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Abstract In the study of Lie powers of a module V in prime characteristic p, a ba-
sic role is played by certain modules Bn introduced by Bryant and Schocker. The
isomorphism types of the Bn are not fully understood, but these modules fall into
infinite families {Bk,Bpk,Bp2k, . . .}, one family B(k) for each positive integer k not
divisible by p, and there is a recursive formula for the modules within B(k). Here
we use combinatorial methods and Witt vectors to show that each module in B(k) is
isomorphic to a direct sum of tensor products of direct summands of the kth tensor
power V ⊗k .

Keywords Free Lie algebra · Lie power · Tensor power · Witt vector

1 Introduction

Let G be a group and F a field. For any finite-dimensional FG-module V , let L(V )

be the free Lie algebra on V (the free Lie algebra generated by any basis of V ),
and regard L(V ) as an FG-module on which each element of G acts as a Lie al-
gebra automorphism. Each homogeneous component Ln(V ) is a finite-dimensional
submodule of L(V ), called the nth Lie power of V .

The central problem on Lie powers is to describe the modules Ln(V ) up to iso-
morphism. We refer to [3] and the papers cited there for details of progress on this
problem. As would be expected, the results are best when F has characteristic 0. The
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harder case, which we concentrate on in this paper, is when F has prime characteris-
tic p.

One of the fundamental results in characteristic p is the ‘Decomposition Theorem’
of Bryant and Schocker [3], stated as Theorem 2.1 below. This reduces the study of
arbitrary Lie powers of V to the study of certain Lie powers of p-power degree,
namely, Lie powers Lpi

(Bn), where, for each n, Bn is a certain direct summand of
the nth tensor power V ⊗n.

Let us write n = pmk, where k is not divisible by p. In [4], a recursive formula
was given for the modules Bk , Bpk , Bp2k , . . . , up to isomorphism. We state this as
Theorem 2.2 below. However, the formula is rather intractable. It involves the Witt
polynomials (as used to define operations on the ring of Witt vectors) and gives the
Bpmk only as the components of a Witt vector with known ‘ghost’ components. The
results of [3] and [4] give no explicit information about the modules Bpmk except
that, as already mentioned, Bpmk is a direct summand of V ⊗pmk . In this paper we
shall give much more precise information.

As a motivating example, consider the case where k = 2 and p = 3. Thus we take
F of characteristic 3. It is well known and easily seen that V ⊗2 ∼= S2(V ) ⊕ ∧2(V ),
where S2(V ) is the symmetric square of V and ∧2(V ) is the exterior square. The
recursive formula from [4] gives B2 ∼= L2(V ) and 3B6 ⊕ B⊗3

2
∼= L2(V ⊗3), where

3B6 denotes the direct sum of 3 isomorphic copies of B6. Hence B2 ∼= ∧2(V ) and it
can be shown that

B6 ∼= S2(V ) ⊗ S2(V ) ⊗ ∧2(V ). (1.1)

We shall verify this in Section 4 (see Example 4.4). Examples like this suggested that,
in general, Bpmk is isomorphic to a direct sum of tensor products of direct summands
of V ⊗k , although we had no a priori reason to suspect this. The purpose of this paper
is to prove this fact.

We shall see that V ⊗k ∼= ⊕
d|k φ(d)Uk,d , for certain modules Uk,d indexed by the

divisors d of k, where φ denotes Euler’s function and φ(d)Uk,d denotes the direct
sum of φ(d) isomorphic copies of Uk,d . Thus

V ⊗pmk ∼= (V ⊗k)⊗pm ∼=
⊕

λ∈�

Uk,λ(1) ⊗ · · · ⊗ Uk,λ(pm),

where � is a finite set indexing a family of pm-tuples (λ(1), . . . , λ(pm)) with
λ(1), . . . , λ(pm) ∈ {d : d | k}. Our main result, Theorem 4.2, states that there is a
subset �0 of � such that

Bpmk
∼=

⊕

λ∈�0

Uk,λ(1) ⊗ · · · ⊗ Uk,λ(pm).

This is, of course, much stronger than the statement that Bpmk is isomorphic to a
direct summand of V ⊗pmk .

In Theorem 4.3 we shall obtain a version of Theorem 4.2 in which the modules
Uk,d are replaced by a set of modules indexed only by those divisors c of k such that
c and k/c are coprime. This is a sharpening of Theorem 4.2 in the case where k is not
square-free (that is, where k is divisible by the square of some prime).
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The modules Uk,d are of well-established interest. They are given by the
eigenspaces of the action of a cycle of length k in the symmetric group Sym(k) of
degree k acting by permutation of the factors of V ⊗k . These modules have appeared
repeatedly, in various guises, in the theory of free Lie algebras and the representa-
tion theory of groups. They correspond to the FSym(k)-modules induced from one-
dimensional modules for the cyclic subgroup generated by a k-cycle, as considered
in [12, Chapter 8].

Section 2 contains basic results about the Uk,d and some related modules. The
main results on the modules Bpmk are obtained in Section 4. However, the proofs
of these results rest heavily on Section 3, which is largely combinatorial. We study
certain polynomials defined in an arithmetic way and apply methods from elementary
number theory, combinatorics and the theory of Witt vectors.

2 Summands of tensor powers

Let F be a field, G a group, and V a finite-dimensional (right) FG-module. The
tensor algebra T (V ) is the free associative algebra on V , and the nth homogeneous
component T n(V ) may be identified with the nth tensor power of V , otherwise de-
noted by V ⊗n. The free Lie algebra L(V ), as defined in Section 1, may be regarded
as embedded in T (V ): see [3, Section 2] for further details.

The following result is the ‘Decomposition Theorem’, [3, Theorem 4.4].

