ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes

Ronald C. King1 , Trevor A. Welsh2 and Stephanie J. Van Willigenburg3
1University of Southampton School of Mathematics University Road, Southampton Hampshire SO17 1BJ UK
2University of Toronto Department of Physics 60 St. George Street Toronto ON M5S 1A7 Canada
3University of British Columbia Department of Mathematics 1984 Mathematics Road Vancouver BC V6T 1Z2 Canada

DOI: 10.1007/s10801-007-0113-0

Abstract

Some new relations on skew Schur function differences are established both combinatorially using Schützenberger's jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive.

Pages: 139–167

Keywords: keywords Jacobi-trudi determinant; jeu de taquin; ribbon; Schubert calculus; Schur positive; skew Schur function; symmetric function

Full Text: PDF

References

1. Billera, L.J., Thomas, H., van Willigenburg, S.: Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions. Adv. Math. 204, 204-240 (2006)
2. Edelman, A., Elmroth, E., Kågström, B.: A geometric approach to perturbation theory of matrices and matrix pencils. Part II: A stratification-enhanced staircase algorithm. SIAM J. Matrix Anal. Appl. 20, 667-699 (1999)
3. Fomin, S., Fulton, W., Li, C.-K., Poon, Y.-T.: Eigenvalues, singular values, and Littlewood-Richardson coefficients. Am. J. Math. 127, 101-127 (2005)
4. Gessel, I.: Multipartite P -partitions and inner products of Schur functions. In: Greene, C. (ed.) Combinatorics and Algebra. Contemporary Mathematics, vol.
34. Am. Math. Soc., Providence (1984)
5. Gessel, I., Reutenauer, C.: Counting permutations with given cycle structure and descent set. J. Comb. Theory Ser. A 64, 189-215 (1993)
6. Gutschwager, C.: On multiplicity-free skew characters and the Schubert calculus. Ann. Comb., to appear
7. Hamel, A., Goulden, I.: Planar decompositions of tableaux and Schur function determinants. Eur. J. Comb. 16, 461-477 (1995)
8. Lam, T., Postnikov, A., Pylyavskyy, P.: Schur positivity and Schur log-concavity. Am. J. Math., to appear
9. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, New York (1995)
10. McNamara, P.: Personal communications (2006)
11. Manivel, L.: Symmetric Functions, Schubert Polynomials and Degeneracy loci. AMS Texts and Monographs. Am. Math. Soc., Providence (2001)
12. Okounkov, A.: Log-concavity of multiplicities with application to characters of U (\infty ). Adv. Math. 127, 258-282 (1997)
13. Reiner, V., Shaw, K.M., van Willigenburg, S.: Coincidences among skew Schur functions. Adv. Math.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition