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Abstract Let m,n ∈ N. In this paper we study the right permutation action of the
symmetric group S2n on the set of all the Brauer n-diagrams. A new basis for the
free Z-module Bn spanned by these Brauer n-diagrams is constructed, which yields
Specht filtrations for Bn. For any 2m-dimensional vector space V over a field of
arbitrary characteristic, we give an explicit and characteristic-free description of the
annihilator of the n-tensor space V ⊗n in the Brauer algebra Bn(−2m). In particular,
we show that it is a S2n-submodule of Bn(−2m).

Keywords Brauer algebra · Symmetric group · Tensor space

1 Introduction

Let x be an indeterminate over Z. The Brauer algebra Bn(x) over Z[x] is a unital as-
sociative Z[x]-algebra with generators s1, · · · , sn−1, e1, · · · , en−1 and relations (see
[16]):

s2
i = 1, e2

i = xei, eisi = ei = siei, ∀1 ≤ i ≤ n − 1,

sisj = sj si , siej = ej si , eiej = ej ei, ∀1 ≤ i < j − 1 ≤ n − 2,

sisi+1si = si+1sisi+1, eiei+1ei = ei, ei+1eiei+1 = ei+1, ∀1 ≤ i ≤ n − 2,

siei+1ei = si+1ei, ei+1eisi+1 = ei+1si , ∀1 ≤ i ≤ n − 2.

Bn(x) is a free Z[x]-module with rank (2n− 1) · (2n− 3) · · ·3 · 1. For any commuta-
tive Z[x]-algebra R with x specialized to δ ∈ R, we define Bn(δ)R := R⊗Z[x]Bn(x).
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This algebra was first introduced by Richard Brauer (see [2]) when he studied
how the n-tensor space V ⊗n decomposes into irreducible modules over the orthog-
onal group O(V ) or the symplectic group Sp(V ), where V is an orthogonal vec-
tor space or a symplectic vector space. In Brauer’s original formulation, the algebra
Bn(x) was defined as the complex linear space with basis the set Bdn of all the
Brauer n-diagrams, graphs on 2n vertices and n edges with the property that every
vertex is incident to precisely one edge. If we arrange the vertices in two rows of
n each, the top and bottom rows, and label the vertices in each row of a n-diagram
by the indices 1,2, · · · , n from left to right, then the generator si corresponds to the
n-diagram with edges connecting vertices i (respectively, i + 1) on the top row with
i + 1 (respectively, i) on bottom row, and all other edges are vertical, connecting ver-
tex k on the top and bottom rows for all k �= i, i + 1. The generator ei corresponds to
the n-diagram with horizontal edges connecting vertices i, i + 1 on the top and bot-
tom rows, and all other edges are vertical, connecting vertex k on the top and bottom
rows for all k �= i, i + 1. The multiplication of two Brauer n-diagrams is defined as
follows. We compose two diagrams D1,D2 by identifying the bottom row of vertices
in the first diagram with the top row of vertices in the second diagram. The result
is a graph, with a certain number, n(D1,D2), of interior loops. After removing the
interior loops and the identified vertices, retaining the edges and remaining vertices,
we obtain a new Brauer n-diagram D1 ◦ D2, the composite diagram. Then we define
D1 ·D2 = xn(D1,D2)D1 ◦D2. In general, the multiplication of two elements in Bn(x)

is given by the linear extension of a product defined on diagrams. For example, let d

be the following Brauer 5-diagram.

Let d ′ be the following Brauer 5-diagram.

Then dd ′ is equal to
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Note that the subalgebra of Bn(x) generated by s1, s2, · · · , sn−1 is isomorphic to the
group algebra of the symmetric group Sn over Z[x].

The Brauer algebra as well as its quantization (now called the Birman–Wenzl–
Murakami algebra) has been studied in a number of papers, e.g., [2–4, 6, 11, 16–18,
22, 23, 29, 35]. The walled Brauer algebra (which is a variant of the Brauer algebra,
see [5]) is also studied in the recent preprint [10]. We are mainly interested in the
Schur–Weyl duality between symplectic groups and certain specialized Brauer alge-
bras, which we now recall. Let K be an arbitrary infinite field. Let m,n ∈ N. Let V be
a 2m-dimensional K-vector space equipped with a non-degenerate skew-symmetric
bilinear form ( , ). Then (see [19], [15, Section 4]) the symplectic similitude group
(respectively, the symplectic group) relative to ( , ) is

GSp(V ) :=
{

g ∈ GL(V )

∣∣∣∣∣ ∃d ∈ K with d �= 0, such that
(gv, gw) = d(v,w), ∀v,w ∈ V

}

(
respectively, Sp(V ) :=

{
g ∈ GL(V )

∣∣∣ (gv, gw) = (v,w), ∀ v,w ∈ V
} )

.

The symplectic similitude group and symplectic group Sp(V ) act naturally on V

from the left-hand side, and hence on the n-tensor space V ⊗n. This left action on
V ⊗n is centralized by certain specialized Brauer algebra, which we recall as follows.
Let Bn(−2m) := Z ⊗Z[x] Bn(x), where Z is regarded as Z[x]-algebra by specifying
x to −2m. Let Bn(−2m)K := K ⊗Z Bn(−2m), where K is regarded as Z-algebra by
sending each integer a to a · 1K . Then there is a right action of the specialized Brauer
algebra Bn(−2m)K on the n-tensor space V ⊗n which commutes with the above left
action of GSp(V ). We recall the definition of this action as follows. Let δij denote
the value of the usual Kronecker delta. For any 1 ≤ i ≤ 2m, we set

i′ := 2m + 1 − i.

We fix an ordered basis
{
v1, v2, · · · , v2m

}
of V such that

(vi, vj ) = 0 = (vi′ , vj ′), (vi, vj ′) = δij = −(vj ′ , vi), ∀ 1 ≤ i, j ≤ m.

For any i, j ∈ {
1,2, · · · ,2m

}
, let

εi,j :=

⎧⎪⎨
⎪⎩

1 if j = i′ and i < j ,

−1 if j = i′ and i > j ,

0 otherwise.
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The right action of Bn(−2m) on V ⊗n is defined on generators by

(vi1 ⊗ · · · ⊗ vin)sj

:= −(vi1 ⊗ · · · ⊗ vij−1 ⊗ vij+1 ⊗ vij ⊗ vij+2 ⊗ · · · ⊗ vin),

(vi1 ⊗ · · · ⊗ vin)ej

:= εij ,ij+1vi1 ⊗ · · · ⊗ vij−1 ⊗
( m∑

k=1

(vk′ ⊗ vk − vk ⊗ vk′)

)
⊗ vij+2 ⊗ · · · ⊗ vin .

Let ϕ,ψ be the following natural K-algebra homomorphisms.

ϕ : (Bn(−2m)K)op → EndK

(
V ⊗n

)
,

ψ : KGSp(V ) → EndK

(
V ⊗n

)
.

Let k be a positive integer. A composition of k is a sequence of nonnegative in-
tegers λ = (λ1, λ2, · · · ) with

∑
i≥1 λi = k. A composition λ = (λ1, λ2, · · · ) of k is

said to be a partition if λ1 ≥ λ2 ≥ · · · . In this case, we write λ � k. The conjugate
of λ is defined to be the partition λ′ = (λ′

1, λ
′
2, · · · ), where λ′

j := #{i|λi ≥ j} for
j = 1,2, · · · . For any partition λ = (λ1, λ2, · · · ), we use �(λ) to denote the largest
integer t such that λt �= 0.

Lemma 1.1 ([2–4, 11, 32]) (1) The natural left action of GSp(V ) on V ⊗n commutes
with the right action of Bn(−2m).

(2) if K is an infinite field, then

(a) ϕ(Bn(−2m)K) = EndKGSp(V )(V
⊗n) = EndKSp(V )(V

⊗n),
(b) ψ(KGSp(V )) = EndBn(−2m)K (V ⊗n),

(3) if K is an infinite field and m ≥ n then ϕ is injective, and hence an isomorphism
onto EndKGSp(V )(V

⊗n),
(4) if K = C, then there is a decomposition of V ⊗n as a direct sum of irreducible

CGSp(V )–Bn(−2m)C bimodules

V ⊗n =
[n/2]⊕
f =0

⊕
λ�n−2f
�(λ)≤m

�(λ) ⊗ D(λ′),

where �(λ) (respectively, D(λ′)) denotes the irreducible CGSp(V )-module (respec-
tively, the irreducible Bn(−2m)C-module) corresponding to λ (respectively, corre-
sponding to λ′).

Historically, the above results in the case of K = C are proved in [2, 3] and [4]. For
arbitrary infinite field K , 2) and 3) are proved in [11] and [32].