Theorem 2.1 [3] Let F be a field of prime characteristic p, G a group, and V a
finite-dimensional FG-module. Let k be a positive integer not divisible by p. Then,
for each non-negative integer m, there is a submodule Bpmk of Lpmk(V ) such that
Bpmk is a direct summand of V ⊗pmk and

Lpmk(V ) = Lpm

(Bk) ⊕ Lpm−1
(Bpk) ⊕ · · · ⊕ L1(Bpmk).

(The Lie powers Lpm
(Bk), . . . , L1(Bpmk) may be regarded as subspaces of Lpmk(V )

for the reasons explained in [3, Section 2].)
For an arbitrary field F , let RFG denote the Green ring (representation ring) of G

over F . This is the ring spanned by the isomorphism classes of finite-dimensional
(right) FG-modules with sum and product coming from the direct sum and ten-
sor product of modules. (It has a Z-basis consisting of the isomorphism classes of
the finite-dimensional indecomposable FG-modules.) If V is any finite-dimensional
FG-module we often write V for the corresponding element of RFG. Thus, for mod-
ules V1 and V2, we have V1 = V2 in RFG if and only if V1 ∼= V2. Note that the tensor
power V ⊗n may be written as V n in RFG.

The following result is part of [4, Theorem 4.2].

Theorem 2.2 [4] Further to Theorem 2.1, the equation

pmBpmk + pm−1(Bpm−1k)
p + · · · + p(Bpk)

pm−1 + (Bk)
pm = Lk(V pm

)

holds in the Green ring RFG for every non-negative integer m.
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It is possible to regard Bpmk as a ‘strict polynomial functor’ on the category of
finite-dimensional vector spaces over F : see [7]. Thus the module Bpmk may be writ-
ten as Bpmk(V ), and this shows its dependence on V . Accordingly, Theorems 2.1
and 2.2 may be written functorially. However, we do not pursue the functorial ap-
proach as it does not seem to help to simplify our arguments.

Theorem 2.2 is the starting-point of our study of the modules Bpmk . The equations
of the theorem describe the Bpmk recursively in terms of the modules Lk(V pm

), and
the polynomials on the left-hand side of these equations may be recognised as the
‘Witt polynomials’ (see [14, Chapter II, Section 6]). Thus, to gain further information
about the Bpmk , we must expect to deal with Witt vectors.

Let p be a prime number. For any commutative ring R we write R∞ for the
set of all countably infinite ‘vectors’ a = (a0, a1, a2, . . .) with ai ∈ R for i ≥ 0.
In the present context these vectors are called ‘Witt vectors’. For a ∈ R∞, where
a = (a0, a1, a2, . . .), define γp(a) ∈ R∞ by

γp(a) = (b0, b1, b2, . . .), (2.1)

where, for i ≥ 0,

bi = piai + pi−1a
p

i−1 + · · · + pa
pi−1

1 + a
pi

0 . (2.2)

In the language of Witt vectors, b0, b1, . . . are the ‘ghost’ components of a.
The equations of Theorem 2.2 can now be written as

γp(Bk,Bpk,Bp2k, . . .) = (Lk(V ),Lk(V p),Lk(V p2
), . . .). (2.3)

Our problem is to try to unravel Bk , Bpk , . . . from this equation. Much of our effort
will be devoted to writing the modules Lk(V pm

) in the Green ring in a form that
facilitates calculations with Witt vectors.

From now on in this section, we take F to be a field of arbitrary characteristic,
G a group, and V a finite-dimensional FG-module. Furthermore, we take k to be a
positive integer not divisible by char(F ). Let E be the extension field of F obtained
by adjoining (if necessary) a primitive kth root of unity ε, and let 〈ε〉 denote the cyclic
group generated by ε, consisting of all kth roots of unity in E.

We shall often need to use the following elementary fact about a cyclic group of
order k: if x and y are elements of the group of the same order then there exists
l prime to k such that xl = y. We omit the straightforward proof and use this fact
without further reference.

Let VE denote the EG-module E ⊗ V (with tensor product taken over F ), and
let V ⊗k

E denote the kth tensor power of VE , identified with E ⊗ V ⊗k . The symmetric
group Sym(k) acts on the left on V ⊗k

E by permuting the tensor factors, and this action
commutes with the right action of G. Let σ be the k-cycle (1,2, . . . , k) in Sym(k).
Then we can write V ⊗k

E as a direct sum of σ -eigenspaces, namely

V ⊗k
E =

⊕

ξ∈〈ε〉
(V ⊗k

E )ξ , (2.4)
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where

(V ⊗k
E )ξ = {v ∈ V ⊗k

E : σv = ξv}.
(This can be proved from Maschke’s theorem or by diagonalising the matrix repre-
senting the action of σ .) Clearly each (V ⊗k

E )ξ is an EG-submodule of V ⊗k
E . Also, for

l prime to k, σ and σ l are conjugate in Sym(k), from which it follows that

(V ⊗k
E )ξ ∼= (V ⊗k

E )ξ ′ when |ξ | = |ξ ′|. (2.5)

Here |ξ | denotes the (multiplicative) order of an element ξ of 〈ε〉.
In [2, Section 4] it was shown, with different notation, that, for each ξ ∈ 〈ε〉, there

is an FG-submodule (V ⊗k)ξ of V ⊗k such that

E ⊗ (V ⊗k)ξ ∼= (V ⊗k
E )ξ . (2.6)

(In the notation of [2], (V ⊗k)ξ corresponds to U∗
ξ .) By the Noether–Deuring theorem

[5, (29.11)], two modules are isomorphic if they are isomorphic after field extension.
Thus (2.4), (2.5) and (2.6) yield

V ⊗k ∼=
⊕

ξ∈〈ε〉
(V ⊗k)ξ (2.7)

and

(V ⊗k)ξ ∼= (V ⊗k)ξ ′ when |ξ | = |ξ ′|. (2.8)

For each divisor d of k, let Uk,d denote an FG-module satisfying

Uk,d
∼= (V ⊗k)ξ , where |ξ | = d . (2.9)

Thus we may write (2.7) in the Green ring as

V k =
∑

d|k
φ(d)Uk,d . (2.10)

Lemma 2.3 We have Uk,k
∼= Lk(V ).

