} and {yi | i ∈ [r]} are equal.

3 Proofs of Theorems 1.7, 1.10

3.1 The complex of factor critical graphs

Here we prove Theorem 1.7, which follows immediately from Proposition 2.3, Propo-
sition 2.4 and the following result. Recall that �(n) is the simplex on vertex set

([n]
2

)
.

Lemma 3.1 Let n ∈ N be odd. Then there exists a Morse matching M in D(�(n))

whose critical cells are the trees of triangles and the not-factor-critical graphs on
vertex set [n].

As mentioned in the introduction, the use of the Gallai–Edmonds structure the-
orem as a fundamental ingredient in our proof of Lemma 3.1 distinguishes this
proof from those of previous results which use discrete Morse theory in examining
monotone graph properties. The rest of the proof is similar in form and spirit to many
of the previous proofs, see [10]. We will not give as many details as were given in
these proofs. In particular, at several junctures we will leave it to the reader to confirm
that we have used Cluster Lemma 2.5 appropriately or that one can use Cycle Lemma
2.6 to show that a given matching is actually a Morse matching.

Proof We prove Lemma 3.1 by induction on n, the case n = 1 being trivial. So,
assume n > 1. We will construct our Morse matching M in several steps.

Step 0: We begin with M empty and then add to M the set M0 of all arcs
(G + 12,G) where G is factor critical but 12 �∈ E(G). Using Lemma 2.6, it is easy
to confirm that these arcs form a matching and that their reversal leaves a digraph
without directed cycles. Certainly every graph which is covered by an arc in M0 is
factor critical. The factor critical graphs which are not covered by any arc in M0 are
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those factor critical graphs G such that 12 ∈ E(G) and G − 12 is not factor critical.
Let C0 be the set of all such graphs.

In the following we collect properties of graphs in C0. Let G ∈ C0 (so G is factor
critical but G − 12 is not). Set

G′ := G − 12.

We consider the Gallai–Edmonds decomposition of G′. Since G is factor critical, we
see that G− 1 = G′ − 1 and G− 2 = G′ − 2 both have perfect matchings. This gives

ν(G′) = n − 1

2
(2)

and

1,2 ∈ D(G′). (3)

Claim 1 The vertices 1 and 2 lie in different connected components of G′|D(G′).

� Proof of Claim 1 Assume for contradiction that 1,2 lie in the same component
X = (V (X),E(X)) of G′|D(G′). Since G′ is not factor critical it follows that there is
a vertex v such that G′ − v does not have a perfect matching. Since ν(G′) = n−1

2 , we
see that v is not in D(G′). Consequently, v ∈ A(G′)∪C(G′). For any such v, there is
a perfect matching K in G−v, and since v �∈ D(G′), this matching K contains 12. By
Theorem 2.1(1), there are oddly many elements of V (X)\ {1,2} and since all of them
are contained in an edge from K it follows that there exist x ∈ V (X) and a ∈ A(G′)
such that xa ∈ K . By Theorem 2.1(3) and ν(G′) = n−1

2 it follows that con(G′) =
|A(G′)| + 1. But now there are con(G′) − 1 components of G′|D(G′) other than X,
each of which have odd size and |A(G′)| − 1 < con(G′) − 1 elements of A(G′) \ {a}
remaining to pair with elements of D(G′) \ V (X) in K . Thus by Theorem 2.1(2) K

cannot be a perfect matching, giving the desired contradiction. �

Claim 2 A(G′) �= ∅.

� Proof of Claim 2 By (2) and Theorem 2.1(3) it follows that con(G′) = 1+|A(G′)|.
From Claim 1 we know that con(G′) ≥ 2 which implies the assertion. �

Step 1: The set of graphs in C0 forms an ideal in the poset of factor critical graphs, so
we can apply Cluster Lemma 2.5 after describing a Morse matching on the subgraph
D0 of D(�(n)) induced on C0.