Now there is a natural question, that is, how can one describe the kernel of the
homomorphism ϕ? This question is closely related to invariant theory: see [7]. By
[11, Theorem 1.2], we know that the kernel of the homomorphism ϕ has a rigid
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structure in the sense that the dimension of Kerϕ does not depend on the choice of
the infinite field K , and it is actually defined over Z. Note that in the case of Schur–
Weyl duality between general linear group and symmetric group [7, 8, 33, 34], or
more generally, between the type A quantum group and the type A Iwahori–Hecke
algebra [14, 24], the kernel of the corresponding homomorphism has already been
explicitly determined in [14] in terms of the Kazhdan–Lusztig basis and in [20] in
terms of the Murphy basis. In this paper, we completely answer the above question
by explicitly constructing an integral basis for the kernel of the homomorphism ϕ.
Our description of Kerϕ involves a study of the permutation action of the symmetric
group S2n on the Brauer algebra Bn(x). Such a permutation action was previously
noted in [17]. We construct a new integral basis for this Brauer algebra, which yields
an integral Specht filtration of this Brauer algebra by right S2n-modules. The kernel
of ϕ is just one of the S2n-submodules appearing in this filtration. In particular, it
turns out that Kerϕ is in fact a S2n-submodule of Bn(−2m). The main results of
this paper are presented in Theorem 2.11, Theorem 2.13 and Theorem 3.4. It would
be interesting to compare the new integral basis we obtained in this paper with the
canonical basis for Bn(x) constructed in [17]. It would also be interesting to see how
the description of Kerϕ we give here can be generalized to the quantized case, i.e., the
case of Schur–Weyl duality between the quantized enveloping algebra associated to
the symplectic Lie algebra sp2m and a certain specialized Birman–Wenzl–Murakami
algebra (see [9]).

2 The S2n-action on Bn(x)

In this section, we shall first recall (cf. [17]) the right permutation action of the sym-
metric group S2n on the set Bdn. Then we shall construct a new Z-basis for the
resulting right S2n-module, which yields filtrations of Bn(x) by right S2n-modules.
Certain submodules occurring in this filtration will play a central role in the next
section.

For any fixed-point-free involution σ in the symmetric group S2n, the conjugate
w−1σw of σ by w ∈ S2n is still a fixed-point-free involution. Therefore, we have a
right action of the symmetric group S2n on the set of all the fixed-point-free involu-
tions in S2n. Note that the set Bdn of Brauer n-diagrams can be naturally identified
with the set of fixed-point-free involutions in S2n as explained below. Hence we get
(cf. [17]) a right permutation action of the symmetric group S2n on the set Bdn of all
the Brauer n-diagrams. We use “∗” to denote this right permutation action.

We shall adopt a new labeling of the vertices in each Brauer diagram. Namely,
for each Brauer n-diagram D, we shall label the vertices in the top row of D by odd
integers 1,3,5, · · · ,2n − 1 from left to right, and label the vertices in the bottom
row of D by even integers 2,4,6, · · · ,2n from left to right. This way of labeling
is more convenient when studying the permutation action from S2n. We shall keep
this way of labeling from this section until the end of Section 3, and we shall recover
our original way of labeling only in Section 4. Let us look at an example. Suppose
n = 4, s1s7s6 = (1,2)(6,7,8) is a permutation in S8. Let D be the following Brauer
4-diagram.
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We first identify D with following diagram with 8 vertices.

Then D ∗ (s1s7s6) can be computed in the following way.

Finally, D ∗ (s1s7s6) is equal to the following Brauer 4-diagram.

We use β to denote the natural identification of Bdn with the set of fixed-point-free
involutions in S2n. For any w ∈ S2n and any D ∈ Bdn, D ∗ w = β−1(w−1β(D)w).

For any commutative Z-algebra R, we use Bn,R to denote the free R-module
spanned by Bdn. Then Bn,R becomes a right R[S2n]-module. Let Bn := Bn,Z.
Clearly, there is a canonical isomorphism Bn,R

∼= R ⊗Z Bn, which is also a right
R[S2n]-module isomorphism. Taking R = Z[x], we deduce that the Brauer algebra
Bn(x) becomes a right Z[x][S2n]-module. Similarly, the specialized Brauer algebra
Bn(−2m) becomes a right K[S2n]-module.
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For any integer i with 1 ≤ i ≤ 2n, we define

γ (i) :=
{

i + 1, if i is odd,

i − 1, if i is even.

Then γ is an involution on {1,2, · · · ,2n}. It is well-known that the subgroup{
w ∈ S2n

∣∣ (
γ (a)

)
w = γ (aw) for any integer a with 1 ≤ a ≤ 2n

}
is isomorphic to the wreath product Z2 �Sn of Z2 and Sn, which is a Weyl group of
type Bn (cf. [21]).

Lemma 2.1 For any commutative Z-algebra R, there is a right R[S2n]-module iso-
morphism

Bn,R
∼= IndR[S2n]

R[Z2�Sn] 1R,

where 1R denotes the rank one trivial representation of R[Z2 �Sn].

Proof Let 1Bn
be the element in Bdn that connects 2i − 1 to 2i for each integer i

with 1 ≤ i ≤ n. Since S2n acts transitively on the set of all the Brauer n-diagrams, it
is easy to see that the map ξR which send 1R to 1Bn

extends naturally to a surjective

R[S2n]-module homomorphism from IndR[S2n]
R[Z2�Sn] 1R onto Bn,R .

If R is a field, then we can compare the dimensions of both modules. In that case,
we know that the surjection ξR must be an injection, and hence be an isomorphism.
In general, since there are natural isomorphisms

IndR[S2n]
R[Z2�Sn] 1R

∼= R ⊗Z IndZ[S2n]
Z[Z2�Sn] 1Z, Bn,R

∼= R ⊗Z Bn,Z,

and ξR is naturally identified with 1R ⊗Z ξZ, it suffices to show that ξZ is an isomor-
phism. Note also that the short exact sequence

0 → Ker ξZ → IndZ[S2n]
Z[Z2�Sn] 1Z → Bn,Z → 0

splits as Z-modules. It follows that Ker ξR is canonically isomorphic to R ⊗Z Ker ξZ

for any commutative Z-algebra R. Let N := Ker ξZ. It is enough to show that N = 0.
By [1, Proposition 3.8], we only need to show that N(p) = 0 for each prime number
p. Let kp := Z/(p), the residue field at the prime number p. It is clear that kp

∼=
Z(p)/(p)Z(p). Note that

N(p)/(p)N(p)
∼= kp ⊗Z(p)

N(p)
∼= kp ⊗Z(p)

Ker ξZ(p)
∼= Ker ξkp = 0.

Applying Nakayama’s lemma ([1, 2.6]), we conclude that N(p) = 0. This completes
the proof of the lemma. �

For any positive integer k and any composition μ = (μ1, · · · ,μs) of k, the Young
diagram of μ is defined to be the set [μ] := {(a, b)|1 ≤ a ≤ s,1 ≤ b ≤ μa}. The
elements of [μ] are called nodes of μ. A μ-tableau t is defined to be a bijective map
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from the Young diagram [μ] to the set {1,2, · · · , k}. We denote by tμ the μ-tableau
in which the numbers 1,2, · · · , k appear in order along successive rows. The row
stabilizer of tμ, denoted by Sμ, is the standard Young subgroup of Sk corresponding
to μ. For example, if k = 6,μ = (2,3,1), then

t
μ =

1 2
3 4 5
6

, Sμ = the subgroup of S6 generated by {s1, s3, s4}.

We define

xμ =
∑

w∈Sμ

w, yμ =
∑

w∈Sμ

(−1)�(w)w,

where �(−) is the length function in Sk . If μ is a partition of k, we denote by tμ the μ-
tableau in which the numbers 1,2, · · · , k appear in order along successive columns.
Let wμ ∈ Sk be such that tμwμ = tμ. For example, if k = 8,μ = (3,3,1,1), then

t
μ =

1 2 3
4 5 6
7
8

, tμ =
1 5 7
2 6 8
3
4

, wμ = (2,5,6,8,4)(3,7).

For any partition μ of 2n, we define the associated Specht module Sμ to be the right
ideal of the group algebra Z[S2n] generated by yμ′wμ′xμ. In particular, S(2n) is the

one-dimensional trivial representation of S2n, while S(12n) is the one dimensional
sign representation of S2n. By [13, Theorem 3.5] and [31, 5.3], our Sμ is isomorphic
to the dual Specht module S̃μ introduced in [31, Section 5]. For any commutative Z-
algebra R, we write S

μ
R := R ⊗Z Sμ. Then {Sμ

Q
|μ � 2n} is a complete set of pairwise

non-isomorphic simple Q[S2n]-modules.
For any composition λ = (λ1, · · · , λs) of n, let 2λ := (2λ1, · · · ,2λs), which is a

composition of 2n. We use Pn to denote the set of partitions of n. We define 2Pn :=
{2λ

∣∣ λ ∈Pn}.
Lemma 2.2 There is an isomorphism of right Q[S2n]-modules:

Bn,Q
∼=

⊕
λ∈2Pn

Sλ
Q
.

Proof This follows from Lemma 2.1 and [27, Chapter VII, (2.4)]. �

Let a be an integer with 0 ≤ a ≤ n. Let 1 ≤ i1, · · · , ia, j1, · · · , ja ≤ 2n be 2a

distinct integers. Let

I := {1,2, · · · ,2n} \ {i1, · · · , ia, j1, · · · , ja}.
Let SI be the symmetric group on the set I . Let i := (i1, · · · , ia), j := (j1, · · · , ja).
Let

Bdn(i, j) :=
{
D ∈ Bdn

∣∣∣ D connects is with js for each 1 ≤ s ≤ a
}
.
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Lemma 2.3 With the notations as above, for any w ∈ SI , we have( ∑
D∈Bdn(i,j)

D

)
∗ w =

∑
D∈Bdn(i,j)

D.

Proof For any D �= D′ ∈ Bdn(i, j), it is clear that

D ∗ w �= D′ ∗ w ∈ Bdn(i, j).

Therefore, the lemma follows easily from a counting argument. �

Definition 2.4 For any non-negative even integers a, b with a + b ≤ 2n, we define

Bd(a)
(b) : =

{
D ∈ Bdn

∣∣∣∣∣
the vertex labeled by i is connected with

the vertex labeled by γ (i) whenever
i ≤ a or i > a + b

}
,

X
(a)
(b) : =

∑
D∈Bd(a)

(b)

D.

For any even integer k with 0 ≤ k ≤ 2n, let X(k) := X
(0)
(k) .

Definition 2.5 Let λ = (λ1, · · · , λs) be a composition of 2n such that λi is even for
each i, and define

Xλ := X
(0)
(λ1)

X
(λ1)
(λ2)

· · ·X(λ1+···+λs−1)

(λs )
∈ Bn.

Note that Xλ is nothing but a sum of all the Brauer n-diagram D which satisfies the
following condition: for each integer 1 ≤ i ≤ s and each integer a with

∑i−1
j=1 λj +

1 ≤ a ≤ ∑i
j=1 λj , the vertex labeled by a in D can only be connected with a vertex

labeled by b for some integer b with
∑i−1

j=1 λj + 1 ≤ b ≤ ∑i
j=1 λj and b �= a.

Corollary 2.6 Let λ = (λ1, · · · , λs) be a composition of 2n such that λi is even for
each i. Then, for any w ∈ Sλ, we have that

Xλ ∗ w = Xλ.

Proof For any non-negative even integers a, b with a + b ≤ 2n, the set Bd(a)
(b) is just

a special case of the set Bdn(i, j) we defined before. Therefore, by Lemma 2.3, for
any w ∈ S{a+1,a+2,··· ,a+b}, we have

X
(a)
(b) ∗ w = X

(a)
(b) .

Now we note that the elements X
(0)
(λ1)

,X
(λ1)
(λ2)

, · · · ,X
(λ1+···+λs−1)

(λs )
pairwise commute

with each other. Hence the corollary follows at once. �
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Let k be a positive integer and μ be a composition of k. A μ-tableau t is called
row standard if the numbers increase along rows. We use RowStd(μ) to denote the
set of all the row-standard μ-tableaux. Suppose μ is a partition of k. Then t is called
column standard if the numbers increase down columns, and standard if it is both
row and column standard. In this case, it is clear that both tμ and tμ are standard μ-
tableaux. We use Std(μ) to denote the set of all the standard μ-tableaux. Let λ ∈ 2Pn.
For any t ∈ RowStd(λ), let d(t) ∈ S2n be such that tλd(t) = t. Let Xλ,t := Xλ ∗ d(t).
For any commutative Z-algebra R, we define

Mλ
R := R-Span

{
Xν,t

∣∣∣ t ∈ Std(ν), λ � ν ∈ 2Pn

}
,

where “�” is the usual dominance order, defined for example in [31]. We write Mλ =
Mλ

Z
. We are interested in the module Mλ

R . In the remaining part of this paper, we
shall see that this module is actually a right S2n-submodule of Bn,R , and it shares
many properties with the permutation module xλZ[S2n]. In particular, it also has a
Specht filtration, and it is stable under base change, i.e., R ⊗Z Mλ ∼= Mλ

R for any
commutative Z-algebra R.

For our purpose, we need to recall some results in [31] and [28] on the Specht
filtrations of permutation modules over the symmetric group S2n. Let λ, μ be two
partitions of 2n. A μ-tableau of type λ is a map S : [μ] → {1,2, · · · ,2n} such that
each i appears exactly λi times. S is said to be semistandard if each row of S is weakly
increasing and each column of S is strictly increasing. Let T0(μ,λ) be the set of all
the semistandard μ-tableaux of type λ. Then T0(μ,λ) �= ∅ only if μ � λ. For each
standard μ-tableau s, let λ(s) be the tableau which is obtained from s by replacing
each entry i in s by r if i appears in row r of tλ. Then λ(s) is a μ-tableau of type λ.

For each standard μ-tableau t and each semistandard μ-tableau S of type λ, we
define

xS,t :=
∑

s∈Std(μ),λ(s)=S

d(s)−1xμd(t).

Then by [31, Section 7], the set{
xS,t

∣∣∣ S ∈ T0(μ,λ), t ∈ Std(μ),λ � μ � 2n
}

form a Z-basis of xλZ[S2n]. Furthermore, for any commutative Z-algebra R, the
canonical surjective homomorphism R ⊗Z xλZ[S2n] � xλR[S2n] is an isomor-
phism.

For each partition μ of 2n and for each semistandard μ-tableau S of type λ, ac-
cording to the results in [31, Section 7] and [28], both the following Z-submodules

Mλ
S :=Z-Span

({
xS,s

∣∣ s ∈ Std(μ)
}

∪ {
xT,t

∣∣ T ∈ T0(ν, λ), t ∈ Std(ν),μ � ν � 2n
})

,

Mλ
S,� : = Z-Span

{
xT,t

∣∣∣ T ∈ T0(ν, λ), t ∈ Std(ν),μ � ν � 2n
}
,
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are Z[S2n]-submodules, and the quotient of Mλ
S by Mλ

S,� is canonically isomorphic
to Sμ so that the image of the elements xS,s, where s ∈ Std(μ), forms the standard
Z-basis of Sμ. In other words, it gives rise to the Specht filtrations of xλZ[S2n], each
semistandard μ-tableau of type λ yields a factor which is isomorphic to Sμ so that
xλZ[S2n] has a series of factors, ordered by �, each isomorphic to some Sμ, μ � λ,
the multiplicity of Sμ being the number of semistandard μ-tableaux of type λ.

We write λ = (λ1, λ2, · · · ) = (a
k1
1 , a

k2
2 , · · · , ), where a1 > a2 > · · · , ki ∈ N for

each i, where a
ki

i means that ai repeats ki times. Let S̃λ be the subgroup of Sλ′
consisting of all the elements w satisfying the following condition: for any integers
i, j with λi = λj , and any integers a, b with 1 ≤ a, b ≤ λi ,

(tλ(i, a))w = tλ(j, a) if and only if (tλ(i, b))w = tλ(j, b). (2.1)

Let D̃λ be a complete set of right coset representatives of S̃λ in Sλ′ . By convention,
we set 0! = 1.

Lemma 2.7 For any partition λ ∈ 2Pn, let

nλ :=
∏
i≥1

(λ′
i − λ′

i+1)!, hλ :=
∑

w∈D̃λ

(−1)�(w)w.

Then |S̃λ| = nλ, and

Xλ ∗ (
wλyλ′

) = nλ

(
Xλ ∗ (wλhλ)

)
,

and for any commutative Z-algebra R, 1R ⊗Z (Xλ ∗ (wλhλ)) �= 0 in Bn,R .

Proof By definition,

yλ′ =
∑

w∈Sλ′
(−1)�(w)w =

( ∑
w∈S̃λ

(−1)�(w)w
)
hλ.

Note that the condition λ ∈ 2Pn implies that for any w ∈ S̃λ, �(w) is an even integer.
Therefore,

yλ′ =
( ∑

w∈S̃λ

w
)
hλ.

Since for each w ∈ S̃λ,

Xλ ∗ (wλw) = Xλ ∗ (wλww−1
λ ) ∗ wλ = Xλ ∗ wλ,

it follows that

Xλ ∗
(
wλ

∑
w∈S̃λ

w
)

= nλXλ ∗ wλ,

from which the first statement of this lemma follows. Let d be the Brauer n-diagram
in which the vertex labeled by tλ(i,2j − 1) is connected with the vertex labeled by
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tλ(i,2j) for any 1 ≤ i ≤ λ′
1,1 ≤ j ≤ λi/2. Then it is easy to see that d appears with

coefficient 1 in the expression of Xλ ∗ (wλhλ) as linear combinations of basis of
Brauer n-diagrams. It follows that for any commutative Z-algebra R, 1R ⊗Z (Xλ ∗
(wλhλ)) �= 0 in Bn,R , as required. �

Let t be a tableau with entries in {1,2, · · · , k}. For each integer a with 1 ≤ a ≤ k,
we define rest(a) = j − i if t(i, j) = a. Following [30], we define the Jucys-Murphy
operators of Z[S2n].{

L1 : = 0,

La : = (a − 1, a) + (a − 2, a) + · · · + (1, a), a = 2,3, · · · ,2n.

Then for each partition λ of 2n, and each integer 1 ≤ a ≤ 2n, we have (by [13, (3.14)])(
xλwλyλ′

)
La = restλ(a)

(
xλwλyλ′

)
.

For each standard λ-tableau t, we define

�t :=
n∏

i=1

∏
u∈Std(λ)

resu(i) �=rest(i)

Li − resu(i)

rest(i) − resu(i)
.

For each partition λ ∈ 2Pn, by Corollary 2.6 and Frobenius reciprocity, there is a
surjective right Z[S2n]-module homomorphism πλ from xλZ[S2n] onto XλZ[S2n]
which is defined by xλh �→ Xλ ∗ h, ∀h ∈ Z[S2n]. In particular, by Lemma 2.7,(

Xλ ∗ wλhλ

) ∗ La = restλ(a)
(
Xλ ∗ (wλhλ)

)
.

Proposition 2.8 For any partition λ ∈ 2Pn, we have that

[XλQ[S2n] : Sλ
Q
] = 1.

Proof By Lemma 2.2, we have

Bn,Q
∼=

⊕
μ∈2Pn

S
μ

Q
.

It is well-known that each S
μ

Q
has a basis

{
vt

}
t∈Std(μ)

satisfying

vtLi = rest(i)vt, ∀1 ≤ i ≤ n.

Let λ be a fixed partition in 2Pn. Since XλQ[S2n] ⊆ Bn,Q, we can write

Xλ ∗ (wλhλ) =
∑

μ∈2Pn

∑
t∈Std(μ)

Atvt,

where At ∈ Q for each t.
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For each μ ∈ 2Pn and each t ∈ Std(μ), we apply the operator �t on both sides of
the above identity and use Lemma 2.7 and the above discussion. We get that At �= 0
if and only if μ = λ and t = tλ. In other words, Xλ ∗ (wλhλ) = Atλvtλ for some
0 �= Atλ ∈ Q. This implies that the projection from XλQ[S2n] to Sλ

Q
is nonzero.

Hence, [XλQ[S2n] : Sλ
Q
] = 1, as required. �

For each partition λ ∈ 2Pn, by the natural surjective Z[S2n]-module homomor-
phism πλ from xλZ[S2n] onto XλZ[S2n], we know that the elements πλ

(
xS,t

)
, where

S ∈ T0(μ,λ), t ∈ Std(μ),λ � μ � 2n, span XλZ[S2n] as Z-module.

Proposition 2.9 For any two partitions λ,μ of 2n, and for any S ∈ T0(μ,λ), we have
that πλ

(
Mλ

S

) ⊆ Mλ. In particular, XλZ[S2n] ⊆ Mλ.

Proof We first prove a weak version of the claim in this proposition. That is, for any
two partitions λ,μ of 2n, and for any S ∈ T0(μ,λ),

πλ

(
Mλ

S

) ⊆ Mλ
Q
.

We consider the dominance order “�” and use induction on λ. We start with the
partition (2n), which is the unique maximal partition of 2n with respect to “�”. In this
case, x(2n)Z[S2n] = Zx(2n), and X(2n)Z[S2n] = ZX(2n), it is easy to see the claim in
this proposition is true for λ = (2n).

Now let λ � (2n) be a partition of 2n. Assume that for any partition ν of 2n

satisfying ν � λ, the claim in this proposition is true. We now prove the claim for the
partition λ.

Let μ�λ be a partition of 2n with T0(μ,λ) �= ∅. We consider again the dominance
order “�” and use induction on μ. Since T0((2n),λ) contains a unique element S�,
Std((2n)) = {t(2n)} and

πλ

(
xS�,t(2n)

) = πλ(x(2n)) = X(2n) ∈Mλ.

So in this case the claim of this proposition is still true.
Now let μ � λ be a partition of 2n with T0(μ,λ) �= ∅ and μ � (2n). Assume that

for any partition ν of 2n satisfying T0(ν, λ) �= ∅ and ν � μ, and for any S ∈ T0(ν, λ),

πλ

(
Mλ

S

) ⊆ Mλ
Q
.

Let S ∈ T0(μ,λ). The homomorphism πλ induces a surjective map from Mλ
S/Mλ

S,�
onto (

πλ(M
λ
S )

)
/
(
πλ(M

λ
S,�)

)
.

Hence it also induces a surjective map π̃λ from(
Q ⊗Z Mλ

S

)
/
(
Q ⊗Z Mλ

S,�
) ∼= Q ⊗Z

(
Mλ

S/Mλ
S,�

) ∼= S
μ

Q

onto

Q ⊗Z

(
πλ(M

λ
S )/πλ(M

λ
S,�)

)
.
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Since S
μ

Q
is irreducible, the above map is either a zero map or an isomorphism. If it

is a zero map, then (by induction hypothesis)

πλ(M
λ
S ) ⊆ πλ(M

λ
S,�)Q ⊆ Mλ

Q
.