Proof By the Noether–Deuring theorem it suffices to obtain E ⊗ Uk,k
∼= Lk(VE).

Since |ε| = k, we have Uk,k
∼= (V ⊗k)ε . Thus, by (2.6), E ⊗ Uk,k

∼= (V ⊗k
E )ε . Hence it

suffices to show that

(V ⊗k
E )ε ∼= Lk(VE). (2.11)

This holds by a result of Klyachko [10, Theorem].
A character-theoretic proof of (2.11) can be given in the following way. By the

Noether–Deuring theorem, we may assume that E is infinite. Also, it is enough to
prove (2.11) in the case where G is the general linear group GL(VE). We can consider
(formal) characters of modules as defined in [8], and, by [10, proof of Proposition 1],
(V ⊗k

E )ε and Lk(VE) have the same character, just as in characteristic 0. Furthermore,
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(V ⊗k
E )ε is a direct summand of V ⊗k

E , by (2.4), and, as is well known, Lk(VE) is also
a direct summand of V ⊗k

E , because char(E) � k (see [6, Section 3.1], for example).
However, direct summands of V ⊗k

E with the same character are isomorphic (because
they are tilting modules—see [6]). Thus (2.11) holds. �

Since the modules (V ⊗k)ξ or Uk,d have a wider significance than for the purposes
of this paper, we summarise a few facts about these modules. We shall not need to
use these facts here, and, in any case, they are well known or, at least, closely related
to well-known facts. Thus we do not give detailed proofs.

Taking F to contain a primitive kth root of unity, we have (V ⊗k)ξ = eξV
⊗k , where

eξ is the idempotent of FSym(k) defined, using a k-cycle σ , by

eξ = 1

k

k−1∑

i=0

ξ−iσ i .

Thus, under the Schur correspondence, (V ⊗k)ξ corresponds to eξFSym(k), namely
the FSym(k)-module induced from the one-dimensional F 〈σ 〉-module on which σ

acts as multiplication by ξ . A formula for the character of this induced module is
given in [13, 4.17 Lemma], and this module is important in the work of Kraśkiewicz
and Weyman [11]: see also [12, Chapter 8].

We note also that the modules (V ⊗k)ξ are involved in the definition of Adams
operations ψn on RFG, as explained in [2], further to the work of Benson [1]. For
example, by [2, (4.4)], ψk(V ) = ∑

d|k μ(d)Uk,d , where μ is the Möbius function.
We return to the needs of the present paper. For each positive integer r and each

divisor d of k, let M
(r)
k,d denote an FG-module satisfying

M
(r)
k,d

∼=
⊕

ξ1···ξr=ξ

(V ⊗k)ξ1 ⊗ · · · ⊗ (V ⊗k)ξr , (2.12)

where |ξ | = d and where the sum is over all r-tuples (ξ1, . . . , ξr ) of elements of 〈ε〉
satisfying ξ1 · · · ξr = ξ . (It is easy to see that this sum is the same, up to isomorphism,
for all ξ ∈ 〈ε〉 of order d .)

Lemma 2.4 For d | k we have M
(r)
k,d

∼= ((V ⊗r )⊗k)ξ , where ξ ∈ 〈ε〉 has order d .

Proof By (2.6) and (2.12), E ⊗ M
(r)
k,d is isomorphic to the module defined in the

same way over E as M
(r)
k,d is defined over F . If E ⊗ M

(r)
k,d

∼= ((V ⊗r
E )⊗k)ξ then, by

(2.6), we have E ⊗ M
(r)
k,d

∼= E ⊗ ((V ⊗r )⊗k)ξ and the required result follows by the
Noether–Deuring theorem. Thus it is enough to prove the result over E and, to ease
the notation, we may take F = E.

Let M = ⊗
(i,j)∈
 V(i,j), where 
 = {(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ r} and V(i,j)

∼= V

for all (i, j). In the symmetric group on 
, let τ be the cycle

((1,1), (1,2), . . . , (1, r), (2,1), (2,2), . . . , (2, r), . . . , (k,1), (k,2), . . . , (k, r)).
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Thus τ r has order k and is a product of k-cycles, namely τ r = σ1 · · ·σr , where, for
j = 1, . . . , r , we have σj = ((1, j), (2, j), . . . , (k, j)). Writing M as the direct sum
of τ r -eigenspaces, we have

M =
⊕

ξ∈〈ε〉
Mξ. (2.13)

We may also write M in the form M = N(1) ⊗· · ·⊗N(r), where, for j = 1, . . . , r ,

N(j) = V(1,j) ⊗ · · · ⊗ V(k,j)
∼= V ⊗k.

Writing N(j) as the direct sum of σj -eigenspaces, we have N(j) = ⊕
ξ∈〈ε〉 N

(j)
ξ . Thus

M =
⊕

ξ1,...,ξr∈〈ε〉
(N

(1)
ξ1

⊗ · · · ⊗ N
(r)
ξr

). (2.14)

Since τ r = σ1 · · ·σr , we have

N
(1)
ξ1

⊗ · · · ⊗ N
(r)
ξr

⊆ Mξ1···ξr . (2.15)

Therefore, by (2.13), (2.14) and (2.15),

Mξ =
⊕

ξ1···ξr=ξ

(N
(1)
ξ1

⊗ · · · ⊗ N
(r)
ξr

), (2.16)

for all ξ ∈ 〈ε〉. Since N(j) ∼= V ⊗k , (2.12) and (2.16) give

Mξ
∼= M

(r)
k,d , where |ξ | = d . (2.17)

We now write M in the form

M = (V(1,1) ⊗ · · · ⊗ V(1,r)) ⊗ · · · ⊗ (V(k,1) ⊗ · · · ⊗ V(k,r))

and note that τ r permutes the k factors of M in a cycle of length k. Hence Mξ
∼=

((V ⊗r )⊗k)ξ , for all ξ ∈ 〈ε〉. The lemma now follows from (2.17). �

Corollary 2.5 For every positive integer r , M
(r)
k,k

∼= Lk(V ⊗r ).