For all G ∈ C0 such that |A(G′)| > 1, let a(G′), b(G′) be the two smallest ele-
ments of A(G′). Define the set M1 of arcs in D0 by

M1 := {(G + a(G′)b(G′),G) | G ∈ C0, a(G′)b(G′) �∈ E(G)}.
We will see that M1 is a Morse matching on D0. First note that for any graph H

and any distinct a, b ∈ A(H), the graphs H + ab and H − ab have the same Gallai–
Edmonds decomposition, since (by Theorem 2.1(2)) no maximum matching in H
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uses an edge with both endpoints in A(H). It follows that no vertex of D0 is a head
or tail of more than one arc in M1, and it remains to show that D0

M1 has no di-
rected cycle. Assume for contradiction that such a directed cycle exists. By Cycle
Lemma 2.6, this cycle has vertices

G1,H1, . . . ,Gr−1,Hr−1,Gr = G1,

where

• r ≥ 3,
• Hi = Gi − xy for some xy ∈ E(Gi), and
• Gi+1 = Hi + a(H ′

i )b(H ′
i ).

As noted above, H ′
i and G′

i+1 have the same Gallai–Edmonds decomposition for
all i, in particular D(G′

i+1) = D(H ′
i ). Moreover, since all the Gi and Hi lie in C0,

we have

ν(H ′
i ) = ν(G′

i ) = n − 1

2

for all i. Thus any maximum matching of H ′
i is a maximum matching of G′

i . It follows
that D(H ′

i ) ⊆ D(G′
i ) for all i. Since Gr = G1, we must have

D(H ′
i ) = D(G′

i ) = D(G′
1)

for all i.

Claim 3 A(H ′
i ) = A(G′

i ) for all i.

Claim 4 From Claim 3 the desired contradiction follows.

� Proof of Claim 4: Indeed, from the validity of Claim 3 it follows that a := a(H ′
1) =

a(G′
1) and b := b(H ′

1) = b(G′
1). If H ′

1 = G′
1 − ab then G′

2 = G′
1, a contradiction. If

ab ∈ E(H ′
1) then there is no arc (K,H1) in M1, again a contradiction. Otherwise,

we have G′
2 = H ′

1 + ab. We may not have H ′
2 = G′

2 − ab = H ′
1 (a contradiction),

so ab ∈ H ′
2. Since H ′

1 and G′
2 have the same Gallai–Edmonds decomposition we get

A(G′
2) = A(H ′

1) = A(G′
2) = A(H ′

2) by Claim 3. Thus there is no arc (K,H2) in M1,
a contradiction. �

� Proof of Claim 3: Since ν(H ′
i ) = ν(G′

i ) it follows from Theorem 2.1(3) that
con(H ′

i )−|A(H ′
i )| = con(G′

i )−|A(G′
i )|. Since D(H ′

i ) = D(G′
i ) and H ′

i = G′
i −xy,

we either have con(H ′
i ) = con(G′

i ) or con(H ′
i ) = con(G′

i ) + 1. In the first case
|A(G′

i )| = |A(H ′
i )|. In the second case xy must be an edge whose removal discon-

nects a connected component of G′|D(G′) and |A(G′
i )| = |A(H ′

i )| + 1. But again by
D(G′

i ) = D(H ′
i ) this implies that xy is an edge which connects an element of D(G′

i )

with an element of A(G′
i ), a contradiction. Thus we may assume |A(G′

i )| = |A(H ′
i )|

and it is sufficient to show that A(H ′
i ) ⊆ A(G′

i ). This follows since D(H ′
i ) = D(G′

i )

and G′
i = H ′

i + xy. �
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This completes the proof that M1 is a Morse matching on D0. As noted above,
Cluster Lemma 2.5 guarantees that M0 ∪M1 is a Morse matching.

Step 2: Let C1 ⊆ D0 be the set of critical cells of M0 ∪M1.

Claim 5 G ∈ C1 if and only if

(a) G is factor critical,
(b) |A(G′)| = 1, and
(c) G′|D(G′) has exactly two connected components D1(G

′),D2(G
′) for which i ∈

Di(G
′), i = 1,2 holds.

� Proof of Claim 5: Since all critical cells of C0 are factor critical the same holds
for C1 ⊆ C0. From Claim 2 we know that |A(G′)| ≥ 1 for all G ∈ C1 ⊆ C0. Recall
that the Gallai–Edmonds decomposition is the same for G′ and G′ ± a(G′)b(G′). So
exactly those G ∈ C0 with |A(G′)| ≥ 2 are covered by an edge from M1. Thus (b)
holds for all G ∈ C1. By Claim 1 the vertices 1 and 2 lie in different connected com-
ponents D1(G

′) and D2(G
′) of G′|D(G′). By (2) and Theorem 2.1(3) it follows that

con(G) = 1 + |A(G′)|. From (b) we know that |A(G′)| = 1 and hence con(G′) = 2.
Thus D1(G

′) and D2(G
′) are the only connected components of G′|D(G′).

We have shown that every element of G ∈ C1 satisfies (a)-(c). Conversely it is
easily checked that no graph satisfying (a)-(c) is covered by an edge in M0 ∪M1. �

For each a ∈ [n] − {1,2} and each ordered partition (X,Y,Z) of [n] \ {1,2, a}
into three possibly empty subsets we define the subset C1[a, (X,Y,Z)] ⊆ C1 by G ∈
C1[a, (X,Y,Z)] if and only if

• G ∈ C1,
• A(G′) = {a},
• V (D1(G

′)) = X ∪ {1},
• V (D2(G

′)) = Y ∪ {2}, and
• C(G′) = Z.

It follows from Claim 5 that the C1[(a,X,Y,Z)] actually partition C1. The Clus-
ter Lemma 2.5 applies to this partition, and we will define a Morse matching
M[a, (X,Y,Z)] on each C1[(a,X,Y,Z)].

Fix a, (X,Y,Z) and let C = C1[a, (X,Y,Z)]. We will show that there is a Morse
matching M[a, (X,Y,Z)] on the subgraph D|C of D0 induced on C whose critical
cells are exactly those trees of triangles G such that

• 12,1a,2a ∈ E(G) and
• the connected components of G − {12,1a,2a} are X ∪ {1}, Y ∪ {2} and Z ∪ {a}.
Once this is done, the proof of our lemma is completed by applying Cluster
Lemma 2.5 to M0, M1 and all of the M[a, (X,Y,Z)]. Set

M(1) := {(G + 1a,G) : G ∈ C,1a �∈ E(G)}.
It is straightforward to show that M(1) is a Morse matching on D|C whose critical
cells are those G ∈ C such that NG(a)∩X = ∅. Let C(1) be the set of all such G, and
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define

M(2) := {(G + 2a,G) : G ∈ C(1),2a �∈ E(G)}.
It is again straightforward to show (using Cluster Lemma 2.5) that M(1) ∪M(2) is
a Morse matching on D|C whose critical cells are those G ∈ C(1) such that NG(a) ∩
Y = ∅. Let C(2) be the set of all such critical cells.

We claim now that if G ∈ C(2) then G|Z∪{a} is factor critical. In other words, C(2)

consists of all graphs G ∈ C such that

• 12,1a,2a ∈ E(G),
• G − {12,1a,2a} has three connected components D1 = X ∪ {1}, D2 = Y ∪ {2},

Da = Z ∪ {a}, and
• the subgraph of G induced on each of these three components is factor critical.

If this claim holds then we can use the inductive hypothesis (and Cluster Lemma 2.5
one more time) to produce the desired Morse matching on C and our lemma follows.

So, let G ∈ C(2). Note that since G|Z = G|C(G′) contains a perfect matching
by definition, it remains to show that if z ∈ Z then the subgraph of G induced on
(Z \ {z}) ∪ {a} contains a perfect matching. We know that G − z contains a per-
fect matching but that G′ − z contains no perfect matching. Therefore, any perfect
matching K in G − z includes the edge 12. Since both |X| and |Y | are even and the
connected components of G′|D(G′) are D1(G

′) and D2(G
′), K cannot contain any

edge av with v ∈ D(G′). Thus K consists of 12, a perfect matching on X, a perfect
matching on Y and the desired perfect matching on (Z \{z})∪{a} and we are done. �

3.2 The complex of q-factor critical bipartite graphs

The following lemma immediately implies Theorem 1.10.

