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Abstract We introduce the Hopf algebra of uniform block permutations and show
that it is self-dual, free, and cofree. These results are closely related to the fact that
uniform block permutations form a factorizable inverse monoid. This Hopf algebra
contains the Hopf algebra of permutations of Malvenuto and Reutenauer and the Hopf
algebra of symmetric functions in non-commuting variables of Gebhard, Rosas, and
Sagan. These two embeddings correspond to the factorization of a uniform block
permutation as a product of an invertible element and an idempotent one.

Keywords Hopf algebra · Factorizable inverse monoid · Uniform block
permutation · Set partition · Symmetric functions · Schur-Weyl duality

1 Introduction

A uniform block permutation of [n] is a certain type of bijection between two set
partitions of [n]. When the blocks of both partitions are singletons, a uniform block
permutation is simply a permutation of [n]. Let Pn be the set of uniform block per-
mutations of [n] and Sn the subset of permutations of [n]. The set Pn is a monoid
in which the invertible elements are precisely the elements of Sn. These notions are
reviewed in Section 2.
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This paper introduces and studies a graded Hopf algebra based on the set of uni-
form block permutations of [n] for all n ≥ 0, by analogy with the graded Hopf algebra
of permutations of Malvenuto and Reutenauer [21].

Let V be a complex vector space. Classical Schur-Weyl duality states that the
symmetric group algebra can be recovered from the diagonal action of GL(V ) on
V ⊗n: if dimV ≥ n then

CSn
∼= EndGL(V )(V

⊗n) . (1)

Malvenuto and Reutenauer deduce from here the existence of a multiplication among
permutations as follows. Given σ ∈ Sp and τ ∈ Sq , view them as linear endomor-
phisms of the tensor algebra

T (V ) :=
⊕

n≥0

V ⊗n

by means of (1) (σ acts as 0 on V ⊗n if n �= p, similarly for τ ). The tensor algebra is
a Hopf algebra, so we can form the convolution product of any two linear endomor-
phisms:

T (V )
�−→ T (V ) ⊗ T (V )

σ⊗τ−−→ T (V ) ⊗ T (V )
m−→ T (V ) ,

where � and m are the coproduct and product of the tensor algebra. Since these two
maps commute with the action of GL(V ), the convolution of σ and τ belongs to
EndGL(V )(V

⊗n), where n = p + q . Therefore, there exists an element σ ∗ τ ∈ CSn

whose right action equals the convolution of σ and τ . This is the product of the
algebra of permutations. It turns out that a suitable coproduct can also be defined.
The result is the Hopf algebra of permutations of Malvenuto and Reutenauer.

The same argument can be applied to define a convolution product on the direct
sum of the centralizer algebras EndG(V ⊗n), starting from a linear action of a group
G on a vector space V . In this paper we consider one such instance in which in
addition a compatible coproduct can also be defined.

Consider the complex reflection group G(r,1,m). The monomial representation is
a certain linear action of this group on an m-dimensional space V (Section 3.1). A re-
sult of Tanabe identifies the centralizer of V ⊗n with the monoid algebra of uniform
block permutations (if r and m are big in comparison to n; see Proposition 3.1). The
convolution product is therefore defined on the space

⊕
n CPn. An explicit descrip-

tion of this operation, similar to that for the convolution product of permutations, is
given in Section 3.2, along with the definition of a compatible coproduct which turns
this space into a graded Hopf algebra (Theorem 3.6). The Hopf algebra of permuta-
tions is a Hopf subalgebra (Proposition 3.7).

Except for the description of CPn as a centralizer algebra, it is not necessary to
work over the complex numbers. Accordingly, we work from the start over an ar-
bitrary commutative ring k. All modules considered will be free (having in fact a
distinguished basis) and are therefore referred to as spaces.

The Hopf algebra structure of uniform block permutations is studied in Sec-
tion 4.1. Proposition 4.1 states that this Hopf algebra is self-dual. This result is related
to the fact that Pn carries an involution which turns it into an inverse monoid. This
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is moreover a factorizable inverse monoid, which refers to the fact that any element
is the product of an invertible element and an idempotent element. This is used in
Section 4.2 to define a partial order on Pn analogous to the weak order on Sn. Fol-
lowing [2], a second linear basis of the space kPn is defined in Section 4.3 by per-
forming Möbius inversion with respect to this partial order. The convolution product
admits a simple description on this basis (Proposition 4.4) from which it follows that
the algebra of uniform block permutations is free (and by self-duality also cofree)
(Corollary 4.5).

It turns out that the Hopf algebra of uniform block permutations contains another
distinguished Hopf subalgebra, namely the Hopf algebra of symmetric functions in
non-commutative variables (Theorem 5.1). This algebra was introduced by Wolf [31].
It is based on the set of set partitions of [n] for all n ≥ 0. Sagan brought it to the fore-
front in a series of papers with Gebhard and Rosas [11, 12, 23]. Bergeron, Hohlweg,
Rosas, and Zabrocki studied the Hopf algebra structure in [4, 5]. Connections be-
tween this and other combinatorial Hopf algebras are studied in [1]. The embedding
of this Hopf algebra is in a sense complementary to the embedding of the algebra of
permutations: permutations arise as the invertible elements of the monoid of uniform
block permutations, while set partitions arise as the idempotent elements therein. This
is discussed in Section 5.

This paper explores one aspect of the relationship between Schur-Weyl dual-
ity, diagram algebras, and inverse semigroups whose general study was started by
Solomon [27] and continued by several authors [13–15, 19]. We thank the referees
for bringing up these and other references to our attention.

2 Uniform block permutations

2.1 Set partitions

Let n be a non-negative integer and let [n] := {1,2, . . . , n}. A set partition of [n] is
a collection of non-empty disjoint subsets of [n], called blocks, whose union is [n].
For example, A = {{2,5,7}{1,3}{6,8}{4}}, is a set partition of [8] with 4 blocks. We
often specify a set partition by listing the blocks from left to right so that the sequence
formed by the minima of the blocks is increasing, and by listing the elements within
each block in increasing order. For instance, the set partition above will be denoted
A = {1,3}{2,5,7}{4}{6,8}. We use A 	 [n] to indicate that A is a set partition of
[n].

The type of a set partition A of [n] is the partition of n formed by the sizes of the
blocks of A. The symmetric group Sn acts on the set of set partitions of [n]: given
σ ∈ Sn and A 	 [n], σ(A) is the set partition whose blocks are σ(A) for A ∈ A. The
orbit of A consists of those set partitions of the same type as A. The stabilizer of A
consists of those permutations that preserve the blocks, or that permute blocks of the
same size. Therefore, the number of set partitions of type 1m12m2 . . . nmn (mi blocks
of size i) is

n!
m1! · · ·mn!(1!)m1 · · · (n!)mn

. (2)
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Fig. 1 Two graphs representing the same uniform block permutation

2.2 The monoid of uniform block permutations

The monoid (and the monoid algebra) of uniform block permutations has been stud-
ied by FitzGerald [10] and Kosuda [17, 18] in analogy to the partition algebra of
Jones and Martin [16, 22].

A block permutation of [n] consists of two set partitions A and B of [n] with
the same number of blocks and a bijection f : A → B. For example, if n = 3,
f ({1,3}) = {3} and f ({2}) = {1,2} then f is a block permutation. A block permuta-
tion is called uniform if it maps each block of A to a block of B of the same cardinal-
ity. For example, f ({1,3}) = {1,2}, f ({2}) = {3} is uniform. Each permutation may
be viewed as a uniform block permutation for which all blocks have cardinality 1. In
this paper we only consider block permutations that are uniform.

To specify a uniform block permutation f : A → B we must choose two set parti-
tions A and B of the same type 1m1 . . . nmn and for each i a bijection between the set
of blocks of size i of A and the set of blocks of size i of B. Since there are mi blocks
of size i, it follows from (2) that the total number of uniform block permutations of
[n] is

un :=
∑

1m1 ...nmn	n

(
n!

(1!)m1 · · · (n!)mn

)2 1

m1! · · ·mn! (3)

where the sum runs over all partitions of n. Starting at n = 0, the first values are

1,1,3,16,131,1496,22482, . . .

This is sequence A023998 in [25]. These numbers and generalizations are studied
in [24]; in particular, the following recursion is given in [24, equation (11)]:

un+1 =
n∑

k=0

(
n

k

)(
n + 1

k

)
uk , u0 = 1 .

We represent uniform block permutations by means of graphs. For instance, either
one of the two graphs in Figure 1 represents the uniform block permutation f given
by

{1,3,4} → {3,5,6}, {2} → {4}, {5,7} → {1,2}, {6} → {8}, and {8} → {7} .
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Fig. 2 Product of uniform block permutations

Different graphs may represent the same uniform block permutation. For a graph
to represent a uniform block permutation f :A → B of [n] the vertex set must consist
of two copies of [n] (top and bottom) and each connected component must contain
the same number of vertices on the top as on the bottom. The set partition A is read
off from the adjacencies on the top, B from those on the bottom, and f from those in
between.

The diagram of f is the unique representing graph in which all connected compo-
nents are cycles and the elements in each cycle are joined in order, as in the second
graph of Figure 1.

The set Pn of block permutations of [n] is a monoid. The product g · f of two
uniform block permutations f and g of [n] is obtained by gluing the bottom of a graph
representing f to the top of a graph representing g. The resulting graph represents a
uniform block permutation which does not depend on the graphs chosen. An example
is given in Figure 2. Note that gluing the diagram of f to the diagram of g may not
result in the diagram of g · f .

The identity is the uniform block permutation that maps {i} to {i} for all i. Viewing
permutations as uniform block permutations as above, we get that the symmetric
group Sn is a submonoid of Pn.

We recall a presentation of the monoid Pn given in [10, 17, 18]. Consider the
uniform block permutations bi and si with diagrams

bi = si =

The monoid Pn is generated by the elements {bi, si |1 ≤ i ≤ n − 1} subject to the
following relations:

(1) s2
i = 1, b2

i = bi , 1 ≤ i ≤ n − 1;
(2) sisi+1si = si+1sisi+1, sibi+1si = si+1bisi+1, 1 ≤ i ≤ n − 2;
(3) sisj = sj si , bisj = sj bi , |i − j | > 1;
(4) bisi = sibi = bi , 1 ≤ i ≤ n − 1;
(5) bibj = bjbi , 1 ≤ i, j ≤ n − 1.
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The submonoid generated by the elements si , 1 ≤ i ≤ n−1 is the symmetric group
Sn, viewed as a submonoid of Pn as above.

We will see in Sections 4.1 and 4.2 that Pn is a factorizable inverse monoid. There-
fore, a presentation for Pn may also be derived from the results of [9].

2.3 An ideal indexed by set partitions

Let kPn be the monoid algebra of Pn over a commutative ring k.
Given a set partition A 	 [n], let ZA ∈ kPn denote the sum of all uniform block

permutations f :A → B, where B varies:

ZA :=
∑

f :A→B
f . (4)

For instance,

Z{1,3}{2,4} = + + + + +

Given σ ∈ Sn and A 	 [n], the set partition σ(A) 	 [n] was defined in Section 2.1.
Given i ∈ [n], let Ai denote the set partition obtained by merging the blocks of i

and i + 1 of A and keeping the other blocks of A unaltered.

Proposition 2.1 Let A be a set partition of [n] and σ a permutation of [n]. Then

σ · ZA = ZA and ZA · σ = Zσ−1(A) .

In addition,

ZA · bi =
{

ZA if i and i + 1 belong to the same block of A(|A|+|A′|
|A|

)
ZAi

if i and i + 1 belong to different blocks A and A′ of A.

Proof Let f : A → B be a summand of ZA. Then σ · f : A → σ(B). Thus left
multiplication by σ preserves the set of uniform block permutations with domain A.
Since σ is invertible, this is a bijection. Therefore, σ · ZA = ZA. Similarly, right
multiplication by σ is a bijection from the set of uniform block permutations with
domain A to the set of uniform block permutations with domain σ−1(A). Hence
ZA · σ = Zσ−1(A).

Let A and A′ be the blocks of i and i +1 in the set partition A (they may coincide).
Multiplying the uniform block permutation f on the right by bi has the effect of
connecting the vertices i and i + 1 in A. The domain of f · bi is therefore the set
partition Ai and the codomain is the set partition B̄ obtained by merging the blocks
f (A) and f (A′) of B. Moreover, f · bi : Ai → B̄ is the uniform block permutation
such that (f · bi)(A ∪ A′) = f (A) ∪ f (A′) and (f · bi)(A

′′) = f (A′′) on every other
block A′′ of A.

On the other hand, let g : Ai → C be a uniform block permutation. The block
g(A ∪ A′) of C can be decomposed as the disjoint union of two subsets C and C′



J Algebr Comb (2008) 28: 115–138 121

with |C| = |A| and |C′| = |A′| in
(|A+A′|

|A|
)

ways. For each such decomposition there
is a unique set partition B and a unique uniform block permutation f : A → B such
that B̄ = C and f · bi = g. Therefore,

ZA · bi =
(|A + A′|

|A|
)

ZAi
. �

Let Zn denote the subspace of kPn linearly spanned by the elements ZA as A
runs over all set partitions of [n].
Corollary 2.2 Zn is a right ideal of the monoid algebra kPn.

3 The Hopf algebra of uniform block permutations

In this section we define the Hopf algebra of uniform block permutations. It contains
the Hopf algebra of permutations of Malvenuto and Reutenauer as a Hopf subalgebra.

3.1 Schur-Weyl duality for uniform block permutations

Let r and m be positive integers. Let Cr denote the cyclic group of order r with
generator t :

Cr := 〈t | t r = 1〉.
Consider the complex reflection group

G(r,1,m) := Cr � Sm .

Let V be the monomial representation of G(r,1,m). Thus, V is an m-dimensional
complex vector space with a basis {e1, e2, . . . , em} on which G(r,1,m) acts as fol-
lows:

t · e1 = e2πi/re1 , t · ei = ei for i > 1, and σ · ei = eσ(i) for σ ∈ Sm.

Consider now the diagonal action of G(r,1,m) on the tensor powers V ⊗n,

g · (ei1ei2 · · · ein) = (g · ei1)(g · ei2) · · · (g · ein) .

The centralizer of this representation has been calculated by Tanabe.

Proposition 3.1 [30] There is a right action of the monoid Pn on V ⊗n determined
by

(ei1 · · · ein) · bj = δ(ij , ij+1)ei1 · · · ein and (ei1 · · · ein) · σ = eiσ(1)
· · · eiσ(n)

for 1 ≤ i ≤ n − 1 and σ ∈ Sn. This action commutes with the left action of G(r,1,m)

on V ⊗n. Moreover, if m ≥ 2n and r > n then the resulting map

CPn → EndG(r,1,m)(V
⊗n) (5)

is an isomorphism of algebras.
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Fig. 3 Concatenation of
diagrams

As explained in the introduction, this result can be used to deduce the existence of
a product on the space

P :=
⊕

n≥0

kPn

for which the map

P → End(T (V ))

(resulting from (5)) is a morphism of algebras, where End(T (V )) is viewed as an
algebra under the convolution product. We proceed to describe the product on P in
explicit terms and to enlarge this structure to a graded connected Hopf algebra.

3.2 Product and coproduct of uniform block permutations

Let f and g be uniform block permutations of [p] and [q] respectively. Adding p to
every entry in the diagram of g and placing it to the right of the diagram of f we ob-
tain the diagram of a uniform block permutation of [p + q], called the concatenation
of f and g and denoted f × g. Figure 3 shows an example.

Let Sh(p, q) denote the set of (p, q)-shuffles, that is, those permutations ξ ∈ Sp+q

such that

ξ(1) < ξ(2) < · · · < ξ(p) and ξ(p + 1) < ξ(p + 2) < · · · < ξ(p + q) .

Let shp,q ∈ kSp+q denote the sum of all (p, q)-shuffles.
The product ∗ on P is defined by

f ∗ g := shp,q · (f × g) ∈ kPp+q (6)

for all f ∈ Pp and g ∈ Pq , and extended by linearity. It is easy to see that this product
corresponds to convolution of endomorphisms of the tensor algebra via the map (5),
when k = C.

For example,

∗ = + + +

+ +

The set P0 consists of the unique uniform block permutation of [0]. It is repre-
sented by the empty diagram, which we denote by ∅. It is the unit element for the
product ∗.
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A breaking point of a set partition B 	 [n] is an integer i ∈ {0,1, . . . , n} for which
there exists a subset S ⊆ B such that

⋃

B∈S

B = {1, . . . , i} and (hence)
⋃

B∈B\S
B = {i + 1, . . . , n} . (7)

Note that i = 0 and i = n are breaking points of any set partition B.
Given a uniform block permutation f : A → B, we say that i is a breaking point of

f if it is a breaking point of B, and we let B(f ) denote the set of breaking points of f .
If f is a permutation, that is if all blocks of f are of size 1, then B(f ) = {0,1, . . . , n}.
In terms of the diagram of f , i ∈ B(f ) if it is possible to put a vertical line between
the first i and the last n − i vertices in the bottom row without intersecting any edges
joining bottom vertices.

f = ⇒ B(f ) = {0,1,2,6,8}

Lemma 3.2 If i is a breaking point of f , then there exists a unique (i, n − i)-shuffle
ξ ∈ Sn and unique uniform block permutations f(i) ∈ Pi and f ′

(n−i) ∈ Pn−i such that

f = (f(i) × f ′
(n−i)) · ξ−1 .

