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Abstract Let G be a simple complex classical Lie group with Lie algebra g of rank n.
We show that the coefficient of degree k in the Lusztig q-analogue K

g

λ,μ(q) associated
to the fixed partitions λ and μ stabilizes for n sufficiently large. As a consequence,
we obtain the stabilization of the dimensions in the Brylinski-Kostant filtration asso-
ciated to any dominant weight. We then introduce, for each pair of partitions (λ,μ),
formal series which can be regarded as natural limits of the Lusztig q-analogues. We
give a duality property for these limits and recurrence formulas which permit notably
to derive explicit expressions when λ is a row or a column partition.

Keywords Brylinski filtration · q-analogues · Lusztig polynomials · q-series

1 Introduction

The multiplicity Kλ,μ of the weight μ in the irreducible finite-dimensional represen-
tation V g(λ) of the simple Lie group G with Lie algebra g can be written in terms of
the ordinary Kostant partition function P defined by the equality

∏

α positive root

1

(1 − eα)
=

∑

β

P(β)eβ

where β runs on the set of nonnegative integral combinations of positive roots of g.
Thus P(β) is the number of ways the weight β can be expressed as a sum of positive
roots. Then, from the Weyl character formula, one derives the identity

K
g

λ,μ =
∑

w∈Wg

(−1)�(w)P(w(λ + ρ) − (μ + ρ)) (1)
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where Wg is the Weyl group of g.
The Lusztig q-analogue of weight multiplicity K

g

λ,μ(q) is obtained by substituting

the ordinary Kostant partition function P by its q-analogue Pg
q in (1). Namely Pg

q is
defined by the equality

∏

α positive root

1

(1 − qeα)
=

∑

β

Pg
q (β)eβ

and we have

K
g

λ,μ(q) =
∑

w∈Wg

(−1)�(w)Pg
q (w(λ + ρ) − (μ + ρ)). (2)

As shown by Lusztig [14], K
g

λ,μ(q) is a polynomial in q with nonnegative integer co-
efficients. Many interpretations of the Lusztig q-analogues exist. In particular, they
can be obtained from the Brylinski-Kostant filtration of weight spaces [1]. The poly-
nomials K

g

λ,∅(q) appear in the graded character of the harmonic polynomials associ-
ated to g [5]. We also recover the Lusztig q-analogues as the coefficients of the ex-
pansion of the Hall-Littlewood polynomials on the basis of Weyl characters [7]. This
notably permits to prove that they are affine Kazhdan-Lusztig polynomials. In [11]
Lascoux and Schützenberger have obtained a combinatorial expression for K

gln
λ,μ(q)

in terms of the charge statistic on the semistandard tableaux of shape λ and evalua-
tion μ. By using the combinatorics of crystal graphs introduced by Kashiwara and
Nakashima [6], we have also established similar formulas [12, 13] for the Lusztig
q-analogues associated to the symplectic and orthogonal Lie algebras when (λ,μ)

satisfies restrictive constraints.
Consider λ,μ two partitions of length at most m. These partitions can be regarded

as dominant weights for g = gln, so2n+1, sp2n or so2n when n ≥ m. Then, K
gln
λ,μ(q)

does not depend on the rank n considered. Such a property does not hold for the
Lusztig q-analogues K

g

λ,μ(q) when g = so2n+1, sp2n or so2n which depend in general
on the rank of the Lie algebra considered. Write

K
g

λ,μ(q) =
∑

k≥0

K
g,k
λ,μqk.

We first establish in this paper that for g = so2n+1, sp2n or so2n, the coefficient K
g,k
λ,μ

stabilizes when n tends to infinity. More precisely, K
g,k
λ,μ does not depend on the rank

n of g providing n ≥ 2k + a where a is the number of nonzero parts of μ (Theo-
rem 4.3.1). Note that this result cannot be obtained by simply taking the limit when
n tends to infinity in (2). Indeed, the number of decompositions of a given weight as
a sum of k positive roots may strictly increase with n. Hence, there is no analogue
of the Kostant partition function in infinite rank (but see Remark (i) in Section 6.2).
By Brylinski’s interpretation of the coefficients K

g,k
λ,μ [1], one then obtains that the

dimension of the k-th component of the Brylinski-Kostant filtration associated to the
finite-dimensional irreducible representations of g = so2n+1, sp2n or so2n stabilizes
for n sufficiently large (Theorem 4.4.2). Observe that this stabilization is immediate
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for g = gln since the polynomials K
gln
λ,μ(q) do not depend on n. For g = so2n+1, sp2n

or so2n the Brylinski-Kostant filtration depends in general on the rank considered and
it seems difficult to obtain the dimension of its components by direct computations.
Our method is as follows. We obtain the explicit decomposition of the symmetric
algebra S(g) considered as a G-module into its irreducible components by using
identities due to Littlewood. This permits to show that the multiplicities appearing in
the decomposition of the k-th graded component Sk(g) of S(g) do not depend on the
rank n of g providing n is sufficiently large. Observe that this stabilization also fol-
lows from a more general result due to Hanlon [3]. Nevertheless our computations,
based on Littlewood’s identities, have the interest to yield simple explicit formulas
in terms of the Littlewood-Richardson coefficients for the decomposition of Sk(g) in
large rank. Thanks to a classical result by Kostant, we establish a similar result for
the k-th graded component Hk(g) of the space H(g) of G-harmonic polynomials.
These stabilization properties are equivalent to the existence of a limit in infinitely
many variables for the graded characters associated to S(g) and H(g). The limits so
obtained are formal series with coefficients in the ring of universal characters intro-
duced by Koike and Terada. From Hesselink expression [5] of the graded charac-
ter of H(g), one then derives that K

g,k

λ,∅ stabilizes for n sufficiently large. By using
Morris-type recurrence formulas for the Lusztig q-analogues [13], we prove that this
is also true for the coefficients K

g,k
λ,μ where μ is a fixed nonempty partition. We also

observe that these formulas permit to give an explicit lower bound for the degree of
the q-analogues K

g

λ,μ(q) such that K
g

λ,μ(q) �= 0. We establish that the limits of the

coefficients K
so2n+1,k

λ,μ and K
so2n,k
λ,μ are the same. Write K

so,k
λ,μ and K

sp,k
λ,μ respectively

for the limits of the coefficients K
so2n+1,k

λ,μ and K
sp2n,k

λ,μ when n tends to infinity.

The stabilization property of the coefficients K
g,k
λ,μ suggests then to introduce the

formal series

Kso
λ,μ(q) =

∑

k≥0

K
so,k
λ,μ qk and K

sp

λ,μ(q) =
∑

k≥0

K
sp,k
λ,μ qk.

These series belong to N[[q]] and can be regarded as natural limits of the polynomials
K

g

λ,μ(q). As far as the author is aware, the first occurrence of such limits for the
Lusztig q-analogues was in [3] in the particular case μ = ∅. We establish a duality
between the formal series Kso

λ,∅(q) and K
sp

λ,∅(q) (Theorem 5.3.1). Namely, we have

Kso
λ,∅(q) = K

sp

λ′,∅(q) (3)

where λ′ is the conjugate partition of λ. Note that (3) do not hold in general if we
replace the formal series Kso

λ,μ(q) and K
sp

λ,μ(q) by the polynomials K
g,k
λ,μ(q). We also

give recurrence formulas (39), (40) for the series Kso
λ,μ(q) and K

sp

λ,μ(q) which permit
efficient recursive computations. Thanks to these recurrence formulas, one derives
simple expressions for the formal series Kso

λ,μ(q) and K
sp

λ,μ(q) when λ is a single
row or a single column partition (Proposition 5.4.1). Such simple formulas seem not
to exist for the Lusztig q-analogues K

g

λ,μ(q) even in the cases when λ is a single
column or a single row partition. Moreover the duality (3) is false in general for the
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polynomials K
g

λ,μ(q). This suggests that the study of the series Kso
λ,μ(q) and K

sp

λ,μ(q)

which is initiated in this paper, could be easier than that of the Lusztig q-analogues.
In this paper we restrict ourselves to the polynomial representations of SON(C)

and SpN(C). Nevertheless, our results can also be extended to the q-analogues of
weight multiplicities corresponding to the irreducible finite-dimensional rational rep-
resentations of GLn(C). Limits of such q-analogues in large rank for the zero weight
have been previously studied, notably by Gupta [2] and Hanlon [3]. They can be ob-
tained from the Cauchy formula which then plays the role of the Littlewood identities
used in Section 3. The existence of such limits for any dominant weight is then de-
duced from the Morris recurrence formula for the Lusztig q-analogues associated to
the root systems of type A by using arguments similar to those of Sections 4 and 5.
This also yields the stabilization of the dimensions in the Brylinski-Kostant filtration
and recurrence formulas for the limits obtained.

The paper is organized as follows. In Section 2 we recall the necessary back-
ground on symplectic and orthogonal Lie algebras, universal characters, and Lusztig
q-analogues which is needed in the sequel. In Section 3 we introduce universal graded
characters as limits in infinitely many variables for the graded characters associated
to S(g) and H(g). We obtain the stabilization property of the coefficients K

g,k
λ,μ in

Section 4 and reformulate this result in terms of the Brylinski-Kostant filtration. In
Section 5, we introduce the formal series Kso

λ,μ(q) and K
sp

λ,μ(q), establish recurrence
formulas which permit to compute them by induction, prove the duality (3) and give
explicit formulas for Kso

λ,μ(q) and K
sp

λ,μ(q) when λ is a row or a column partition.

2 Background

2.1 Convention for the root systems of types B,C and D

In the sequel G is one of the complex Lie groups Sp2n, SO2n+1 or SO2n and g is its
Lie algebra. We follow the convention of [9] to realize G as a subgroup of GLN and
g as a subalgebra of glN where

N =
⎧
⎨

⎩

2n when G = Sp2n,

2n + 1 when G = SO2n+1,

2n when G = SO2n.

With this convention the maximal torus T of G and the Cartan subalgebra h of g

coincide respectively with the subgroup and the subalgebra of diagonal matrices of
G and g. Similarly the Borel subgroup B of G and the Borel subalgebra b+ of g

coincide respectively with the subgroup and subalgebra of upper triangular matrices
of G and g. This gives the triangular decomposition g = b+ ⊕ h ⊕ b− for the Lie
algebra g. Let ei, hi, fi , i ∈ {1, . . . , n} be a set of Chevalley generators such that
ei ∈ b+, hi ∈ h and fi ∈ b− for any i.

Let dN be the linear subspace of glN consisting of the diagonal matrices. For any
i ∈ {1, . . . , n}, write εi for the linear map εi : dN → C such that εi(D) = δi for any
diagonal matrix D whose (i, i)-coefficient is δi . Then (ε1, . . . , εn) is an orthonormal
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basis of the Euclidean space h∗
R

(the real part of h∗). We denote by < ·, · > the usual
scalar product on h∗

R
. For any β ∈ h∗

R
, we write β = (β1, . . . , βn) for the coordinates

of β on the basis (ε1, . . . , εn).
Let R be the root system associated to G. We can take for the simple roots of g

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

	+ = {αn = εn and αi = εi − εi+1, i = 1, . . . , n − 1}
for the root system Bn,

	+ = {αn = 2εn and αi = εi − εi+1, i = 1, . . . , n − 1}
for the root system Cn,

	+ = {αn = εn + εn−1 and αi = εi − εi+1, i = 1, . . . , n − 1}
for the root system Dn.

(4)

Then the sets of positive roots are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R+ = {εi − εj , εi + εj with 1 ≤ i < j ≤ n} ∪ {εi with 1 ≤ i ≤ n}
for the root system Bn,

R+ = {εi − εj , εi + εj with 1 ≤ i < j ≤ n} ∪ {2εi with 1 ≤ i ≤ n}
for the root system Cn,

R+ = {εi − εj , εi + εj with 1 ≤ i < j ≤ n}
for the root system Dn.

We denote by R the set of roots of G. For any α ∈ R, let α∨ = α
<α,α>

be the co-
root corresponding to α. The Weyl group of the Lie group G is the subgroup of the
permutation group of the set {n, . . . ,2,1,1,2, . . . , n} generated by the permutations

⎧
⎪⎪⎨

⎪⎪⎩

si = (i, i + 1)(i, i + 1), i = 1, . . . , n − 1 and sn = (n,n)

for the root systems Bn and Cn,

si = (i, i + 1)(i, i + 1), i = 1, . . . , n − 1 and s′
n = (n,n − 1)(n − 1, n)

for the root system Dn

where for a �= b (a, b) is the simple transposition which switches a and b. We identify
the subgroup of Wg generated by si = (i, i + 1)(i, i + 1), i = 1, . . . , n − 1 with the
symmetric group Sn. We denote by � the length function corresponding to the above
set of generators. The action of w ∈ Wg on β = (β1, . . . , βn) ∈ h∗

R
is defined by

w · (β1, . . . , βn) = (βw−1

1 , . . . , βw−1

n )

where βw
i = βw(i) if w(i) ∈ {1, . . . , n} and βw

i = −βw(i) otherwise. We denote by ρ

the half sum of the positive roots of R+. The dot action of Wg on β = (β1, . . . , βn) ∈
h∗

R
is defined by

w ◦ β = w · (β + ρ) − ρ. (5)

Write P and P + for the weight lattice and the cone of dominant weights of G. As
usual we consider the order on P defined by β ≤ γ if and only if γ − β ∈ Q+.

For any positive integer m, denote by Pm the set of partitions with at most m

nonzero parts. Let Pm(k), k ∈ N be the subset of Pm consisting of the partitions λ

such that |λ| = λ1 + · · · + λm = k. Set P = ∪m∈NPm and Pm[k] = ∪a≤kPm(a).
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Each partition λ = (λ1, . . . , λn) ∈ Pn can be identified with the dominant weight∑n
i=1 λiεi . Then the irreducible finite-dimensional polynomial representations of

SO2n+1 and Sp2n are parametrized by the partitions of Pn. The irreducible finite-
dimensional polynomial representations of SO2n are parametrized by the dominant
weights of Pn ∪Pn where

Pn = {(λ1, . . . , λn−1,−λn) ∈ Z
n | (λ1, . . . , λn−1, λn) ∈Pn}.

For any λ ∈ Pn, we denote by V g(λ)

– the irreducible finite-dimensional representation of G corresponding to λ when
g = so2n+1, sp2n or when g = so2n and λn = 0,

– the direct sum of the representations of SO2n corresponding to the dominant
weights λ and λ = (λ1, . . . , λn−1,−λn) when g = so2n and λn �= 0.

The representation V g(1) associated to the partition λ = (1) is called the vector
representation of G. For any weight β ∈ P and any partition λ ∈Pn, we write V g(λ)β
for the weight space associated to β in V g(λ).

We denote by Q the root lattice of g and write Q+ for the elements of Q which
are linear combination of positive roots with nonnegative coefficients.

The exponents {m1, . . . ,mn} of the root system R verifies mi = 2i − 1, i =
1, . . . , n when R is of type Bn or Cn and

mi = 2i − 1, i ∈ {1, . . . , n − 1} and mn = n − 1 (6)

when R is of type Dn.

Remark

(i) The integer n − 1 appears twice in the exponents of a root system of type Dn

when n is even.
(ii) The exponents mi, i = 1, . . . , n − 1 are the same for the three root systems of

type Bn,Cn or Dn.

As customary, we identify the lattice P of weights of G with a sublattice of ( 1
2 Z)n.

For any β = (β1, . . . , βn) ∈ P , we set |β| = β1 + · · · + βn. We use for a basis of
the group algebra Z[Zn], the formal exponentials (eβ)β∈Zn satisfying the relations
eβ1eβ2 = eβ1+β2 . We furthermore introduce n independent indeterminates x1, . . . , xn

in order to identify Z[Zn] with the ring of polynomials Z[x1, . . . , xn, x
−1
1 , . . . , x−1

n ]
by writing eβ = x

β1
1 · · ·xβn

n = xβ for any β = (β1, . . . , βn) ∈ Z
n.

Write s
gln
λ for the Weyl character (Schur function) of the finite-dimensional

gln-module V gln(λ) of highest weight λ. The character ring of GLn is �n =
Z[x1, . . . , xn]sym the ring of symmetric functions in n variables.

For any λ ∈ Pn, we denote by s
g

λ the Weyl character of V g(λ). Let Rg be the
character ring of G. Then

Rg = Z[x1, . . . , xn, x
−1
1 , . . . , x−1

n ]Wso2n+1

is the Z-algebra with basis {sg

λ | λ ∈Pn}.
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In the sequel we will suppose n ≥ 2 when g = sp2n or so2n+1 and n ≥ 4 when
g = so2n.