Proof By Lemma 2.3 and (2.9), Lk(V ⊗r ) ∼= ((V ⊗r )⊗k)ε . Thus the result follows
from Lemma 2.4. �

By Corollary 2.5 and (2.12), the modules Lk(V r) can be expressed, in the Green
ring, as polynomials with positive integer coefficients in the modules Uk,d . In the
case where F has prime characteristic p, it follows from (2.3) that the modules Bpmk

can be written in Z[1/p] ⊗Z RFG as polynomials in the Uk,d with coefficients from
Z[1/p]. However, it is not obvious that the latter polynomials have integer coeffi-
cients or that these coefficients are positive. Our main theorem will establish these
facts.
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Let T be a cyclic group of order k generated by an element t , and recall that 〈ε〉 is
also a cyclic group of order k. Let RFGT be the group ring of T with coefficients in
RFG and let � be the element of RFGT defined by

� = (V ⊗k)1t
0 + (V ⊗k)εt

1 + · · · + (V ⊗k)εk−1 t
k−1. (2.18)

By (2.8), the coefficient of t i in � is equal to the coefficient of tj whenever |t i | = |tj |.
For each divisor d of k, let sd be the sum of all elements of T of order d . Then

� =
∑

d|k
Uk,dsd , (2.19)

and � is fixed by every automorphism of RFGT that fixes coefficients in RFG and
maps t to t l for some l prime to k. Clearly, for every positive integer r , �r is fixed
by these same automorphisms, and hence the coefficient of t i in �r is equal to the
coefficient of tj whenever |t i | = |tj |. We write [�r ]k to denote the coefficient of t

(or any element of order k) in �r .
By (2.18), the coefficient of t in �r is

∑

ξ1···ξr=ε

(V ⊗k)ξ1 · · · (V ⊗k)ξr .

Hence, by (2.12) and Corollary 2.5,

[�r ]k = Lk(V r). (2.20)

In order to obtain further information about the modules Lk(V r) we shall study the
properties of the coefficients [�r ]k . We do this in the next section by working in a
suitable polynomial ring.

3 Witt vectors and polynomials

We start this section by developing some methods for dealing with Witt vectors.
Let p be a prime number and let R be a commutative ring with identity in which

p is not a zero-divisor. We write R∞ for the set of all Witt vectors over R, as in
Section 2, and we define γp : R∞ → R∞ by means of (2.1) and (2.2). For b ∈ R∞,
there can be at most one element a of R∞ such that γp(a) = b. Furthermore, if p is a
unit of R, there exists a such that γp(a) = b and the components of a can be obtained
recursively from (2.2).

In the following lemma we regard R∞ as a ring under the operations of R taken
componentwise.

Lemma 3.1 Let a,a′,b,b′ ∈ R∞, where γp(a) = b and γp(a′) = b′. Let S be the
subring of R generated by the components of a and a′. Let b′′ be any element of the
subring of R∞ generated by b and b′ under the componentwise operations. Then
there exists a′′ ∈ S∞ such that γp(a′′) = b′′.
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Proof This is an immediate consequence of a theorem of Witt [15], for which we
refer to [14, Theorem II.6]. �

Lemma 3.2 Let k be a positive integer not divisible by p. Then there exists c ∈ Z
∞

such that

γp(c) = (1, kp−1, kp2−1, . . .). (3.1)

Proof Let c be the element of (Z[1/p])∞ satisfying (3.1), where c = (c0, c1, . . .). We
prove by induction that ci ∈ Z for all i. This shows that c ∈ Z

∞.
By (3.1), we have

pici + pi−1c
p

i−1 + · · · + pc
pi−1

1 + c
pi

0 = kpi−1

for all i ≥ 0. Thus c0 = 1 ∈ Z and, for i ≥ 1, we have

pici = kpi−1 − (pi−1c
p

i−1 + · · · + pc
pi−1

1 + 1).

To prove that ci ∈ Z it suffices to show that the right-hand side is congruent to 0
modulo pi . By Euler’s theorem, aφ(pj ) ≡ 1 (mod pj ) for every positive integer j

and every integer a not divisible by p. Since φ(pj ) = pj − pj−1, it follows that
apj ≡ apj−1

(mod pj ) for every integer a. Thus

kpi−1 − (pi−1c
p

i−1 + · · · + pc
pi−1

1 + 1)

≡ kpi−1 − (pi−1ci−1 + · · · + pc
pi−2

1 + 1) (mod pi).

However, by (3.1), pi−1ci−1 + · · · + pc
pi−2

1 + 1 = kpi−1−1. Thus

kpi−1 − (pi−1c
p

i−1 + · · · + pc
pi−1

1 + 1) ≡ kpi−1 − kpi−1−1 (mod pi ).

However,

k(kpi−1 − kpi−1−1) = kpi − kpi−1 ≡ 0 (mod pi ).

Since k is not divisible by p, the result follows. �

Corollary 3.3 Let k be a positive integer not divisible by p. Then there exists d ∈
(Z[1/k])∞ such that γp(d) = (k−1, k−1, k−1, . . .).

Proof With componentwise multiplication, we have

(k−1, k−1, k−1, . . .) = (k−1, k−p, k−p2
, . . .)(1, kp−1, kp2−1, . . .).

However, γp(k−1,0,0, . . .) = (k−1, k−p, k−p2
, . . .). Hence the result follows from

Lemmas 3.1 and 3.2. �
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From now on we consider polynomial rings Z[U] and Q[U], where U is a set of
indeterminates. We state a consequence of the preceding results in a form suited for
application later in this section.

Proposition 3.4 Let b ∈ (Z[U])∞, where b = (b0, b1, . . .). Suppose that there exist
r1, . . . , rn ∈ Z, g1, . . . , gn ∈ Z[U], and a positive integer k not divisible by p, such

that bi = k−1(r1g
pi

1 + · · · + rng
pi

n ) for all i ≥ 0. Then there exists a ∈ (Z[U])∞ such
that γp(a) = b.

Proof Since b ∈ (Z[U])∞, there exists a ∈ (Z[1/p][U])∞ such that γp(a) = b. How-
ever, by hypothesis, b belongs to the subring of (Z[1/k][U])∞ generated, componen-

twise, by (k−1, k−1, k−1, . . .) and the elements (gj , g
p
j , g

p2

j , . . .) for j = 1, . . . , n.

Also, γp(gj ,0,0, . . .) = (gj , g
p
j , g

p2

j , . . .). Thus, by Lemma 3.1 and Corollary 3.3,
there exists e ∈ (Z[1/k][U])∞ such that γp(e) = b. Hence a = e and so

a ∈ (Z[1/p][U])∞ ∩ (Z[1/k][U])∞ = (Z[U])∞. �

Any element of Q[U] may be written as a sum, with rational coefficients, of mono-
mials in the elements of U . For a, b ∈ Q[U], we write a � b if every coefficient in a

is less than or equal to the corresponding coefficient in b, that is, if b − a has only
non-negative coefficients.

Proposition 3.5 Let b = (b0, b1, . . .) ∈ (Z[U])∞. Suppose that bi � 0 and

b
pj

i � bi+j (3.2)

for all i, j ≥ 0. Let a be the element of (Z[1/p][U])∞ satisfying γp(a) = b, where
a = (a0, a1, . . .). Then a0 = b0 � 0 and, for m ≥ 1,

0 � pmam � bm − b
pm

0 . (3.3)

Proof For all i ≥ 0, write di = bi −b
pi

0 . Thus di � 0, by (3.2). Hence, for all i, j ≥ 0,

d
pj

i + b
pi+j

0 � (di + b
pi

0 )p
j = b

pj

i � bi+j .

Therefore

d
pj

i � di+j . (3.4)

Since γp(a) = b, we have a0 = b0 � 0. It remains to prove (3.3) for m ≥ 1, and
this may be written as 0 � pmam � dm. Since γp(a) = b and a0 = b0, we have pa1 =
b1 − b

p

0 = d1. Thus (3.3) is true for m = 1. We use induction on m. Since γp(a) = b
and a0 = b0,

pm+1am+1 = bm+1 − pma
p
m − pm−1a

p2

m−1 − · · · − pa
pm

1 − b
pm+1

0

= dm+1 − pma
p
m − pm−1a

p2

m−1 − · · · − pa
pm

1 . (3.5)
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Also, by the inductive hypothesis, 0 � am−i � p−(m−i)dm−i for i = 0, . . . ,m − 1.
Thus

0 � pm−ia
pi+1

m−i � p(m−i)(1−pi+1)d
pi+1

m−i

for i = 0, . . . ,m − 1. Hence, by (3.5),

dm+1 � pm+1am+1 � dm+1 − pm(1−p)d
p
m − p(m−1)(1−p2)d

p2

m−1 − · · · − p(1−pm)d
pm

1 .

Therefore, by (3.4),

dm+1 � pm+1am+1 � (1 − pm(1−p) − p(m−1)(1−p2) − · · · − p(1−pm))dm+1

� (1 − p−m − p−(m−1) − · · · − p−1)dm+1 � 0.

This completes the induction. �

From now on in this section, let k be a positive integer and let U be a set of
indeterminates indexed by the divisors of k, namely, U = {ud : d | k}.

As in Section 2, let T be a cyclic group of order k generated by an element t .
We consider the group ring  = Z[U]T . This consists of all elements of the form
g = g0t

0 + · · · + gk−1t
k−1, with gi ∈ Z[U] for i = 0, . . . , k − 1.

For each positive integer l prime to k there is an automorphism of  that fixes all
coefficients in Z[U] and maps t to t l . Let ∗ be the subring of  consisting of those
elements fixed by all such automorphisms. For g = ∑

git
i ∈ , we have g ∈ ∗ if

and only if gi = gj whenever |t i | = |tj |. For g ∈ ∗ and each divisor d of k, we write
[g]d to denote gi where |t i | = d . As in Section 2, let sd be the sum of all elements of
T of order d . Thus, for g ∈ ∗, we have

g =
∑

d|k
[g]dsd , (3.6)

where [g]d ∈ Z[U] for each divisor d of k.
Let ω be a primitive kth root of unity in C. Thus 〈ω〉 is a cyclic group of order

k consisting of all complex kth roots of unity. For each non-negative integer j there
is a homomorphism αj :  → C[U] that fixes all coefficients in Z[U] and maps t to
ωj . For g ∈  we usually write g(ωj ) instead of gαj , because we think of αj as the
substitution t �→ ωj . It is easily verified that

sd(ωj ) = ρd(j), (3.7)

where ρd(j) denotes Ramanujan’s sum, namely the sum of the j th powers of all
complex primitive d th roots of unity. Note that ρd(j) ∈ Z (by [9, Theorem 271], for
example). Thus αj restricts to a homomorphism αj : ∗ → Z[U]. Indeed, for g ∈ ∗,
(3.6) and (3.7) give

g(ωj ) =
∑

d|k
ρd(j)[g]d . (3.8)

We now show that (3.8) allows [g]k to be written in terms of the elements g(ωj )

by means of the Möbius function μ.
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Lemma 3.6 For all g ∈ ∗,

k[g]k =
∑

e|k
μ(e)g(ωk/e).