Lemma 3.2 For 0 ≤ q < s, there is a Morse matching M on the digraph D(�(q, s))

whose critical cells are the elements of NBFC(q, s) along with
(
s−1
q

)
cells of dimen-

sion 2q − 1 from BFC(q, s).

Proof We proceed by induction on q , the case q = 0 being trivial. Assume q > 0. As
in the proof of Lemma 3.1 we construct our Morse function in several steps.

Step 0: We begin with M being empty and then add to M the set M0 of all arcs
(G+11,G) where G is q-factor critical and 11 �∈ E(G). Then M0 is a matching, the
digraph DM0 contains no directed cycle and the set C0 of graphs not covered by M0

consists of NBFC(q, s) along with the elements G ∈ BFC(q, s) such that 11 ∈ E(G)

and G − 11 �∈ BFC(q, s).
For G ∈ C0 ∩ BFC(q, s), set G′ := G − 11 and consider the Gallai–Edmonds de-

compositions of the vertex set of G′ into A′,C′ and D′. We prove the following
claims:

Claim 1 1 ∈ D′ and ν(G′) = q .
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� Proof Since G ∈ BFC(q, s), we have ν(G − 1) = q . The assertion follows from
G − 1 = G′ − 1. �

Claim 2 D′ ⊆ [s] and therefore A′ ⊆ [q].

� Proof Since by Claim 1 we have ν(G′) = q and G′ is bipartite, we must have
D′ ⊆ [s]. The second part of the claim then follows again from the fact that G′ is
bipartite. �

Claim 3 1 ∈ C′.

� Proof By Claim 2 it suffices to show that 1 �∈ A′. Assume for contradiction that
1 ∈ A′. For each y ∈ D′ we have NG′(y) ⊆ A′ and the assumption 1 ∈ A′ implies
NG(y) ⊆ A′. Since ν(G′) = q by Claim 1 and G′ �∈ BFC(q, s), we see that [s] �= D′.
Thus there is some x ∈ [s] ∩C′. Let p = |[s] ∩C′|. Note that p = |[q] ∩C′|, since C′
contains a perfect matching. From ν(G′) = q we infer |A′| = q −p and |D′| = s −p.
Let K be a matching of size q in G − x. (K exists since G ∈ BFC(q, s).) At most
s −q elements of D′ are not covered by any edge of K . Since D′ has s −p elements,
all in [s̄], there must be at least q − p edges of K with one endpoint in D′ and one
endpoint in A′. Since |A′| = q − p, every element of A′ is the endpoint of one of the
edges just mentioned. This means that there is no edge in K with one endpoint in C′
and one in A′, and certainly there is no edge in K with one endpoint in C′ and one
in D′. Thus the remaining p edges in K have both endpoints in C′ \ {x}. But this is
impossible since |(C′ \ {x}) ∩ [s]| < p. �

Step 1: Set B0 := {G ∈ C0 ∩ BFC(q, s) | A′ �= ∅}, carrying forward the definitions of
A′,C′ and D′ from Step 0. For G ∈ B0, let a (resp. c) be the smallest elements of A′
(resp. C′ ∩ [s]). Note that by Claim 3 we have a �= 1. Define M1 := {(G,G − ac) |
G ∈ B0, ac ∈ E(G)}.

Claim 4 For G ∈ B0 such that ac ∈ E(G) the graphs G′ and G′ − ac have the same
Gallai–Edmonds decomposition.

� Proof By Theorem 2.1(2) the edge ac is not included in any maximum matching
of G′. �

It follows immediately from Claim 4 that M1 is a matching.

Claim 5 For each G ∈ B0, we have G − ac ∈ B0.

� Proof By Claim 4, it suffices to show that G− ac ∈ C0 ∩ BFC(q, s). Since G ∈ C0,
it suffices to show that G − ac ∈ BFC(q, s). Let x ∈ [s]. If x ∈ D′ then there is a
matching of size q in G′ − x which does not contain ac by Theorem 2.1. Say x ∈ C′.
There is a matching K of size q in G− x, and every such matching contains the edge
11. As above, let p = |[s] ∩ C′| = |[q] ∩ C′|, so |A′| = q − p and |D′| = s − p. Let k

be the number of edges of K which contain an element y of A′ and an element z of
C′. Note that since y ∈ [q], we must have z ∈ [s].
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The only edge in G between C′ ∩ [q] and D′ is 11. Thus p − 1 − (p − k − 1) = k

elements of C′ ∩ [q] are not covered by K . Hence k = 0 and in particular, ac �∈ K as
desired. �

Step 2: Let C1 be the set of critical points of M0 ∪ M1. Then C1 consists of
NBFC(q, s) and those G ∈ BFC(q, s) such that G′ �∈ BFC(q, s) and A′ = ∅. By The-
orem 2.1(3) it then follows that |D′| = s − q .

Note that 1 ∈ D′. For each X ⊆ [s] − {1} such that |X| = s − q − 1, set C1[X] :=
{G ∈ C1 ∩ BFC(q, s) | D′ = X ∪ {1}}. Note that there are

(
s−1

s−q−1

) = (
s−1
q

)
choices

for X. We can then apply the Cluster Lemma 2.5 to the decomposition of C1 into
NBFC(q, s) and the sets C1[X].

Fix one such X. Let G ∈ C1[X]. Then the s − q elements of D′ are by Remark 1.6
isolated in G′.

Claim 6 G|C′ − 1 is (q − 1)-factor critical.

� Proof The claim follows from the fact that, if x ∈ C′ ∩ [s] then any matching of
size q in G − x consists of the edge 11 along with q − 1 edges in C′ − x. �

Write NC′(1) for NG(1) ∩ C′

Claim 7 NC′(1) �= ∅.

� Proof Otherwise ν(G − 1) = q − 1. �

Step 3: For fixed X and G ∈ C1[X], let c = c(G) be the smallest element of C′ ∩ [s].
Define

M2[X] := {(G + 1c,G) : G ∈ C1[X], c(G) �∈ NG(1)}.
It is straightforward to show that M2[X] is a Morse matching on D(�(q, s))|C1[X].
Let C2[X] be the set of critical points of M2[X].

Claim 8 G ∈ C2[X] if and only if

• Every element of D′ = X ∪ {1} is isolated in G,
• G|C′ − 1 is (q − 1)-factor critical, and
• NC′(1) = {c(G)}.

� Proof We have already seen that the first two conditions are necessary. To show
that the third condition is also necessary, it suffices to show that if G satisfies the first
two conditions and c(G) �= y ∈ NC′(1) then G − 1c(G) ∈ C1[X]. Equivalently, we
must show that G − 1c(G) ∈ BFC(q, s) and that D(G′ − 1c(G)) = D′.

Let z ∈ [s]. If z ∈ D′ then a matching of size q in G′ − 1c(G) − z is obtained by
taking a matching of size q − 1 in G|C′\{1,y} along with 1y. Thus z ∈ D(G′ − 1c).
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Say z ∈ C′. A matching of size q in G − 1c − z is obtained by taking a matching of
size q − 1 in G|C′\{1,z} along with 11. Moreover, we have

ν(G′ − 1c − z) ≤ ν(G′ − z) < q,

so z �∈ D(G′ − 1c).
To show that the three conditions are sufficient, it suffices to show that G ∈

BFC(q, s) but G′ �∈ BFC(q, s). If 1 has no neighbor in C′ other than c(G) and A′ = ∅
then ν(G′ − c) < q , so G′ �∈ BFC(q, s). On the other hand, if G|C′ − 1 is (q − 1)-
factor critical then for each z ∈ [s] one obtains a matching of size q in G−z by taking
a matching of size q − 1 in G|C′\{1,z} along with 11. �

We see now that D(C2[X]) is isomorphic to D(BFC(q − 1, q)). thus by our induc-
tive hypothesis there is a matching M3[X] on D(C2[X]) whose unique critical cell
is a graph G with 2q edges (2q − 2 of them having one endpoint in [q] \ {1} and one
in [s] \ (X ∪ {1}) and the other two being 11 and 1c(G)).

Using Cluster Lemma 2.5, we see that M0 ∪ M1 ∪ {M2[X] ∪ M3[X] : X ∈( [s]\{1}
s−q−1

)} is the desired Morse matching. �

4 Proofs of Theorems 1.1, 1.4

4.1 The complexes NMk(n)

We now prove Theorem 1.1

Proof We proceed in two steps:
Step 0: We define a Morse matching M on NMk(n) such that the graphs G corre-
sponding to the critical cells are exactly those which satisfy:

• NG(n) = ∅.
• For each 1 ≤ v < n, G + vn contains a matching of size k.

For 1 ≤ v ≤ n − 1, define M(i) on NMk(n) recursively as follows.

• M(1) := {(G,G − 1n) | G ∈ NMk(n),1n ∈ E(G)}.
• For 1 < v < n, let C(v) consist of those G ∈ NMk(n) such that no arc in⋃

w<v M(w) has G as its head or tail. Then M(v) := {(G,G − vn) | G ∈
C(v), vn ∈ E(G)}.
Note that the presence or absence in a graph G of an edge wn (w < v) has no

effect on the existence of a matching of size k in G which includes the edge vn. Thus
it follows from Cluster Lemma 2.5 that M := ⋃n−1

v=1 M(v) is a Morse matching on
NMk(n).

The critical cells of this Morse matching are those G ∈ NMk(n) such that NG(n) =
∅ and, for 1 ≤ v < n, G + vn contains a matching of size k. For each such G and for
1 ≤ v < n, we have ν(G − v) = k − 1.
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Step 1: Let G be a graph corresponding to a critical cell of the Morse matching M
from Step 0. Let G− := G − n. Since for 1 ≤ v < n, G + vn contains a matching of
size k we have ν(G− − v) = k − 1 and D(G−) = [n − 1] = V (G−).

Thus by Theorem 2.1(3) each connected component of G− = G−|D(G−) is factor

critical. Since ν(G) = k−1 and each component X of G− satisfies ν(G−|X) = |X|−1
2 ,

we have

c := con(G−) = n − 2k + 1.

Now for each partition τ of [n − 1] into c parts, let Dτ be the subdigraph of
D(NMk(n)) induced on those critical cells G described above such that the con-
nected components of G− determine the partition τ . Using Lemma 3.1 and Cluster
Lemma 2.5, we can construct a Morse matching on Dτ whose critical cells are those
forests of triangles whose connected components determine τ . Theorem 1.1 follows
from a final application of Cluster Lemma 2.5. �

4.2 The complexes BNMk(r, s)

We now prove Theorem 1.4. Analogous to the proof for non-bipartite graphs we have
to proceed in two steps of which Step 0 is only a slight modification of Step 0 from
the proof of Theorem 1.1.

Proof Step 0: We inductively define a Morse matching M on BNMk(r, s).
For 1̄ ≤ v̄ ≤ s̄, define Mv̄ on BNMk(r, s) recursively as follows.

• M1 := {(G,G − r 1̄) | G ∈ BNMk(r, s), r 1̄ ∈ E(G)}.
• For 1 < v̄ ≤ s, let C v̄ consist of those G ∈ BNMk(r, s) which are critical cells of⋃

w̄<v̄ Mw̄ , and set

Mv̄ := {(G,G − rv̄) : G ∈ C v̄ , rv̄ ∈ E(G)}.
Set M := ⋃s

v̄=1
Mv . With the same arguments as for non-bipartite graphs we see

that M actually is a Morse matching on BNMk(r, s).
The graphs G corresponding to the critical cells of M are exactly those which

satisfy:

• NG(r) = ∅.
• For each 1̄ ≤ v̄ < s̄, G + rv̄ contains a matching of size k.

Step 1: It follows from König’s Theorem (see [13]), which says that the size of a max-
imal matching equals the size of a minimal vertex cover, that exactly k − 1 elements
of [r] are not isolated. So, we make one of

(
r−1
k−1

)
choices for the set of nonisolated

vertices in [r] and then assume that r = k. In this case, remaining graphs are those
for which [r − 1] can be completely matched into every (s − 1)-subset of [s]. Theo-
rem 1.4 now follows from (the proof of) Theorem 1.10 and Cluster Lemma 2.5. �
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