For each Lie algebra g = soN or spN and any partition ν ∈ PN , we denote by

V glN (ν) ↓glN
g the restriction of V glN (ν) to g. Set

V glN (ν) ↓ glN
soN

=
⊕

λ∈Pn

V soN (λ)
⊕b

soN
ν,λ ,

(7)

V gl2n(ν) ↓ gl2n
sp2n

=
⊕

λ∈Pn

V sp2n(λ)
⊕b

sp2n
ν,λ .

These formulas define in particular the branching coefficients b
soN

ν,λ and b
sp2n

ν,λ . The
restriction map rg is defined by setting

rg :
{

Z[x1, . . . , xN ]sym → Rg,

s
glN
ν �−→ char(V glN (ν) ↓glN

g )

where char(V glN (ν) ↓glN
g ) is the character of the g-module V glN (ν) ↓glN

g . We have
then

rg(s
glN
ν ) =

{
s
glN
ν (x1, . . . , xn, x

−1
n , . . . , x−1

1 ) when N = 2n,

s
glN
ν (x1, . . . , xn,1, x−1

n , . . . , x−1
1 ) when N = 2n + 1.

Let P(2)
n and P(1,1)

n be the subsets of Pn consisting of the partitions with even length
rows and the partitions with even length columns, respectively. When ν ∈ Pn we have
the following formulas for the branching coefficients b

soN

ν,λ and b
sp2n

ν,λ :

Proposition 2.1.1 (see [10] appendix p. 295)
Consider ν ∈ Pn. Then:

1. b
so2n+1
ν,λ = b

so2n

ν,λ = ∑
γ∈P(2)

n
cν
λ,γ

2. b
sp2n

ν,λ = ∑
γ∈P(1,1)

n
cν
λ,γ

where cν
γ,λ is the usual Littlewood-Richardson coefficient corresponding to the parti-

tions γ,λ and ν.

Note that the equality b
so2n+1
ν,λ = b

so2n

ν,λ becomes false in general when ν /∈Pn.
As suggested by Proposition 2.1.1, the manipulation of the Weyl characters is sim-

plified by working with infinitely many variables. In [8], Koike and Terada have intro-
duced a universal character ring for the classical Lie groups. This ring can be regarded
as the ring � = Z[x1, . . . , xn, . . .]sym of symmetric functions in countably many vari-
ables. It is equipped with three natural Z-bases indexed by partitions, namely

Bgl = {sgl

λ | λ ∈ P}, Bsp = {ssp

λ | λ ∈ P}, Bso = {sso
λ | λ ∈P}. (8)
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We have in particular the decompositions:

sgl
ν =

∑

λ∈P

∑

γ∈P(2)
n

cν
λ,γs

so
λ and sgl

ν =
∑

λ∈P

∑

γ∈P(1,1)
n

cν
λ,γs

sp

λ . (9)

We denote by ϕ the linear involution defined on � by ϕ(sgl

λ ) = sgl

λ′ . Then, one has

ϕ(sso
λ ) = ssp

λ′ . (10)

For any positive integer n, denote by �n = Z[x1, . . . , xn]sym the ring of symmetric
functions in n variables. Write

πn : Z[x1, . . . , xn, . . .]sym → Z[x1, . . . , xn]sym

for the ring homomorphism obtained by specializing each variable xi, i > n at 0.
Then πn(s

gl

λ ) = s
gln
λ . Let πsp2n and πsoN be the specialization homomorphisms de-

fined by setting πsp2n = rsp2n ◦ π2n and πsoN = rsoN ◦ πN . For any partition λ ∈Pn

one has

s
sp2n

λ = πsp2n(ssp

λ ) and s
soN

λ = πsoN (ss0
λ ).

We shall also need the following proposition (see [8] Corollary 2.5.3).

Proposition 2.1.2 Consider a Lie algebra g of type Xn ∈ {Bn,Cn,Dn}. Let λ ∈ Pr

and μ ∈Ps . Suppose n ≥ r + s and set

V g(λ) ⊗ V g(μ) =
⊕

ν∈Pn

V g(ν)
⊕dν

λ,μ .

Then the coefficients dν
λ,μ neither depend on the rank n of g nor on its type B,C

or D.

Remark The previous proposition follows from the decompositions

ssp

λ × ssp
μ =

∑

ν∈P
dν
λ,μs

sp
ν and sso

λ × sso
μ =

∑

ν∈P
dν
λ,μs

so
ν

for any λ,μ ∈ P , in the ring �.

2.2 Lusztig q-analogues

The q-analogue Pg
q of the Kostant partition function associated to the root system R

of the Lie algebra g is defined by the equality

∏

α∈R+

1

1 − qeα
=

∑

β∈Zn

Pg
q (β)eβ.
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Note that Pg
q (β) = 0 if β /∈ Q+. Given λ and μ two partitions of Pn, the Lusztig

q-analogues of weight multiplicity is the polynomial

K
g

λ,μ(q) =
∑

w∈Wg

(−1)�(w)Pg
q (w ◦ λ − μ).

It follows from the Weyl character formula that K
g

λ,μ(1) is equal to the dimension of
V g(λ)μ.

Theorem 2.2.1 (Lusztig [14])
For any partitions λ,μ ∈ Pn, the polynomial K

g

λ,μ(q) has nonnegative integer
coefficients.

We write

K
g

λ,μ(q) =
∑

k≥0

K
g,k
λ,μqk. (11)

Then

K
g,k
λ,μ(q) =

∑

w∈Wg

(−1)�(w)Pk(w ◦ λ − μ) (12)

where for any β ∈ Z
n, Pk(β) is the number of ways of decomposing β as a sum of k

positive roots.

Remark One easily verifies that K
g

λ,μ(q) �= 0 only if λ ≥ μ. Moreover, when

|μ| = |λ|, one has K
g

λ,μ(q) = K
gln
λ,μ(q) where K

gln
λ,μ(q) is the Kostka polynomial as-

sociated to (λ,μ), i.e. the Lusztig q-analogue associated to the partitions λ,μ for the
root system An−1.

We also introduce the Hall-Littlewood polynomials Q
′g
μ , μ ∈ Pn defined by

Q′g
μ =

∑

λ∈Pn

K
g

λ,μ(q)s
g

λ .

2.3 The symmetric algebra S(g)

Considered as a G-module, g is irreducible and we have
⎧
⎨

⎩

so2n+1 � V so2n+1(1,1) and dim(so2n+1) = n(2n + 1),

sp2n � V sp2n(2) and dim(sp2n) = n(2n + 1),

so2n � V so2n(1,1) and dim(so2n) = n(2n − 1).

(13)

Let S(g) be the symmetric algebra of g and set

S(g) =
⊕

k≥0

Sk(g)
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where Sk(g) is the k-th symmetric power of g. By Proposition 2.1.1 and (13), we
have

soN � V glN (1,1) ↓glN
soN

and sp2n � V gl2n(2) ↓gl2n
sp2n

.

This implies the following isomorphisms

Sk(soN) � Sk(V soN (1,1)) ↓glN
soN

and Sk(sp2n) � Sk(V sp2n(2)) ↓gl2n
sp2n

(14)

for any nonnegative integer k.

Example 2.3.1 By using the Weyl dimension formula (see [4] page 303), one easily
obtains the decompositions

S2(V glN (1,1)) � V glN (1,1,1,1) ⊕ V glN (2,2)

and

S2(V gl2n(2)) � V gl2n(4) ⊕ V gl2n(2,2).

Hence by (14) and Proposition 2.1.1, this gives

S2(g) � V g(1,1,1,1) ⊕ V g(2,2) ⊕ V g(2,0) ⊕ V g(∅) for g = soN

and

S2(sp2n) � V sp2n(4) ⊕ V sp2n(2,2) ⊕ V sp2n(1,1) ⊕ V sp2n(∅).

Remark By the previous formulas, the multiplicities appearing in the decomposition
of the square symmetric power of the Lie algebra g of type Xn ∈ {Bn,Cn,Dn} do not
depend on its rank providing n ≥ 2. We give in Proposition 3.1.1, the general explicit
decomposition of Sk(g) into its irreducible components.

3 Graded characters

3.1 Graded character of the symmetric algebra

Let V be a G or GLn-module. For any nonnegative integer k, write Sk(V ) for the
k-th symmetric power of V and set S(V ) = ⊕k≥0S

k(V ). Then Sk(V ) and S(V ) are
also G-modules. The graded character of S(V ) is defined by

charq(S(V )) =
∑

k≥0

char(Sk(V ))qk.

Denote by W(V ) the collection of weights of the module V counted with their mul-
tiplicities. Then we have

charq(S(V )) =
∏

β∈W(V )

1

1 − qeβ
.
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The weights of the Lie algebra g of rank n considered as a G-module are such that

W(g) = {α ∈ R,0, . . . ,0︸ ︷︷ ︸
n times

}.

Thus the graded character charq(S(g)) of S(g) verifies

charq(S(g)) = 1

(1 − q)n

∏

α∈R

1

1 − qxα
. (15)

Proposition 3.1.1 For any nonnegative integer k, we have

char(Sk(soN)) =
∑

λ∈Pn

∑

ν∈P(1,1)
N (2k)

b
soN

ν,λ s
soN

λ ,

char(Sk(sp2n)) =
∑

λ∈Pn

∑

ν∈P(2)
2n (2k)

b
sp2n

ν,λ s
sp2n

λ ,

where b
soN

ν,λ and b
sp2n

ν,λ are the branching coefficients defined in (7).

Proof Suppose first g = sp2n. Recall the classical identity

∏

1≤i≤j≤2n

1

1 − xixj

=
∑

ν∈P(2)
2n

s
gl2n
ν

due to Littlewood. It immediately implies the decomposition

∏

1≤i≤j≤2n

1

1 − qxixj

=
∑

ν∈P(2)
2n

q
|ν|
2 s

gl2n
ν =

∑

k≥0

∑

ν∈P(2)
2n (2k)

s
gl2n
ν qk.

By applying the restriction map rsp2n , this gives

1

(1 − q)n

∏

1≤i<j≤n

1

1 − q
xi

xj

1

1 − q
xj

xi

∏

1≤r≤s≤n

1

1 − qxrxs

1

1 − q 1
xrxs

=
∑

k≥0

∑

ν∈P(2)
2n (2k)

s
gl2n
ν (x1, . . . , xn, x

−1
n , . . . , x−1

1 )qk.

From (7), this can be rewritten in the form

charq(S(sp2n)) = 1

(1 − q)n

∏

α∈R

1

1 − qxα
=

∑

k≥0

∑

λ∈Pn

∑

ν∈P(2)
2n (2k)

b
sp2n

ν,λ s
sp2n

λ qk

which gives the desired identity by considering the coefficient in qk .
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When g = so2n+1 or g = so2n, one uses the identity

∏

1≤i<j≤2n

1

1 − qxixj

=
∑

ν∈P(1,1)
2n

q
|ν|
2 s

gl2n
ν =

∑

k≥0

∑

ν∈P(1,1)
2n (2k)

s
gl2n
ν qk

and our result follows by similar arguments. �

In the sequel, we set

m
soN

k,λ =
∑

ν∈P(1,1)
N (2k)

b
soN

ν,λ and m
sp2n

k,λ =
∑

ν∈P(2)
2n (2k)

b
sp2n

ν,λ .

Thus we have char(Sk(soN)) = ∑
λ∈Pn

m
soN

k,λ s
soN

λ and char(Sk(sp2n)) =
∑

λ∈Pn
m

sp2n

k,λ s
sp2n

λ .

3.2 Universal graded characters charq(S(sp)) and charq(S(so))

Proposition 3.2.1 Consider a nonnegative integer k and suppose n ≥ 2k. For any
λ ∈P , we have the identities

m
so2n+1
k,λ = m

so2n

k,λ =
∑

ν∈P(1,1)(2k)

∑

γ∈P(2)

cν
λ,γ ,

(16)
m

sp2n

k,λ =
∑

ν∈P(2)(2k)

∑

γ∈P(1,1)

cν
λ,γ .

In particular, the multiplicities m
sp2n

k,λ ,m
so2n+1
k,λ ,m

so2n

k,λ do not depend on n.

Proof For any ν ∈ PN(2k) we have ν ∈ PN [n] since n ≥ 2k. In particular ν ∈ Pn.
We can thus deduce from Propositions 2.1.1 and 3.1.1 the decompositions

m
soN

k,λ =
∑

ν∈P(1,1)
n (2k)

∑

γ∈P(2)
2k

cν
λ,γ and m

sp2n

k,λ =
∑

ν∈P(2)
n (2k)

∑

γ∈P(1,1)
2k

cν
λ,γ .

Since cν
λ,γ = 0 when |λ| + |γ | �= 2k (so |λ| ≤ 2k ≤ n and |γ | ≤ n), m

soN

k,λ and m
sp2n

k,λ

can be rewritten as in (16) and thus, do not depend on n. �

We set

mso
k,λ = lim

n→∞m
so2n+1
k,λ =

∑

ν∈P(1,1)(2k)

∑

γ∈P(1,1)

cν
λ,γ and m

sp

k,λ = lim
n→∞m

sp2n

k,λ

=
∑

ν∈P(2)(2k)

∑

γ∈P(2)

cν
λ,γ . (17)



J Algebr Comb (2008) 27: 451–477 463

Lemma 3.2.2 For any nonnegative integer k and any partition λ, we have

1. m
sp

k,λ = mso
k,λ′

2. m
sp

k,λ = mso
k,λ = 0 if |λ| > 2k

where m
sp

k,λ and mso
k,λ′ are the multiplicities defined in (17).

Proof Write ι for the bijective map defined on P by λ �−→ λ′. We then have
ι(P(2)) = P(1,1) and ι(P(2)(2k)) = P(1,1)(2k). Moreover cν

λ,γ = cν′
λ′,γ ′ for any par-

titions λ,γ, ν. This implies assertion 1 from the definition (17) of m
sp

k,λ and mso
k,λ′ .

Recall that cν
λ,γ = 0 when |ν| �= |λ| + |γ |. Since |ν| = 2k in the equalities of (17),

we have m
sp

k,λ = mso
k,λ = 0 if |λ| > 2k. �

We define the universal graded characters charq(S(sp)) and charq(S(so)) by set-
ting

charq(S(sp)) =
∏

1≤i≤j

1

1 − qxixj

and charq(S(sp)) =
∏

1≤i<j

1

1 − qxixj

. (18)

Note that charq(S(sp)) and charq(S(so)) belong to the ring �[[q]] of formal series
with coefficients in �.

For any F = ∑
k≥0 ckq

k in �[[q]], the specialization homomorphisms πsp2n ,
πso2n+1 and πso2n are then defined by setting

πg(F ) =
∑

k≥0

πg(ck)q
k. (19)

By (15) and (18), we then have

πsoN (charq(S(so))) = charq(S(soN)),

(20)
πsp2n(charq(S(sp))) = charq(S(sp2n)).

Similarly, the linear involution ϕ (see (10)) is defined on �[[q]] by

ϕ(F ) =
∑

k≥0

ϕ(ck)q
k. (21)

Proposition 3.2.3 We have the decompositions

charq(S(so)) =
∑

k≥0

∑

λ∈P
mso

k,λs
so
λ qk,

(22)
charq(S(sp)) =

∑

k≥0

∑

λ∈P
m

sp

k,λs
sp

λ qk.
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Proof One can write

charq(S(so)) =
∏

1≤i<j

1

1 − qxixj

=
∑

k≥0

∑

ν∈P(1,1)(2k)

sgl
ν qk =

∑

k≥0

∑

λ∈P
mso

k,λs
so
λ qk

charq(S(sp)) =
∏

1≤i≤j

1

1 − qxixj

=
∑

k≥0

∑

ν∈P(2)(2k)

sgl
ν qk =

∑

k≥0

∑

λ∈P
m

sp

k,λs
sp

λ qk

where the rightmost equalities follow from (9). �

By using 1 of Lemma 3.2.2, one derives the following corollary:

Corollary 3.2.4 We have ϕ(charq(S(so))) = charq(S(sp)).

Remark By 2 of Lemma 3.2.2, one has

char(Sk(so)) =
∑

λ∈P[2k]
mso

k,λs
so
λ and char(Sk(sp)) =

∑

λ∈P[2k]
m

sp

k,λs
sp

λ (23)

where P[2k] is the set of partitions λ such that |λ| ≤ 2k.

3.3 Universal graded character for harmonic polynomials

Let g be a Lie algebra of type Xn ∈ {Bn,Cn,Dn}. Since the symmetric algebra S(g)

can be regarded as a G-module, one can consider

S(g)G = {x ∈ S(g) | g · x = x for any g ∈ G},

the ring of the G-invariants in S(g). By a classical theorem of Kostant [8] we have

S(g) = H(g) ⊗ S(g)G (24)

where H(g) is the ring of G-harmonic polynomials. The ring S(g)G is generated by
algebraically independent homogeneous polynomials of degrees di = mi + 1 and the
graded character of S(g)G considered as a G-module verifies

charq(S(g)G) =
n∏

i=1

1

1 − qdi
.