Proof By (3.8), we have
∑

e|k
μ(e)g(ωk/e) =

∑

e|k
μ(e)

∑

d|k
ρd(k/e)[g]d .

However, by [9, Theorem 271],

ρd(k/e) =
∑

m|(d,k/e)

μ(d/m)m,

where the sum is over all m such that m | d and m | k/e. Therefore
∑

e|k
μ(e)g(ωk/e) =

∑

e|k

∑

d|k

∑

m|(d,k/e)

μ(e)μ(d/m)m[g]d .

Altering the order of summation gives
∑

e|k
μ(e)g(ωk/e) =

∑

d|k

∑

m|d

∑

e|(k/m)

μ(e)μ(d/m)m[g]d .

However,
∑

e|(k/m) μ(e) = 0 unless m = k. Also, if m = k we must have d = k.
Therefore

∑

e|k
μ(e)g(ωk/e) = k[g]k. �

Imitating the description of � in (2.19), we let f ∈  be defined by

f =
∑

d|k
udsd . (3.9)

Thus f ∈ ∗ and f r ∈ ∗ for every positive integer r . Recall the definition of �
given before Proposition 3.5. Then, for all d | k and all r , we have

[f r ]d ∈ Z[U] and [f r ]d � 0. (3.10)

Also, by Lemma 3.6,

[f r ]k = 1

k

∑

e|k
μ(e)(f (ωk/e))r ,

where f (ωk/e) ∈ Z[U] for all e. Here, division by k is possible within Z[U] because
[f r ]k ∈ Z[U]. Thus, by (3.8), we obtain

[f r ]k = 1

k

∑

e|k
μ(e)

(∑
d|k ρd(k/e)ud

)r

. (3.11)
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We can now prove the key result of this section.

Theorem 3.7 Let k be a positive integer and let p be a prime number not dividing k.
Let U = {ud : d | k}, T a cyclic group of order k, and f ∈ Z[U]T , as defined in (3.9).
Then there exist elements h0, h1, h2, . . . of Z[U] satisfying

γp(h0, h1, h2, . . .) = ([f ]k, [f p]k, [f p2]k, . . .) (3.12)

and, for all m ≥ 0,

0 � pmhm �
(∑

d|k φ(d)ud

)pm

,

where φ denotes Euler’s function.

Proof The first statement follows from (3.10), (3.11) and Proposition 3.4. For the
second statement we wish to apply Proposition 3.5 with bi = [f pi ]k for all i. Thus we
need to verify the hypotheses of Proposition 3.5. For all i ≥ 0, we have [f pi ]k ∈ Z[U]
and [f pi ]k � 0 by (3.10). Also, we may write

f pi = [f pi ]kt +
∑

x∈T

axx,

where ax ∈ Z[U] and ax � 0 for all x ∈ T . Therefore, for all j ≥ 0,

f pi+j = (f pi

)p
j = ([f pi ]k)pj

tp
j +

∑

x∈T

bxx,

where bx ∈ Z[U] and bx � 0 for all x ∈ T . However, tp
j

has order k. Thus we obtain
([f pi ]k)pj � [f pi+j ]k , and so the hypotheses of Proposition 3.5 are satisfied. By (3.3)
and the fact that h0 = [f ]k , we have 0 � pmhm � [f pm]k , for all m ≥ 0.

Recall that α0 : ∗ → Z[U] is the homomorphism that fixes coefficients in Z[U]
and maps t to 1. Clearly f α0 = ∑

d|k φ(d)ud . Thus

f pm

α0 =
(∑

d|k φ(d)ud

)pm

.

However, since f pm = ∑
d|k[f pm]dsd , we have f pm

α0 = ∑
d|k φ(d)[f pm]d . Thus

[f pm]k � f pm

α0 =
(∑

d|k φ(d)ud

)pm

.

Hence we obtain the second statement of the theorem. �

We shall now move towards a result that is sharper than Theorem 3.7 in the case
where k is not square-free. Let k̃ denote the product of the (distinct) prime divisors
of k. We write c ‖ k to denote that c | k and that c and k/c are coprime. Thus c ‖ k if
and only if c | k and c is a product of maximal prime-power factors of k. Each divisor
d of k may be written uniquely in the form d = d∗d ′ where d∗ ‖ k and d ′ | k/k̃.
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Here d∗ is the largest divisor of d such that d∗ ‖ k and d ′ = d/d∗. Note that the sets
{ud : d∗ = c} form a partition of U , as c ranges over the divisors of k such that c ‖ k.
For each such c, write

wc =
∑

d:d∗=c

φ(d/c)ud = uc +
∑

d:d∗=c
d �=c

φ(d/c)ud, (3.13)

and set W = {wc : c ‖ k}. By (3.13), the subring of Z[U] generated by W may be
identified with the polynomial ring Z[W]. Thus we can take Z[W] ⊆ Z[U] and
Q[W] ⊆ Q[U]. Let �W be the relation on Q[W] defined analogously to � on Q[U],
but using coefficients of monomials in elements of W .

Lemma 3.8 (i) Every element x of T may be written uniquely in the form x = x∗x′,
such that, for |x| = d , we have |x∗| = d∗ and |x′| = d ′.
(ii) Let d | k, and let y be an element of T of order d∗. Then the number of elements
x of T satisfying |x| = d and x∗ = y is φ(d/d∗).