Conversely, if such a decomposition exists, i is a breaking point of f .

We illustrate this statement with an example where i = 4 and ξ =
(

1 2 3 4 5 6
2 3 5 6 1 4

)
:

f = = ξ−1

Proof Suppose i is a breaking point of f :A → B. Let S be the subset of B as in (7).
Write

⋃

B∈S

f −1(B) = {a1, a2, . . . , ai} and
⋃

B∈B\S
f −1(B) = {ai+1, ai+2, . . . , an}

with 1 ≤ a1 < a2 < · · · < ai, ai+1 < ai+2 < · · · < an ≤ n. Define ξ ∈ Sh(i, n − i) by

ξ(r) = ar for r = 1, . . . , n.

By construction, any element of [i] is connected only to elements of [i] in the diagram
of f · ξ . Therefore, there exist f(i) ∈ Pi and f ′

(n−i) ∈ Pn−i such that f · ξ = f(i) ×
f ′

(n−i).
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Assume that such a decomposition is given. Since i is a breaking point of f(i) ×
f ′

(n−i) and the codomain of f · ξ is the same as the codomain of f , we have that i is a
breaking point of f . Hence we must have ξ([i]) = {a1, a2, . . . , ai}, which makes the
shuffle ξ unique. Then f(i) and f ′

(n−1) are determined from f · ξ = f(i) × f ′
(n−i). �

We are now ready to define the coproduct on P . Given f ∈ Pn set

�(f ) :=
∑

i∈B(f )

f(i) ⊗ f ′
(n−i), (8)

where f(i) and f ′
(n−i) are as in Lemma 3.2. An example follows.

f =

�(f ) = f ⊗ ∅ + ⊗ + ⊗ + ∅ ⊗ f.

We define the counit ε :P → k by

ε(f ) =
{

1 if f = ∅ ∈ P0,

0 if f ∈ Pn, n ≥ 1.

Remark 3.3 Recall that an element x ∈ P is called primitive if �(x) = x ⊗ ∅ + ∅ ⊗
x. Every uniform block permutation with breaking set {0, n} is primitive, but there
are other primitive elements in P . For example, the following element of kP3 is
primitive:

−
The primitive elements of P are determined in Section 4.3.

For the proof of the next theorem we need the following element of the symmetric
group. Given p,q ≥ 0, let ξp,q ∈ Sp+q be the permutation

ξp,q :=
(

1 2 . . . p p + 1 p + 2 . . . p + q

q + 1 q + 2 . . . q + p 1 2 . . . q

)
. (9)

This is a (p, q)-shuffle (it is in fact the maximum element of Sh(p, q) under the weak
order; see Section 4.2). The diagram of ξ3,4 is shown below.

The inverse of ξp,q is ξq,p . Let 1n ∈ Sn denote the identity permutation. We need
the following familiar properties.
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Lemma 3.4 Let p,q ≥ 0. For any f ∈ Pq , g ∈ Pq , we have

ξp,q · (f × g) = (g × f ) · ξp,q . (10)

Lemma 3.5 Let a, b, c, d ≥ 0. For any shuffles ξ1 ∈ Sh(a, b) and ξ2 ∈ Sh(c, d), the
permutation

(ξ1 × ξ2) · (1a × ξc,b × 1d)

is an (a + c, b + d)-shuffle. Conversely, let p,q, r, s ≥ 0 be such that

p + q = r + s.

Given a shuffle ξ ∈ Sh(p, q), there are unique numbers a, b, c, d ≥ 0 and unique
shuffles ξ1 ∈ Sh(a, b) and ξ2 ∈ Sh(c, d) such that

a + b = r, c + d = s, a + c = p, b + d = q,

and

ξ = (ξ1 × ξ2) · (1a × ξc,b × 1d).

Proof The first assertion is straightforward. For the converse, given ξ ∈ Sh(p, q), we
have

ξ−1({1, . . . , r}) = {1, . . . , a} ∪ {p + 1, . . . , p + b}
for some a, b ≥ 0 such that a ≤ p, b ≤ q , and a + b = r (since ξ is increasing on
{1, . . . , p} and on {p+1, . . . , p+q}). Let c = p−a and d = q −b. A straightforward
calculation shows that

ξ · (1a × ξb,c × 1d) = ξ1 × ξ2

for some shuffles ξ1 ∈ Sh(a, b) and ξ2 ∈ Sh(c, d). This proves existence. The num-
bers a and b are uniquely determined from ξ−1({1, . . . , r}) as above, and then c, d

and ξ1, ξ2 are determined as well. �

Theorem 3.6 The graded vector space P equipped with the product ∗, coproduct �,
unit ∅, and counit ε, is a graded connected Hopf algebra.

Proof Associativity and coassociativity follow from basic properties of shuffles (for
the product one may also appeal to (5) and associativity of the convolution product).
The existence of the antipode is guaranteed in any graded connected bialgebra. The
compatibility between � and ∗ requires a special argument.

Take f ∈ kPp and g ∈ kPq . On the one hand we have

�(f ∗ g)
(6)=

∑

ξ∈Sh(p,q)

�
(
ξ · (f × g)

)(8)=
∑

ξ∈Sh(p,q)
r∈B(ξ ·(f ×g))

α ⊗ β,
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here we have written, for each breaking point r ∈ B(ξ · (f × g)),

ξ · (f × g) · η = α × β, (11)

where α ∈ kPr , β ∈ kPp+q−r , and η ∈ Sh(r,p + q − r) are the unique elements
afforded by Lemma 3.2.

On the other hand, we have

�(f ) ∗ �(g) =
∑

a∈B(f )
b∈B(g)

(f ′
(a) ∗ g′

(b)) ⊗ (f ′′
(p−a) ∗ g′′

(q−b))

=
∑

ξ1∈Sh(a,b)

ξ2∈Sh(p−a,q−b)

∑

a∈B(f )
b∈B(g)

ξ1 · (f ′
(a) × g′

(b)) ⊗ ξ2 · (f ′′
(p−a) × g′′

(q−b)).

Here, for each pair of breaking points a ∈ B(f ) and b ∈ B(g), we have written

f · η1 = f ′
(a) × f ′′

(p−a) and g · η2 = g′
(b) × g′′

(q−b), (12)

as in Lemma 3.2, with η1 ∈ Sh(a,p − a) and η2 ∈ Sh(b, q − b).
We show that any summand in �(f )∗�(g) also occurs in �(f ∗g) and viceversa.
Given breaking points a, b and shuffles η1, η2 as in (12), define

η := (η1 × η2) · (1a × ξb,p−a × 1q−b).

In addition, given shuffles ξ1 ∈ Sh(a, b) and ξ2 ∈ Sh(p − a, q − b), define

ξ := (ξ1 × ξ2) · (1a × ξp−a,b × 1q−b).

Then η ∈ Sh(a + b,p + q − a − b) and ξ ∈ Sh(p, q), by Lemma 3.5. Moreover, we
have:

ξ · (f × g) · η = (ξ1 × ξ2) · (1a × ξp−a,b × 1q−b) · (f × g)

· (η1 × η2) · (1a × ξb,p−a × 1q−b)

= (ξ1 × ξ2) · (1a × ξp−a,b × 1q−b) · (f · η1) × (g · η2)

· (1a × ξb,p−a × 1q−b)

(12)= (ξ1 × ξ2) · (1a × ξp−a,b × 1q−b) · (f ′
(a) × f ′′

(p−a) × g′
(b) × g′′

(q−b))

· (1a × ξb,p−a × 1q−b)

(10)= (ξ1 × ξ2) · (f ′
(a) × g′

(b) × f ′′
(p−a) × g′′

(q−b))

=
(
ξ1 × (f ′

(a) × g′
(b))

)
×

(
ξ2 × (f ′′

(p−a) × g′′
(q−b))

)
.

Therefore, by Lemma 3.2, a + b is a breaking point of ξ · (f × g), and by (11),

ξ1 × (f ′
(a) × g′

(b)) = α and ξ2 × (f ′′
(p−a) × g′′

(q−b)) = β.
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This shows that every summand in �(f ) ∗ �(g) also occurs in �(f ∗ g).
Now assume that we are given a shuffle ξ and a breaking point r as in (11). We

have to show that the summand α ⊗ β of �(f ∗ g) also appears in �(f ) ∗ �(g). Let
s := p +q − r . Applying Lemma 3.5 we find numbers a, b and shuffles ξ1 ∈ Sh(a, b)

and ξ2 ∈ Sh(p − a, q − b) such that a + b = r and

ξ = (ξ1 × ξ2) · (1a × ξp−a,b × 1q−b).

We first claim that a is a breaking point of f and b is a breaking point of g.
Consider the diagram of f . Suppose there is an edge connecting one of the first a

bottom vertices to one of the last p − a bottom vertices. Say the former is i and
the latter is j . Then in the diagram of ξ · (f × g) there is an edge connecting the
bottom vertices ξ(i) and ξ(j). But this contradicts the fact that r is a breaking point
of ξ · (f × g), since from the proof of Lemma 3.5 we know that ξ(i) ∈ {1, . . . , r} and
ξ(j) ∈ {r + 1, . . . , r + s}.

Thus a ∈ B(f ), and similarly b ∈ B(g). Therefore, we can write

f = (f ′
(a) × f ′′

(p−a)) · η−1
1 and g = (g′

(b) × g′′
(q−b)) · η−1

2 ,

where the elements in the right hand side are afforded by Lemma 3.2. We calculate:

ξ · (f × g) = (ξ1 × ξ2) · (1a × ξp−a,b × 1q−b)

·
(
(f ′

(a) × f ′′
(p−a)) · η−1

1

)
×

(
(g′

(b) × g′′
(q−b)) · η−1

2

)

= (ξ1 × ξ2) · (1a × ξp−a,b × 1q−b)

· (f ′
(a) × f ′′

(p−a) × g′
(b) × g′′

(q−b)) · (η−1
1 × η−1

2 )

(10)= (ξ1 × ξ2) · (f ′
(a) × g′

(b) × f ′′
(p−a) × g′′

(q−b))

· (1a × ξp−a,b × 1q−b) · (η−1
1 × η−1

2 )

=
((

ξ1 · (f ′
(a) × g′

(b))
) × (

ξ2 · (f ′′
(p−a) × g′′

(q−b))
))

· (1a × ξp−a,b × 1q−b) · (η−1
1 × η−1

2 ).

By Lemma 3.5, the permutation (1a × ξp−a,b × 1q−b) · (η−1
1 × η−1

2 ) is the inverse of
an (a + b,p + q − a − b)-shuffle. Therefore, by the uniqueness in Lemma 3.2,

η = (η1 × η2) · (1a × ξb,p−a × 1q−b), α = (
ξ1 · (f ′

(a) × g′
(b)), and

β = ξ2 · (f ′′
(p−a) × g′′

(q−b)) .

This proves that the summand α ⊗ β appears in �(f ) ∗ �(g). �
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Consider the following graded subspace of P :

S :=
⊕

n≥0

kSn .

As mentioned in the introduction, the space S carries a Hopf algebra structure, first
defined by Malvenuto and Reutenauer [21]. The following result follows by compar-
ing (6) and (8) with the definitions in [21].

Proposition 3.7 S is a Hopf subalgebra of P .

Let σ be a permutation. In the notation of [2], the element σ ∈ S corresponds to
the basis element F ∗

σ of SSym∗, or equivalently to the element Fσ−1 of SSym.

4 Hopf algebra structure of P

4.1 Inverse monoid structure and self-duality

As S , the Hopf algebra P is self-dual. To see this, recall that a block permutation is
a bijection f : A → B between two set partitions of [n]. Let f̃ : B → A denote the
inverse bijection. If f is uniform then so is f̃ . The diagram of f̃ ∈ Pn is obtained by
reflecting the diagram of f across a horizontal line. Note that for σ ∈ Sn ⊆ Pn we
have σ̃ = σ−1.

The operation f �→ f̃ is relevant to the monoid structure of Pn. Indeed, the fol-
lowing properties are satisfied

f = f f̃ f and f̃ = f̃ f f̃ .

Together with (13) below, these properties imply that Pn is an inverse monoid [7,
Theorem 1.17]. The following properties are consequences of this fact [7, Lemma
1.18]:

f̃g = g̃f̃ ,
˜̃

f = f

(they can also be verified directly). It follows that σ̃ · f = f̃ · σ−1.
The operation f �→ f̃ is also relevant to the Hopf algebra structure of P . Let P∗

be the graded dual space of P :

P∗ =
⊕

n≥0

(kPn)
∗ .

Let {f ∗ | f ∈ Pn} be the basis of (kPn)
∗ dual to the basis Pn of kPn. The product on

P∗ for f ∗ ∈ (kPn)
∗ and g∗ ∈ (kPm)∗ is given by

f ∗ ∗ g∗ =
∑

ξ∈Sh(n,m)

(f × g)∗ · ξ−1.
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Let � : P∗ →P be the linear map such that

�(f ∗) := f̃ .

Proposition 4.1 The map � : P∗ → P is an isomorphism of graded Hopf algebras.
In addition, �∗ = �.

Proof We have

�(f ∗ ∗ g∗) =
∑

ξ∈Sh(n,m)

�
(
(f × g)∗ · ξ−1)

=
∑

ξ∈Sh(n,m)

ξ̃−1 · ˜(f × g)

=
∑

ξ∈Sh(n,m)

ξ · (f̃ × g̃) = �(f ) ∗ �(g) .

Thus � preserves products. Since ˜ is an involution, �∗ = �, and hence � preserves
coproducts as well. �

4.2 Factorizable monoid structure and the weak order

Let En denote the poset of set partitions of [n]: we say that A ≤ B if every block of B
is contained in a block of A. This poset is a lattice, and this structure is related to the
monoid structure of uniform block permutations as follows. If idA : A → A denotes
the uniform block permutation which is the identity map on the set of blocks of A,
then

idA · idB = idA∧B . (13)

In other words, viewing En as a monoid under the meet operation ∧, the map

En → Pn , A �→ idA ,

is a morphism of monoids.
Any uniform block permutation f ∈ Pn decomposes (non-uniquely) as

f = σ · idA (14)

for some σ ∈ Sn and A ∈ En. Note that σ is invertible and idA is idempotent, by (13).
It follows that Pn is a factorizable inverse monoid [6, Section 2], [20, Chapter 2.2].
Moreover, by Lemma 2.1 in [6], any invertible element in Pn belongs to Sn and any
idempotent element in Pn belongs to (the image of) En. This lemma also guarantees
that in (14), the idempotent idA is uniquely determined by f (which is clear since A
is the domain of f ). On the other hand, σ is not unique, and we will make a suitable
choice of this factor to define a partial order on Pn.
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Consider the action of Sn on Pn by left multiplication. Given A ∈ En, the orbit of
idA consists of all uniform block permutations f : A → B with domain A, and the
stabilizer is the parabolic subgroup

SA := {σ ∈ Sn | σ(A) = A ∀A ∈ A} .

Consider the set of A-shuffles:

Sh(A) := {ξ ∈ Sn | if i < j are in the same block of A then ξ(i) < ξ(j)} .

It is well-known that these permutations form a set of representatives for the left
cosets of the subgroup SA. Therefore, given a uniform block permutation f :A → B
there is a unique A-shuffle ξf such that

f = ξf · idA . (15)

We use this decomposition to define a partial order on Pn as follows:

f ≤ g ⇐⇒ f and g have the same domain and ξf ≤ ξg , (16)

where the partial order on the right hand side is the left weak order on Sn (see for
instance [2]). We refer to this partial order as the weak order on Pn. Thus, Pn is the
disjoint union of certain subposets of the weak order on Sn:

Pn
∼=

⊔

A	[n]
Sh(A)

(in fact, each Sh(A) is a lower order ideal in Sn). Figures 4–8 show 5 of the 15
components of P4. Note that even when A and B are set partitions of the same type
the posets Sh(A) and Sh(B) need not be isomorphic.

The partial order we have defined on Pn should not be confused with the nat-
ural partial order which is defined on any inverse semigroup [8, Chapter 7.1], [20,
Chapter 1.4].

Remark 4.2 As observed by Sloane [25], there is a connection between uniform block
permutations and the patience games of Aldous and Diaconis [3]. A patience game
is played as follows. Start from a deck of cards numbered 1, . . . , n and arranged in
any order. At each step, draw a card from the top of the deck and either place it on
an existing pile which shows a bigger card, or start a new pile (there are thus several
choices at each step). The initial deck is a permutation of [n] and the resulting piles
form a set partition of [n]. Suppose ξ ∈ Sn. The set partitions A such that ξ ∈ Sh(A)

are precisely the possible outputs of patience games played from a deck of cards with
ξ−1(1) in the bottom, followed by ξ−1(2), up to ξ−1(n) on the top. Thus, uniform
block permutations are in bijection with the pairs consisting of the input and the
output of a patience game via (ξ,A) ↔ ξ · idA.
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Fig. 4 The component of P4 corresponding to A= {1,2}{3}{4}

Fig. 5 The component of P4 corresponding to A= {1}{2,3}{4}

4.3 The second basis and the Hopf algebra structure

We use the weak order on Pn to define a new linear basis of the spaces kPn, on which
the algebra structure of P is simple. We follow the ideas of [2], where the same
procedure was applied to the Hopf algebra of Malvenuto and Reutenauer. The same
Möbius inversion trick has been employed frequently in inverse semigroup represen-
tation theory with a variety of purposes [19, 26–29].
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Fig. 6 The component of P4 corresponding to A= {1,4}{2}{3}

Fig. 7 The component of P4
corresponding to
A= {1,3}{2}{4}

Fig. 8 The component of P4
corresponding to
A= {1,4}{2,3}

For each element g ∈ Pn let

Xg :=
∑

f ≤g

f . (17)
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By Möbius inversion, the set {Xg | g ∈ Pn} is a linear basis of Pn.
Note that all uniform block permutations f in the right hand side of (17) share the

same domain A 	 [n], by (16).

Given set partitions A 	 [p] and B 	 [q], let A × B be the set partition of [p +
q] whose blocks are the blocks of A and the blocks {b + p |b ∈ B} where B is a
block of B. For example, if A = {1,3,4}{2,5}{6} 	 [6] and B = {1,4}{2}{3,5} 	
[5], then A × B = {1,3,4}{2,5}{6}{7,10}{8}{9,11} 	 [11]. This is compatible with
concatenation of uniform block permutations in the sense that if A is the (co)domain
of f and B is the (co)domain of g, then A × B is the (co)domain of f × g. In
particular,

idA × idB = idA×B .

Recall the maximum (p, q)-shuffle ξp,q from (9).

Lemma 4.3 Let λ : Sh(p, q) × Sh(A) × Sh(B) −→ Sh(A×B) be defined by

λ(ξ, σ, τ ) := ξ · (σ × τ) .

Endow each set of shuffles with the weak order. Then

(i) λ is bijective;
(ii) λ−1 is order preserving, that is,

ξ · (σ × τ) ≤ ξ ′ · (σ ′ × τ ′) =⇒ ξ ≤ ξ ′, σ ≤ σ ′, and τ ≤ τ ′ ;
(iii) λ is order preserving when restricted to any of the following sets:

{ξp,q} × Sh(A) × Sh(B), {1p+q} × Sh(A) × Sh(B), or Sh(p, q) × {(σ, τ )} ,

for any σ ∈ Sh(A), τ ∈ Sh(B).

Proof The proof is similar to that of Proposition 2.5 in [2]. �

The product of P takes the following simple form on the X-basis.

Proposition 4.4 Let g1 ∈ Pp1 and g2 ∈ Pp2 be uniform block permutations. Then

Xg1 ∗ Xg2 = Xξp,q ·(g1×g2) .

Proof We have:

Xg1 ∗ Xg2

(17)=
∑

f1≤g1
f2≤g2

f1 ∗ f2
(6)=

∑

ξ∈Sh(p1,p2)

∑

f1≤g1
f2≤g2

ξ · (f1 × f2) .

Let Ai be the domain of gi , i = 1,2. Choose ξ ∈ Sh(p1,p2) and fi ≤ gi in Ppi
,

i = 1,2. Then Ai is the domain of fi , and by (15),

fi = ξfi
· idAi

.
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Hence

ξ · (f1 × f2) = ξ · (ξf1 × ξf2) · (idA1 × idA2) .

Since fi ≤ gi , we have ξfi
≤ ξgi

, by (16). Therefore, by Lemma 4.3.(iii),

ξ · (ξf1 × ξf2) ≤ ξp,q · (ξg1 × ξg2) .

Hence, by (16),

ξ · (f1 × f2) ≤ ξp,q · (g1 × g2) .

Thus every summand in Xg1 ∗ Xg2 occurs in Xξp,q ·(g1×g2).
Conversely, let f be a summand in Xξp,q ·(g1×g2). Since the domain of ξp,q · (g1 ×

g2) is A1 ×A2, we have f = ξf · idA1×A2 . Hence

ξf ≤ ξp,q · (ξg1 × ξg2)

and from (i) and (ii) in Lemma 4.3 we obtain ξ ∈ Sh(p1,p2), σi ∈ Sh(Ai ) such that

σi ≤ ξgi
and ξf = ξ · (σ1 × σ2) .

Let fi := σi · idAi
. Then

fi ≤ gi and f = ξ · (f1 × f2) ,

which shows that every summand in Xξp,q ·(g1×g2) occurs in Xg1 ∗ Xg2 . �

From Propositions 4.4 and 4.1 we deduce:

Corollary 4.5 The Hopf algebra P is free as an algebra and cofree as a graded
coalgebra.

Let V denote the space of primitive elements of P . It follows that the generating
series of P and V are related by

P(x) = 1

1 − V (x)
.

Since

P(x) = 1 + x + 3x2 + 16x3 + 131x4 + 1496x5 + 22482x6 + · · ·
we deduce that

V (x) = x + 2x2 + 11x3 + 98x4 + 1202x5 + 19052x6 + · · · .

Let X∗
f be the linear basis of P∗ dual to the basis Xf of P and let Mf be the image

of X∗
f under the isomorphism � : P∗ → P of Proposition 4.1. Explicitly, the basis

Mf is uniquely determined by the equations

f̃ =
∑

f ≤g

Mg
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that hold for every f ∈P . It follows that the elements Mf , as f runs over all uniform
block permutations that cannot be decomposed as

f = ξp,q · (f1 × f2)

with p and q > 0, form linear basis of the space of primitive elements of P . A uni-
form block permutation f ∈ Pn can be decomposed in this manner if and only if there
is 0 < p < n such that the first p elements of the domain of f are not connected to
any of the first n − p elements of the codomain. A permutation σ ∈ Sn satisfies this
condition if and only if σ has a global descent at p, in agreement with [2, Corollary
6.3].

Remark 4.6 A similar conclusion may be derived by introducing another basis

Zg :=
∑

g≤f

f .

This has the property that

Zg1 ∗ Zg2 = Zg1×g2 .

Note that ZidA is the element ZA introduced in (4) and so denoted throughout Sec-
tion 2.3.

5 The Hopf algebra of symmetric functions in non-commuting variables

Let X be a countable set, the alphabet. A word of length n is a function w : [n] → X.
Let k〈〈X〉〉 be the algebra of non-commutative power series on the set of variables X.
Its elements are infinite linear combinations of words, finitely many of each length,
and the product is concatenation of words.

The kernel of a word w of length n is the set partition K(w) of [n] whose blocks
are the non-empty fibers of w. Order the set of set partitions of [n] by refinement, as
in Section 4.2. For each set partition A of [n], let

pA :=
∑

K(w)≤A

w ∈ k〈〈X〉〉 .

This is the sum of all words w such that if i and j are in the same block of A then
w(i) = w(j). For instance

p{1,3}{2,4} = xyxy + xzxz + yxyx + · · · + x4 + y4 + z4 + · · · .

The subspace of k〈〈X〉〉 linearly spanned by the elements pA as A runs over all set
partitions of [n], n ≥ 0, is a subalgebra � of k〈〈X〉〉, graded by length. The elements
of � can be characterized as those power series of finite degree that are invariant
under any permutation of the variables. � is the algebra of symmetric functions in
non-commuting variables introduced by Wolf [31] and recently studied by Gebhard,
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Rosas, and Sagan [11, 12, 23] in connection to Stanley’s chromatic symmetric func-
tion.

The algebra � is in fact a graded Hopf algebra [1, 4, 5]. The coproduct is defined
via evaluation of symmetric functions on two copies of the alphabet X. In order to
describe the product and coproduct of � on the basis elements pA we introduce some
notation.

To a set partition A 	 [n] and a subset of blocks S ⊆ A we associate a new set
partition AS as follows. Write

⋃

A∈S

A = {j1, · · · , js} ⊆ [n]

with j1 < · · · < js . The set S is a partition of {j1, · · · , js}. We turn it into a
partition AS of [s] by replacing each ji by i for 1 ≤ i ≤ m and preserving the
block structure. For instance, if A = {1,5}{2,4,6}{3,7} and S = {1,5}{3,7}, then
AS = {1,3}{2,4} 	 [4].

The product and coproduct of � are given by

pApB = pA×B ,

�(pA) =
∑

S�T =A
pAS

⊗ pAT
,

the sum over all decompositions of A into disjoint sets of blocks S and T . For exam-
ple, if A = {1,2,6}{3,5}{4}, then

�(pA) = pA ⊗ 1 + p{1,2,5}{3,4} ⊗ p{1} + p{1,2,4}{3} ⊗ p{1,2} + p{1,3}{2} ⊗ p{1,2,3}
+ p{1,2,3} ⊗ p{1,3}{2} + p{1,2} ⊗ p{1,2,4}{3}
+ p{1} ⊗ p{1,2,5}{3,4} + 1 ⊗ pA .

Consider now the direct sum of the subspaces Zn of kPn introduced in Section 2.3:

Z :=
⊕

n≥0

Zn ⊂ P .

The elements ZA defined in (4) form a linear basis of Zn.

Theorem 5.1 Z is a Hopf subalgebra of P . Moreover, the map

� : Z → �, �(ZA) := pA

is an isomorphism of graded Hopf algebras.

Proof Recall from Remark 4.6 that ZA = ZidA , and therefore

ZA ∗ ZB = ZA×B .

Thus � is a morphism of algebras.
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To prove that � is a morphism of coalgebras we need to show that

�(ZA) =
∑

S�T =A
ZAS

⊗ ZAT

for every set partition A 	 [n]. We have

ZA =
∑

idA≤f

f =
∑

ξ∈Sh(A)

ξ · idA

and hence

ZAS
=

∑

σ∈Sh(AS)

σ · idAS
and ZAT

=
∑

τ∈Sh(AT )

τ · idAT
.

Fix a decomposition A = S �T and consider the summand in ZAS
⊗ZAT

indexed
by shuffles σ ∈ Sh(AS) and τ ∈ Sh(AT ). Out of this data we construct shuffles η and
ξ as follows. First we write

⋃

A∈S

A = {j1, · · · , js} and
⋃

A∈T

A = {k1, · · · , kt }

with j1 < · · · < js and k1 < · · · < kt . We let η be the unique (s, t)-shuffle such that
η([s]) = {j1, · · · , js} (and hence η([s + 1, n]) = {k1, · · · , kt }), and we define ξ by

ξ(ji) = σ(i) ∀ i ∈ [s] and ξ(ki) = s + τ(i) ∀ i ∈ [t] .
Then ξ is increasing in each block of A, so ξ ∈ Sh(A), and by construction

ξ · idA · η = (σ · idAS
) × (τ · idAT

) .

Therefore, by Lemma 3.2, s is a breaking point of ξ · idA, and by (8), (σ · idAS
) ⊗

(τ · idAT
) is a summand in �(ZA).

A similar argument shows that, conversely, every summand in �(ZA) occurs in
this manner. �

Thus the Hopf algebra of uniform block permutations P contains the Hopf algebra
� of symmetric functions in non-commuting variables. Note also that this reveals the
existence of a second operation on �: according to Corollary 2.2, each homogeneous
component �n carries an associative non-unital product that turns it into a right ideal
of the monoid algebra kPn.
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