By (24) the graded character of H(g) can be written

charq(H(g)) = charq(S(g))

charq(S(g)G)
=

n∏

i=1

(1 − qdi ) charq(S(g)) =
∑

k≥0

char(Hk(g))qk.

(25)
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We define the universal graded characters charq(H(sp)) and charq(H(so)) by set-
ting

charq(H(so)) =
∏

i≥1

(1 − q2i ) charq(S(so)) =
∏

i≥1

(1 − q2i )
∏

1≤i<j

1

1 − qxixj

,

(26)

charq(H(sp)) =
∏

i≥1

(1 − q2i ) charq(S(sp)) =
∏

i≥1

(1 − q2i )
∏

1≤i≤j

1

1 − qxixj

.

The universal characters charq(S(sp)) and charq(S(so)) belong to �[[q]]. Moreover∏
i≥1(1−q2i ) ∈ �[[q]] since it is a formal series in q with integer coefficients. Hence

charq(H(sp)) and charq(H(so)) also belong to �[[q]]. We set

charq(H(sp)) =
∑

k≥0

∑

λ∈P
K

sp,k

λ,∅ ssp

λ qk,

charq(H(so)) =
∑

k≥0

∑

λ∈P
K

so,k
λ,∅ sso

λ qk.

Lemma 3.3.1 For any nonnegative integer k, we have

char(Hk(so)) =
∑

λ∈P[2k]
K

so,k
λ,∅ sso

λ and char(Hk(sp)) =
∑

λ∈P[2k]
K

sp,k

λ,∅ ssp

λ . (27)

Moreover, for any nonnegative integer n ≥ 2k we have

πsoN (char(Hk(so))) = char(Hk(soN)),

(28)
πsp2n(char(Hk(sp))) = char(Hk(sp2n)).

Proof By definition of the coefficients K
so,k
λ,∅ , we have

char(Hk(so)) =
∑

λ∈P
K

so,k
λ,∅ sso

λ . (29)

Write [k/2] for the largest integer which does not exceed k/2. Then by (26), K
so,k
λ,∅

is the coefficient in qksso
λ appearing in the expansion of

ψk =
[k/2]∏

i=1

(1 − q2i )

k∑

a=0

qachar(Sa(so)) (30)

on the basis {qksso
λ | k ∈ N, λ ∈ P} of �[q]. Indeed, for any i > [k/2], we have

2i > k. By (23),

char(Sa(so)) =
∑

λ∈P[2a]
mso

a,λs
so
λ
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for any nonnegative integer a. Since the integers a appearing in (30) are less or equal
to k, we have mso

a,λ = 0 for any partition λ such that |λ| > 2k, by assertion 2 of

Lemma 3.2.2. Hence, the coefficient of qbsso
λ in ψk is equal to 0 when |λ| > 2k. This

permits to consider only the partitions of P[2k] in the sum (29) and yields (27). The
proof is the same for char(Hk(sp)).

We have seen that char(Hk(so)) is the coefficient in qk of ψk . Now for any rank
n ≥ 2k, char(Hk(soN)) is the coefficient of qk in

φk =
[k/2]∏

i=1

(1 − q2i )

k∑

a=0

qachar(Sa(soN)).

Indeed we have

charq(H(soN)) =
n∏

i=1

(1 − qdi ) charq(S(soN))

and di > k for any i > [k/2]. By (20), we know that πsoN (char(Sa(so)) =
char(Sa(soN)). Thus this gives the equality πsoN (ψk) = φk . Hence we have
πsoN (char(Hk(so))) = char(Hk(soN)).

The proof is similar for char(Hk(sp)). �

Remark Since (28) only holds for n ≥ 2k, we have

πsoN (charq(H(so))) �= charq(H(soN)),

πsp2n(charq(H(sp))) �= charq(H(sp2n))

i.e. there do not exist identities analogous to (20) for charq(H(so)) and charq(H(sp)).

4 Stabilization of the coefficients K
g,k
λ,μ

4.1 Stabilization of the coefficients K
g,k

λ,∅

The theorem below shows that the coefficients of the expansion of charq(H(g)) on
the basis of Weyl characters are the Lusztig q-analogues associated to the zero weight
(i.e. μ = ∅).

Theorem 4.1.1 (Hesselink [5]) Let g be a classical Lie algebra of rank n. We have

charq(H(g)) =
∑

λ∈Pn

K
g

λ,∅(q)s
g

λ =
∑

k≥0

∑

λ∈Pn

K
g,k

λ,∅qks
g

λ .

The multiplicity of V g(λ) in the decomposition of Hk(g) in its irreducible compo-
nents is equal to K

g,k

λ,∅ .



J Algebr Comb (2008) 27: 451–477 467

Now fix a nonnegative integer k and choose a rank n ≥ 2k. The partitions λ

appearing in (27) verify |λ| ≤ 2k. Hence they belong to Pn for n ≥ 2k. Since
πsoN (sso

λ ) = s
soN

λ and πsp2n(s
sp

λ ) = s
sp2n

λ for any λ ∈ Pn this gives

πsoN (char(Hk(so))) =
∑

λ∈Pn

K
so,k
λ,∅ s

soN

λ

and

πsp2n(char(Hk(sp))) =
∑

λ∈Pn

K
sp,k

λ,∅ s
sp2n

λ .

By using (28), one obtains

char(Hk(soN)) =
∑

λ∈Pn

K
so,k
λ,∅ s

soN

λ and char(Hk(sp2n)) =
∑

λ∈Pn

K
sp,k

λ,∅ s
sp2n

λ .

(31)
We can now state the stabilization result for the coefficients K

g,k

λ,∅ .

Proposition 4.1.2 Let m,k be nonnegative integers. Consider λ ∈ Pm and g a Lie
algebra of type Xn ∈ {Bn,Cn,Dn}. Suppose n ≥ 2k, then

K
sp2n,k

λ,∅ = K
sp,k

λ,∅ and K
so2n+1,k

λ,∅ = K
so2n,k
λ,∅ = K

so,k
λ,∅ .

In particular the coefficients K
sp2n,k

λ,∅ ,K
so2n+1,k

λ,∅ and K
so2n,k
λ,∅ do not depend on the

rank n.

Proof By Theorem 4.1.1 we have

char(Hk(soN)) =
∑

λ∈Pn

K
soN ,k
λ,∅ s

soN

λ and char(Hk(sp2n)) =
∑

λ∈Pn

K
sp2n,k

λ,∅ s
sp2n

λ .

The Proposition then follows by identifying the coefficients appearing in these de-
compositions with those appearing in (31). �

Thus the coefficients K
g,k

λ,∅ depend only on λ, k and the type X = C or X ∈ {B,D}
of the Lie algebra considered when rank(g) ≥ 2k. Proposition 4.1.2 can also be
rewritten in the form

lim
n→∞K

sp2n,k

λ,∅ = K
sp,k

λ,∅ and lim
N→∞K

soN ,k
λ,∅ = K

so,k
λ,∅ .

4.2 Recurrence formulas for the Lusztig q-analogues

We now recall recurrence formulas established in [12] and [13] which permit
to express the Lusztig q-analogues associated to the root system of type Xn ∈
{Bn,Cn,Dn} in terms of those associated to the root system of type Xn−1. They
can be regarded as generalizations of the Morris recurrence formula which holds for
the Lusztig q-analogues of type A.
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Suppose g is of rank n and consider ν ∈ Pm with m < n. For any nonnegative in-
teger l, the decomposition of the g-module V g(γ ) ⊗ V g(l) into its irreducible com-
ponents can be written

V g(γ ) ⊗ V g(l) �
⊕

λ∈Pn

V g(λ)
⊕p

g,λ
γ,l .

This decomposition can be regarded as the analogue of the Pieri rule in type Xn.

Remark The multiplicities p
g,λ
γ,l are not necessarily equal to 0 or 1 as in the original

Pieri rule (i.e. for gln). Moreover we can have p
g,λ
γ,l �= 0 when |λ| < |γ | + l. Never-

theless, when |λ| = |γ | + l, one shows that the Pieri rule for type Xn coincide with
the original one. It means that p

g,λ
γ,l = 1 if λ is obtained by adding an horizontal strip

of length l to γ (i.e. the l boxes of λ/γ belong to distinct columns) and p
g,λ
γ,l = 0

otherwise.

The following Lemma is a consequence of Proposition 2.1.2.

Lemma 4.2.1 Consider γ ∈ Pm and l ∈ N. Suppose that g is a Lie algebra of type
Xn ∈ {Bn,Cn,Dn} with n > m. Then the multiplicities p

g,λ
γ,l are independent of the

rank n and the type X ∈ {B,C,D} of g.

We set

pλ
γ,l = lim

n→∞p
g,λ
γ,l .

Let μ,ν ∈ Pm. We can suppose ν ≥ μ for the dominance order, since otherwise
K

g
ν,μ(q) = 0. Write p maximal in {1, . . . ,m} such that νp − p − μ1 + 1 ≥ 0. For any

s ∈ {1, . . . , p} let γ (s) be the partition of length m − 1 such that

γ (s) =
{
(ν2, . . . , νm) if s = 1,
(ν1 + 1, ν2 + 1, . . . , νs−1 + 1, νs+1, . . . , νm) if s ≥ 2.

(32)

Finally set
Rs = νs − s − μ1 + 1. (33)

Theorem 4.2.2 [13]
With the above notation, we have for any partitions λ,μ ∈ Pm:

(i): K
so2n+1
ν,μ (q) =

p∑

s=1

(−1)s−1 × qRs ×
∑

r+2a=Rs

∑

λ∈Pm−1

p
so2n−1,λ

γ (s),r K
so2n−1

λ,μ� (q)

(ii): K
sp2n
ν,μ (q) =

p∑

s=1

(−1)s−1 ×
∑

r+2a=Rs

qr+a
∑

λ∈Pm−1

p
sp2n−2,λ

γ (s),r K
sp2n−2

λ,μ� (q)

(iii): K
so2n
ν,μ (q) =

p∑

s=1

(−1)s−1 × qRs ×
∑

r+2a=Rs

∑

λ∈Pm−1

p
so2n−2,λ

γ (s),r K
so2n−2

λ,μ� (q)

where a ∈ N and μ� = (μ2, . . . ,μm).
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Since the integer p and the partitions γ (s) defined above do not depend on the
rank of g, we obtain from Lemma 4.2.1 and Theorem 4.2.2:

Corollary 4.2.3 (of Theorem 4.2.2)
For any partitions λ,μ ∈Pm and any integer n ≥ m

(i): K
so2n+1
ν,μ (q) =

p∑

s=1

(−1)s−1 × qRs ×
∑

r+2a=Rs

∑

λ∈Pm−1

pλ
γ (s),rK

so2n−1

λ,μ� (q)

(ii): K
sp2n
ν,μ (q) =

p∑

s=1

(−1)s−1 ×
∑

r+2a=Rs

qr+a
∑

λ∈Pm−1

pλ
γ (s),rK

sp2n−2

λ,μ� (q)

(iii): K
so2n
ν,μ (q) =

p∑

s=1

(−1)s−1 × qRs ×
∑

r+2a=Rs

∑

λ∈Pm−1

pλ
γ (s),rK

so2n−2

λ,μ� (q)

where a ∈ N and μ� = (μ2, . . . ,μm).

By using similar arguments to those given in Example 4 page 243 of [15] , one
shows that the polynomials K

g

λ,μ(q) are monic of degree

⎧
⎪⎨

⎪⎩

∑n
i=1(n − i + 1)(λi − μi) for g = so2n+1,∑n
i=1(n − i + 1/2)(λi − μi) for g = sp2n,∑n
i=1(n − i)(λi − μi) for g = so2n.

Thanks to the recurrence formulas of Theorem 4.2.2, one can derive a lower bound
for the lowest degree appearing in K

g
ν,μ(q) when K

g
ν,μ(q) �= 0.

Proposition 4.2.4 For any partitions ν,μ ∈ Pn, either K
g
ν ,μ (q) is zero or its lowest

degree of q is at least |ν|−|μ|
2 .

Proof We give the proof for g = sp2n, the arguments are essentially the same
for g = so2n+1 and g = so2n. We proceed by induction on n. For n = 1, one

has K
sp2
ν,μ (q) = 0 or K

sp2
ν,μ (q) = q

|λ|−|μ|
2 . Now suppose the lowest degree of q in

K
sp2n−2

λ,μ� (q) is at least |λ|−|μ�|
2 or K

sp2n−2

λ,μ� (q) = 0. Consider ν,μ ∈ Pn such that

K
sp2n
ν,μ (q) �= 0. We apply recurrence formula (ii) of Theorem 4.2.2. Since K

sp2n
ν,μ (q) �=

0, there exist integers s and r ≤ Rs such that K
sp2n−2

λ,μ� (q) �= 0 with p
sp2n−2,λ

γ (s),r
�= 0.

One then have |λ| ≥ |γ (s)| − r . The definition (32) of γ (s) gives |γ (s)| = |ν| −
νs + s − 1. By the induction hypothesis, the lowest degree of q in the polynomial
qr+aK

sp2n−2

λ,μ� (q) is at least

d = r + a + |λ| − |μ| + μ1

2
≥ 1

2
r + a + |ν| − νs + s − 1 − |μ| + μ1

2
.
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On the other hand, we have 1
2 r + a = 1

2Rs for r + 2a = Rs . Recall that Rs = νs −
s − μ1 + 1. This finally gives

d ≥ νs − s − μ1 + 1

2
+ |ν| − νs + s − 1 − |μ| + μ1

2
≥ |ν| − |μ|

2
. �

Remark By the previous proposition, the coefficients K
g,k
ν,μ are all equal to zero when

k <
|ν|−|μ|

2 . This implies in particular that we have the decomposition

Q′g
μ =

∑

ν∈Pn

Kg
ν,μ(q)sg

ν =
∑

k≥0

∑

ν∈Pn[2k+|μ|]
Kg,k

ν,μsg
ν qk (34)

for the Hall-Littlewood functions Q
′g
μ .

The Lemma below will be useful to derive the recurrence formulas of Section 5.2.

Lemma 4.2.5 The partitions λ appearing in the right hand side of the previous for-
mulas for which there exists a pair (γ (s), r) such that pλ

γ (s),r �= 0 must verify one of
the following assertions:

1. λ = ν and then μ = ∅, s = 1, r = R1 = ν1, γ1 = ν�,
2. |λ| < |ν|,
3. |λ| = |ν| with λ �= ν and then μ = ∅ and |λ�| < |ν�|.

In particular |λ| = |ν| only if μ = ∅.

Proof Consider λ and (γ (s), r) such that pλ
γ (s),r �= 0. We must have |λ| ≤ r +

|γ (s)| = Rs − (Rs − r) + |γ (s)|. By definition of Rs (33) and γ (s) (32) we ob-
tain |λ| ≤ |ν|−μ1 − (Rs − r). Thus |λ| < |ν| when μ �= ∅ and |λ| = |ν| only if μ = ∅
and r = Rs . This permits to restrict ourselves to the case when μ = ∅, |λ| = |ν| and
r = Rs .

Suppose first λ = ν. Then we must have s = 1. Otherwise γ (s)1 = ν1 + 1 and we
would have λ1 > ν1. This gives μ = ∅, s = 1, r = R1 = ν1 and γ1 = ν� as desired.

Now suppose |λ| = |ν| with λ �= ν. Observe that |λ�| < |ν�| if and only if λ1 > ν1.
When s > 1, we have γ (s)1 = ν1 + 1 > ν1, thus λ1 > ν1 (see Remark before
Lemma 4.2.1). When s = 1, we have γ (1) = (ν2, . . . , νn) = ν� and r = ν1. Since
|λ| = |ν| and pλ

ν�,ν1
�= 0, λ is obtained by adding a horizontal strip of length ν1 on ν�.

This implies λ1 > ν1 because the number of columns in ν� is equal to ν2 ≤ ν1 and we
have assumed λ �= ν. �

4.3 Stabilization of the coefficients K
g,k
λ,μ

Theorem 4.3.1 Consider m and a nonnegative integers and ν,μ two partitions such
that ν ∈ Pm and μ ∈ Pa . Let g be a Lie algebra of type Xn ∈ {Bn,Cn,Dn} and k a
nonnegative integer. Then for any n ≥ 2k + a, the coefficients K

g,k
ν,μ do not depend on

the rank n of g. Under these hypothesis, we have K
so2n+1,k
ν,μ = K

so2n,k
ν,μ .
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Proof Suppose first g = so2n+1. We proceed by induction on a. Note that we can

suppose a ≤ m, otherwise K
so2n+1,k
ν,μ = 0 for any rank n. If a = 0, then μ = ∅ and

the theorem follows directly from Proposition 4.1.2. Suppose now our theorem true
for any partition μ� of length a − 1 with 1 ≤ a ≤ m and consider μ a partition of
length a. We then apply the recurrence formulas of Corollary 4.2.3. It follows from
(33) that the integers Rs appearing in these formulas do not depend on the rank n

considered. This is also true for the multiplicities pλ
γ (s),r

.

By our induction hypothesis, for any p ∈ N, the coefficients K
so2n−1,p

λ,μ� are in-

dependent of n. Indeed μ� ∈ Pa−1 and so2n−1 has rank n − 1 ≥ 2k + a − 1. The
recurrence formulas of Corollary 4.2.3 imply that each coefficient K

so2n+1,k
ν,μ can be

expressed in terms of the coefficients K
so2n−1,p

λ,μ� , the integers Rs and pλ
γ (s),r . More-

over, this decomposition is independent of n. Hence K
so2n+1,k
ν,μ does not depend on n.

By using similar arguments, we prove that K
g,k
ν,μ does not depend on n when g = sp2n

or so2n.
The equality K

so2n+1,k
ν,μ = K

so2n,k
ν,μ is again obtained by induction on a. It is true for

a = 0 by Proposition 4.1.2 and the induction follows from the fact that the recurrence
formulas of Corollary 4.2.3 are the same for so2n+1 and so2n. �

Remark The arguments used in the previous proof imply that it is possible to de-
compose any Lusztig q-analogue K

g
ν,μ(q) such that μ �= ∅ in terms of the Lusztig

q-analogues K
g

λ,∅(q). Moreover this decomposition is independent of the rank n pro-
viding this rank is sufficiently large. In this case the decomposition is the same for
K

so2n+1
ν,μ (q) and K

so2n
ν,μ (q). Nevertheless, these two polynomials do not coincide since

K
so2n+1
ν,∅ (q) �= K

so2n

ν,∅ (q) in general. The previous Theorem also establishes the equal-

ity K
so2n+1,k
ν,μ (q) = K

so2n,k
ν,μ (q) for any k ≤ n−a

2 where a is the number of nonzero
parts in μ.

By Theorem 4.3.1, it makes sense to set

Kso,k
ν,μ = lim

n→∞K
so2n+1,k
ν,μ = lim

n→∞Kso2n,k
ν,μ and Ksp,k

ν,μ = lim
n→∞K

sp2n,k
ν,μ . (35)

4.4 A reformulation in terms of the Brylinski-Kostant filtration

Recall that the Lusztig q-analogue K
g

λ,μ(q) can also be characterized from the
Brylinski-Kostant filtration on the weight space V g(λ)μ [1]. Take e = e1 +· · ·+ en ∈
u+ for a principal nilpotent in g compatible with h. The e-filtration of V g(λ)μ is the
finite filtration Je(V

g(λ)μ) such that

{0} ⊂ J 0
e (V g(λ)μ) ⊂ J 1

e (V g(λ)μ) ⊂ · · ·
where for any nonnegative integer k,

J k
e (V g(λ)μ) = {v ∈ V g(λ)μ | ek+1(v) = 0}.

For completeness we also set J−1
e (V g(λ)μ) = {0}. The following theorem is a con-

sequence of the main result of [1].
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Theorem 4.4.1 (Brylinski) Consider m a nonnegative integer and λ,μ ∈ Pm. Let g

be a Lie algebra of type Xn ∈ {Bn,Cn,Dn}. Then

K
g

λ,μ(q) =
∑

k≥0

dim(J k
e (V g(λ)μ)/J k−1

e (V g(λ)μ))qk. (36)

By using Theorem 4.3.1, the dimension of the space J k
e (V g(λ)μ) does not depend

on the rank n of g providing n is sufficiently large. More precisely, we have:

Theorem 4.4.2 Consider λ ∈ Pm, μ ∈ Pa and k ∈ N. Let g be a Lie algebra of type
Xn ∈ {Bn,CnDn} with n ≥ 2k+a. Then dim(J k

e (V g(λ)μ)) is independent of the rank
n of g. Moreover we have in this case

dim(J k
e (V so2n+1(λ)μ)) = dim(J k

e (V so2n(λ)μ)).

Proof We deduce from Theorem 4.3.1 and (36) that the coefficients

K
X,k
λ,μ = dim(J k

e (V g(λ)μ)) − dim(J k−1
e (V g(λ)μ))

do not depend on n providing n ≥ 2k + a. Under this hypothesis, one can write

dim(J k
e (V soN (λ)μ)) =

k∑

a=0

K
so,a
λ,μ and dim(J k

e (V sp2n(λ)μ)) =
k∑

a=0

K
sp,a
λ,μ .

Hence dim(J k
e (V soN (λ)μ)) and dim(J k

e (V sp2n(λ)μ)) are independent of n. More-
over, we have

dim(J k
e (V so2n+1(λ)μ)) = dim(J k

e (V so2n(λ)μ)). �

Remark In general, the spaces J k
e (V g(λ))μ depend on the rank n ≥ 2k + a consid-

ered although their dimension does not. It seems to be an interesting problem to find
explicit bases for the weight spaces J k

e (V g(λ)μ).

5 Limit of Lusztig q-analogues

5.1 The formal series Kso
λ,μ(q) and K

sp

λ,μ(q)

The results of Theorem 4.3.1 suggest to introduce the formal series Kso
λ,μ(q) and

K
sp

λ,μ(q) defined by

Kso
λ,μ(q) =

∑

r≥0

K
so,k
λ,μ qk ∈ N[[q]] and K

sp

λ,μ(q) =
∑

r≥0

K
sp,k
λ,μ qk ∈ N[[q]]

where the coefficients K
so,k
λ,μ and K

sp,k
λ,μ are those defined in (35). Then, Kso

λ,μ(q)

and K
sp

λ,μ(q) can be regarded as the limits of the Lusztig q-analogues K
soN

λ,μ (q) and

K
sp2n

λ,μ (q) when the rank n of g tends to infinity.
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Moreover, we have

charq(H(sp)) =
∑

λ∈P
K

sp

λ,∅(q)ssp

λ and charq(H(so)) =
∑

λ∈P
Kso

λ,∅(q)sso
λ . (37)

Remark

(i) When g = sp2n or so2n, K
g

λ,μ(q) = 0 for any partitions λ,μ such that |λ| − |μ|
is odd. Thus for such partitions we have also K

sp

λ,μ(q) = Kso
λ,μ(q) = 0.

(ii) Observe that we may have K
so2n+1
λ,μ (q) �= 0 even if |λ| − |μ| is odd. In this case

we have

lim
n→∞K

so2n+1,k

λ,μ (q) = 0 (38)

for any nonnegative integer k. Take as an example λ = (1) and μ = ∅. Then
K

so2n+1
(1),∅ (q) = qn−1 for any rank n ≥ 2. Thus (38) is verified for any fixed de-

gree k.

5.2 Recurrence formulas for the series Kso
λ,μ(q) and K

sp

λ,μ(q)

By taking the limit when n tends to infinity in the formulas of Corollary 4.2.3 (which
do not depend on n), we obtain the identities

Kso
ν,μ(q) =

p∑

s=1

(−1)s−1 × qRs ×
∑

r+2a=Rs

∑

λ∈P
pλ

γ (s),rK
so

λ,μ�(q),

(39)

Ksp
ν,μ(q) =

p∑

s=1

(−1)s−1 ×
∑

r+2a=Rs

qr+a
∑

λ∈P
pλ

γ (s),rK
sp

λ,μ�(q)

where a ∈ N and μ� = (μ2, . . . ,μm). These identities yield recurrence formulas for
the limit of q-analogues.

To see it, suppose first μ �= ∅. By Lemma 4.2.5, the formal series Kso

λ,μ�(q) and

K
sp

λ,μ�(q) appearing in the right hand sides of (39) are such that |λ| < |ν|. Thus for-

mulas (39) permit to express the series Kso
ν,μ(q) and K

sp
ν,μ(q) respectively in terms of

the series Kso

λ,μ�(q) and K
sp

λ,μ�(q) with |λ| < |ν|.
Now suppose μ = ∅. Then by Lemma 4.2.5, Kso

λ,∅(q) and K
sp

λ,∅(q) also appear in

the right hand sides of (39) when γ (s) = γ (1) = ν�, Rs = R1 = ν1. We can write

Kso
ν,∅(q) = 1

1 − qν1

(
qν1

∑

r+2a=ν1
a �=0

∑

λ∈P
pλ

ν�,r
Kso

λ,∅(q)

+
p−1∑

s=2

(−1)s−1 × qRs
∑

r+2a=Rs

∑

λ∈P
pλ

γ (s),rK
so
λ,∅(q)

)
,

(40)
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K
sp

ν,∅(q) = 1

1 − qν1

( ∑

r+2a=ν1
a �=0

qr+a
∑

λ∈P
pλ

ν�,r
K

sp

λ,∅(q)

+
p∑

s=2

(−1)s−1 ×
∑

r+2a=Rs

qr+a
∑

λ∈P
pλ

γ (s),rK
sp

λ,∅(q)

)

where the series Kso
λ,∅(q) and K

sp

λ,∅(q) appearing in the right hand sides are such that

|λ| < |ν| or, |λ| = |ν| and |λ�| < |μ�|. Thus formulas (40) permit to express the series
Kso

ν,∅(q) and K
sp

ν,∅(q) respectively in terms of the series Kso
λ,∅(q) and K

sp

λ,∅(q) with

|λ| < |ν| or, |λ| = |ν| and |λ�| < |μ�|. Observe that |λ| + |λ�| < |ν| + |ν�|. Hence one
can compute the series Kso

ν,∅(q) and K
sp

ν,∅(q) by induction on |ν| + |ν�| starting from

the obvious identity Kso
∅,∅(q) = K

sp

∅,∅(q) = 1.

Finally the series Kso
ν,μ(q) and K

sp
ν,μ(q) with μ �= ∅ can be computed by induction

on |ν| from the series Kso
ν,∅(q) and K

sp

ν,∅(q). We give in Proposition 5.4.1 explicit

formulas for Kso
ν,∅(q) and K

sp

ν,∅(q) when ν is a row or a column partition.

5.3 A duality between the series Kso
λ,∅(q) and K

sp

λ′,∅(q).

Proposition 5.3.1 For any partition λ we have the duality

Kso
λ,∅(q) = K

sp

λ′,∅(q)

between the limits of the orthogonal and symplectic Lusztig q-analogues correspond-
ing to the weight 0.

Proof We have

charq(H(so)) =
∏

i≥1

(1 − q2i ) charq(S(so))

and

charq(H(sp)) =
∏

i≥1

(1 − q2i ) charq(S(sp)).

Moreover by Corollary 3.2.4, ϕ(char(Sk(so))) = char(Sk(sp)) for any nonnegative
integer k. This implies the equality

ϕ(char(Hk(so))) = char(Hk(sp)) for any k ∈ N. (41)

Recall that

char(Hk(so)) =
∑

λ∈P
K

so,k
λ,∅ sso

λ and char(Hk(sp)) =
∑

λ∈P
K

sp,k

λ,∅ ssp

λ .

By using (41), this gives

char(Hk(sp)) =
∑

λ∈P
K

sp,k

λ,∅ ssp

λ =
∑

λ∈P
K

so,k
λ,∅ ssp

λ′ .
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Since the map

ι :
{
P → P,

λ �−→ λ′ (42)

is bijective, we must have K
sp,k

λ,∅ (q) = K
so,k
λ′,∅ (q) for any nonnegative integer k which

proves the proposition. �

Remark The duality of the previous theorem does not hold for the Lusztig q-
analogues, that is K

sp2n

λ,∅ (q) �= K
so2n+1
λ′,∅ (q) in general. Nevertheless we have

K
sp2n,k

λ,∅ (q) = K
soN ,k

λ′,∅ (q) when k ≤ n
2 according to Proposition 4.1.2.

5.4 Some explicit formulas

We give below some explicit formulas for the series Kso
ν,μ(q) and K

sp
ν,μ(q) when ν is

a column or a row partition. Note that we have not found such simple formulas for
the Lusztig q-analogues K

g
ν,μ(q) even in the case when ν is a row or a column.

Proposition 5.4.1 Consider l a nonnegative integer. Recall that (2l) and (12l ) are
the row and column partitions of length and height 2l, respectively. We have

K
sp

(2l),∅(q) = Kso

(12l ),∅(q) = ql

∏l
i=1(1 − q2i )

,

Kso
(2l),∅(q) = K

sp

(12l ),∅(q) = q2l

∏l
i=1(1 − q2i )

.

Proof We only give the proof for the first equality of the proposition. The proof for
the second one is similar.

We use the recurrence formula (40). We have then p = 1,R1 = 2l and γ (1) = ∅.
Thus pλ

γ (1),r �= 0 only when λ = (r) and in this case pr
γ (1),r = 1. This yields for any

l ≥ 1

K
sp

(2l),∅(q) = 1

1 − q2l

∑

r+2a=2l
r �=2l

qr+aK
sp

(r),∅(q) = ql

1 − q2l

l−1∑

b=0

qbK
sp

(2b),∅(q) (43)

where the last equality is obtained by setting r = 2b. By an immediate induction
starting from K

sp

∅,∅(q) = 1, one derives the desired formula

K
sp

(2l),∅(q) = ql

∏l
i=1(1 − q2i )

by using the identity

l−1∑

b=0

qbK
sp

(2b),∅(q) =
l−1∑

b=0

q2b

∏b
i=1(1 − q2i )

= 1
∏l−1

i=1(1 − q2i )
. (44)

We deduce then K
sp

(2l),∅(q) = Kso

(12l ),∅(q) from Theorem 5.3.1. �
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Corollary 5.4.2 Consider m a nonnegative integer and μ a partition with d nonzero
parts. Then

1. K
sp

(m),μ(q) �= 0 and Kso
(m),μ(q) �= 0 only if m − |μ| ∈ 2N. In this case

K
sp

(m),μ(q) = qh(μ)K
sp

(2l),∅(q) = qh(μ)+l

∏l
i=1(1 − q2i )

and

Kso
(m),μ(q) = qh(μ)Kso

(2l),∅(q) = qh(μ)+2l

∏l
i=1(1 − q2i )

where h(μ) = ∑
1≤i≤d(i − 1)μi and l = m−|μ|

2 .

2. K
sp

(1m),μ(q) �= 0 and Kso
(m),μ(q) �= 0 only if μ = (1p) with m − p ∈ 2N and in this

case

K
sp

(1m),(1p)(q) = K
sp

(12l ),∅(q) = q2l

∏l
i=1(1 − q2i )

and

Kso
(1m),(1p)(q) = Kso

(12l ),∅(q) = ql

∏l
i=1(1 − q2i )

where l = m−|p|
2 .

Proof 1. We proceed by induction on the number d of nonzero parts of μ. If d = 0,
the result follows from Proposition 5.4.1. Suppose d > 0 and apply the recurrence
formula (39). We have p = 1, R1 = m − μ1 and γ (1) = ∅. This gives

K
sp

(m),μ
(q) =

∑

r+2a=m−μ1

qr+aK
sp

(r),μ�(q).

Since K
sp

(r),μ�(q) = 0 when r <
∣∣μ�

∣∣, we can suppose r ≥ ∣∣μ�
∣∣ in the above sum. This

gives by using the induction hypothesis

K
sp

(m),μ(q) = qh(μ�)
∑

r+2a=m−μ1

qr+aK
sp

r−|μ�|,∅(q).

We must have r − ∣∣μ�
∣∣ ∈ 2N, thus we can set b = r−∣∣μ�

∣∣
2 . One then obtains

K
sp

(m),μ(q) = qh(μ�)

l∑

b=0

q
|μ|+m

2 +b−μ1K
sp

(2b),∅(q) = qh(μ)

l∑

b=0

ql+bK
sp

(2b),∅(q)
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where the last equality follows from the identities l = m−|μ|
2 and h(μ) = h(μ�) +

|μ| − μ1. By using (44), this gives

K
sp

(m),μ
(q) = qh(μ) × ql

∏l
i=1(1 − q2i )

= qh(μ)K
sp

(2l),∅(q).

The proof is similar for Kso
(m),μ(q).

2. By applying (39), we obtain this time p = 1, R1 = 0 and γ (1) = ∅. Hence

K
sp

(1m),(1p)(q) = K
sp

(1m−1),(1p−1)
(q).

By an immediate induction, this gives K
sp

(1m),(1p)(q) = K
sp

(1m−p),∅(q) = K
sp

(12l ),∅(q) and
our formula follows from Proposition 5.4.1. �

Remark Recurrence formulas (39) and (40) also permit to derive explicit formulas
when ν is not a row partition. For example we have

K
sp

(3,1),∅(q) = q3(1 + q + q2)

(1 − q2)(1 − q4)
, K

sp

(2,2),∅(q) = q2

(1 − q2)2
,

K
sp

(2,1,1),∅(q) = q3(1 + q2 + q3)

(1 − q2)(1 − q4)
.
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