Proof Part (i) follows from the fact that d = d∗d ′, where d∗ and d ′ are coprime.
Let d and y be as in (ii) and, for x ∈ T , write x = x∗x′, as in (i). It is easy to

verify that x satisfies |x| = d and x∗ = y if and only if y−1x has order d/d∗. Thus
the number of such elements x is φ(d/d∗). �

Lemma 3.9 Let d | k and e | k̃. Then ρd(k/e) = φ(d/d∗)ρd∗(k/e).

Proof We apply Lemma 3.8 to 〈ω〉 rather than T . For x ∈ 〈ω〉, write x = x∗x′, as in
Lemma 3.8 (i). Then

ρd(k/e) =
∑

x:|x|=d

xk/e =
∑

x:|x|=d

(x∗)k/e(x′)k/e.

However, (x′)k/e = 1, because k/e is divisible by k/k̃. Hence

ρd(k/e) =
∑

x:|x|=d

(x∗)k/e.

For each element y of 〈ω〉 of order d∗, there are, by Lemma 3.8 (ii), exactly φ(d/d∗)
elements x of order d such that x∗ = y. Thus

ρd(k/e) =
∑

x:|x|=d

(x∗)k/e = φ(d/d∗)
∑

y:|y|=d∗
yk/e = φ(d/d∗)ρd∗(k/e).

This is the required result. �

Suppose that e | k̃. Then, by Lemma 3.9 and (3.13),

∑

d|k
ρd(k/e)ud =

∑

c‖k

∑

d:d∗=c

φ(d/c)ρc(k/e)ud
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=
∑

c‖k
ρc(k/e)wc. (3.14)

Note that e | k̃ holds if e | k and μ(e) �= 0. Thus, by (3.11) and (3.14),

[f r ]k = 1

k

∑

e|k
μ(e)

(∑
c‖k ρc(k/e)wc

)r

, (3.15)

for every positive integer r .
Let ι : Q[W] → Q[U] be the inclusion homomorphism given, for c ‖ k, by

wcι = wc = uc +
∑

d:d∗=c,
d �=c

φ(d/c)ud,

and let κ : Q[U] → Q[W] be the homomorphism given by udκ = wd , if d ‖ k, and
udκ = 0, otherwise. Thus ικ is the identity on Q[W].

By (3.15), [f r ]k ∈ Q[W]. This is enough for the following theorem. However,
[f r ]kι ∈ Z[U], by (3.10), and so, by applying κ , we have [f r ]k ∈ Z[W].

Theorem 3.10 Further to Theorem 3.7, let W = {wc : c ‖ k}, where wc is defined by
(3.13). Then we have hm ∈ Z[W], for all m, and

0 �W pmhm �W
(∑

c‖k φ(c)wc

)pm

.

Proof By (3.15), we have [f ]k, [f p]k, [f p2]k, . . . ∈ Q[W]. It follows, by (3.12), that
hm ∈ Q[W] for all m. Let ι and κ be defined as above, where ικ is the identity on
Q[W]. By Theorem 3.7, hmι ∈ Z[U] and

0 � pm(hmι) �
(∑

d|k φ(d)ud

)pm

.

Applying κ , we find that hm ∈ Z[W] and

0 �W pmhm �W
(∑

c‖k φ(c)wc

)pm

. �

4 Main results

Let F be a field, G a group, V a finite-dimensional FG-module, and k a positive inte-
ger not divisible by char(F ). We use the notation of Sections 2 and 3. In particular, for
each divisor d of k, sd is the sum of the elements of T of order d , � = ∑

d|k Uk,dsd ,
f = ∑

d|k udsd , and U = {ud : d | k}.
Let χ : Z[U] → RFG be the homomorphism given by the substitution ud �→ Uk,d

for all d . This extends to a homomorphism χ : Z[U]T → RFGT , fixing the elements
of T , and we have f χ = �. Hence, by (2.20), for every positive integer r ,

[f r ]kχ = [�r ]k = Lk(V r). (4.1)
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Applying χ to (3.11) and using (4.1), we obtain the following result in RFG.

Proposition 4.1 For every positive integer r ,

Lk(V r) = 1

k

∑

e|k
μ(e)

(∑
d|k ρd(k/e)Uk,d

)r

.

This can be compared with a result concerning Adams operations in the Green
ring that follows from [2, Theorem 6.1]:

Lk(V r) = 1

k

∑

e|k
μ(e)(ψe(V k/e))r .

Indeed, for every divisor e of k, it can be shown that

ψe(V k/e) =
∑

d|k
ρd(k/e)Uk,d . (4.2)

We omit the proof of (4.2) since it is not needed for our purposes here.
Suppose now that F has prime characteristic p, and let h0, h1, . . . be the elements

of Z[U] given by Theorem 3.7. Thus, by (3.12) and (4.1),

γp(h0χ,h1χ,h2χ, . . .) = (Lk(V ),Lk(V p),Lk(V p2
), . . .).

By comparison with (2.3) we obtain

hmχ = Bpmk , for all m ≥ 0. (4.3)

Also, by (2.10),
(∑

d|k φ(d)ud

)pm

χ = V pmk. (4.4)

However, we may write

(∑
d|k φ(d)ud

)pm

=
∑

λ∈�

uλ(1) · · ·uλ(pm),

where � is a set of cardinality kpm
indexing a family of (not necessarily distinct)

pm-tuples (λ(1), . . . , λ(pm)) with λ(1), . . . , λ(pm) ∈ {d : d | k}. Thus, by (4.4),

V ⊗pmk ∼=
⊕

λ∈�

Uk,λ(1) ⊗ · · · ⊗ Uk,λ(pm). (4.5)

The inequality for pmhm in Theorem 3.7 implies

0 � hm �
(∑

d|k φ(d)ud

)pm

.
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Hence there is a subset �0 of � such that

hm =
∑

λ∈�0

uλ(1) · · ·uλ(pm). (4.6)

Our first main result now follows from (4.3) by applying χ to (4.6).

Theorem 4.2 Let F be a field of prime characteristic p, G a group, and V a finite-
dimensional FG-module. Let k be a positive integer not divisible by p and let m be
a non-negative integer. Write

V ⊗pmk ∼=
⊕

λ∈�

Uk,λ(1) ⊗ · · · ⊗ Uk,λ(pm),

as in (4.5). Let Bpmk be the module given by Theorem 2.1. Then there exists a subset
�0 of � such that

Bpmk
∼=

⊕

λ∈�0

Uk,λ(1) ⊗ · · · ⊗ Uk,λ(pm).

By Theorem 4.2, Bpmk is isomorphic to a direct summand of V ⊗pmk of a very
specific form. Also, we see that Bpmk may be written in the Green ring as a poly-
nomial in the modules Uk,d . The polynomial has positive integer coefficients and is
homogeneous of degree pm. This polynomial is, of course, the polynomial hm of
Theorem 3.7. Thus it depends only on k, p and m.

We shall now see how Theorem 4.2 can be sharpened when k is not square-free.
As in Section 3, let k̃ denote the product of the prime divisors of k and, for d | k,
write d = d∗d ′ where d∗ ‖ k and d ′ | k/k̃.

Recall from Section 2 that ε is a primitive kth root of unity in an extension field of
F . Let � be the set of all elements θ of 〈ε〉 such that |θ | and k/|θ | are coprime. Every
element ξ of 〈ε〉 may be written uniquely in the form ξ = ξ∗ξ ′, as in Lemma 3.8 (i),
where ξ∗ ∈ �. For each θ ∈ �, define

Wθ =
⊕

ξ :ξ∗=θ

(V ⊗k)ξ . (4.7)

Thus, by (2.7), we have

V ⊗k ∼=
⊕

θ∈�

Wθ . (4.8)

For each c such that c ‖ k, let Wk,c denote a module isomorphic to Wθ , where
|θ | = c. (It is easy to see that Wθ

∼= Wθ ′ when |θ | = |θ ′|.) Thus, in the Green ring,

V k =
∑

c‖k
φ(c)Wk,c. (4.9)

Suppose that c ‖ k and |θ | = c. If ξ∗ = θ then the order of ξ is some number d

satisfying d∗ = c. Also, by Lemma 3.8 (ii), for each d such that d∗ = c, the number
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of elements ξ of order d satisfying ξ∗ = θ is φ(d/c). Thus we may write (4.7) in the
Green ring as

Wk,c =
∑

d:d∗=c

φ(d/c)Uk,d . (4.10)

Let W = {wc : c ‖ k}, as in Section 3. Then, by (3.13) and (4.10), wcχ = Wk,c for
all c. Thus, by (4.9),

(∑
c‖k φ(c)wc

)pm

χ = V pmk. (4.11)

However, we may write

(∑
c‖k φ(c)wc

)pm

=
∑

δ∈�

wδ(1) · · ·wδ(pm),

where � is a finite set indexing a family of pm-tuples (δ(1), . . . , δ(pm)) with
δ(1), . . . , δ(pm) ∈ {c : c ‖ k}. Thus, by (4.11),

V ⊗pmk ∼=
⊕

δ∈�

Wk,δ(1) ⊗ · · · ⊗ Wk,δ(pm). (4.12)

Our second main result now follows from Theorem 3.10 in the same way as The-
orem 4.2 follows from Theorem 3.7.

Theorem 4.3 Further to Theorem 4.2, write

V ⊗pmk ∼=
⊕

δ∈�

Wk,δ(1) ⊗ · · · ⊗ Wk,δ(pm),

as in (4.12). Then there exists a subset �0 of � such that

Bpmk
∼=

⊕

δ∈�0

Wk,δ(1) ⊗ · · · ⊗ Wk,δ(pm).

Theorem 4.3 expresses Bpmk , up to isomorphism, in terms of modules Wk,c in-
dexed by the divisors c of k satisfying c ‖ k. Such a divisor c is determined uniquely
by the set of prime divisors of k that divide c. Thus, in effect, the modules Wk,c are
indexed by the subsets of the set of all prime divisors of k.

We conclude with a simple example to illustrate how the modules Bpmk may be
calculated up to isomorphism.

Example 4.4 Suppose that k is a prime, and let char(F ) = p, where p �= k. We shall
find Bpk as an element of RFG.

Since k is a prime, the only modules Uk,d are Uk,1 and Uk,k , and, by (2.10),

V k = Uk,1 + (k − 1)Uk,k.
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Also, by Lemma 2.3, Uk,k = Lk(V ) in RFG. By Proposition 4.1,

Lk(V p) = 1

k
((Uk,1 + (k − 1)Uk,k)

p − (Uk,1 − Uk,k)
p)

= 1

k

p∑

i=0

(
p

i

)

((k − 1)i − (−1)i)U
p−i

k,1 Ui
k,k.

Thus, by (2.3), Bk = Lk(V ) = Uk,k and

Bpk = 1

p
(Lk(V p) − U

p
k,k) =

p∑

i=0

miU
p−i

k,1 Ui
k,k,

where

mi =

⎧
⎪⎨

⎪⎩

0 for i = 0,
1
pk

(
p
i

)
((k − 1)i − (−1)i) for 0 < i < p,

1
pk

((k − 1)p − (−1)p) − 1
p

for i = p.

In the case where k = 2 and p = 3, we obtain B6 = U2
k,1Uk,k . In this case it is easily

verified that Uk,1 = S2(V ) and Uk,k = ∧2(V ). Thus we obtain (1.1).
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