It remains to consider the case where π̃λ is an isomorphism. In particular,

Q ⊗Z

(
πλ(M

λ
S )/πλ(M

λ
S,�)

) ∼= S
μ

Q
.

Applying Lemma 2.2, we know that μ ∈ 2Pn.
On the other hand, the homomorphism πμ also induces a surjective map from

xμZ[S2n]/Mμ
S0,� onto

(
πμ(xμZ[S2n])

)
/
(
πμ(M

μ
S0,�)

)
= XμZ[S2n]/

(
πμ(M

μ
S0,�)

)
,

where S0 is the unique semistandard μ-tableau in T0(μ,μ). Hence it also induces a
surjective map π̃μ from(

Q ⊗Z xμZ[S2n]
)
/
(
Q ⊗Z M

μ
S0,�

) ∼= Q ⊗Z

(
xμZ[S2n]/Mμ

S0,�
) ∼= S

μ

Q

onto

Q ⊗Z

(
XμZ[S2n]/πμ(M

μ
S0,�)

) ∼=
(
XμQ[S2n]

)
/
(
Q ⊗Z πμ(M

μ
S0,�)

)
.

By the Specht filtration of M
μ

Q
, we know that S

μ

Q
does not occur as composition

factor in Q ⊗Z M
μ
S0,�. Hence S

μ

Q
does not occur as composition factor in Q ⊗Z

πμ(M
μ
S0,�). By Proposition 2.8, S

μ

Q
occurs as composition factor with multiplicity

one in XμQ[S2n]. Therefore, XμQ[S2n] �= Q ⊗Z πμ(M
μ
S0,�). It follows that π̃μ

must be an isomorphism. Hence

Q ⊗Z

(
XμZ[S2n]/πμ(M

μ
S0,�)

) ∼= S
μ

Q
.

We write A = πλ(M
λ
S ),B = XμZ[S2n]. Since S

μ

Q
appears only once in Bn,Q, it

follows that S
μ

Q
must occur as composition factor in the module

(
Q ⊗Z A

) ∩ (
Q ⊗Z B

) = Q ⊗Z (A ∩ B).

Hence S
μ

Q
can not occur as composition factor in the module

(
Q ⊗Z A

)
/
(
Q ⊗Z (A ∩ B)

) ∼= Q ⊗Z (A/A ∩ B).

Therefore, the image of the canonical projection Q⊗Z A → Q⊗Z (A/A∩B) must be
contained in the image of Q ⊗Z πλ(M

λ
S,�). However, by induction hypothesis, both

πλ(M
λ
S,�) and B are contained in the Q-span of {Xα,u|u ∈ Std(α), λ � α ∈ 2Pn}. It

follows that

πλ

(
Mλ

S

) ⊆ Mλ
Q
,
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as required.
Now we begin to prove πλ

(
Mλ

S

) ⊆ Mλ. Suppose that

πλ

(
Mλ

S

) �⊆ Mλ.

Then (by the Z-freeness of Bn) there exist an element x ∈ Mλ
S , some integers a, au,

and a prime divisor p ∈ N of a, such that

aπλ(x) =
∑

λ�α∈2Pn

∑
u∈Std(α)

auXα ∗ d(u),

and

�p := {
α ∈ 2Pn

∣∣ λ � α,p � au, for some u ∈ Std(α)
} �= ∅.

We take an α ∈ �p such that α is minimal with respect to “�”. Then we take an
u ∈ Std(α) such that p � au and �(d(u)) is maximal among the elements in the set{
u ∈ Std(α)

∣∣ p � au

}
. Let σu be the unique element in S2n such that d(u)σu = wα

and �(wα) = �(d(u)) + �(σu). We consider the finite field Fp as a Z-algebra. By [12,
(4.1)], we know that for any partitions β,γ of 2n, and element w ∈ S2n,

xβwyγ ′ �= 0 only if γ � β; while xβwyβ ′ �= 0 only if w ∈ Sβwβ.

Hence by Lemma 2.7 and the homomorphism πλ,

Xβ ∗ (whγ ) �= 0 only if γ � β; Xβ ∗ (whβ) �= 0 only if w ∈ Sβwβ.

Using Lemma 2.7 again, we get

0 = 1Fp
⊗Z

(
aπλ(x) ∗ (σuhα)

) = 1Fp
⊗Z

(
auXα ∗ (wαhα)

) �= 0,

which is a contradiction. This proves that πλ

(
Mλ

S

) ⊆ Mλ. �

Corollary 2.10 For any partition λ ∈ 2Pn and any commutative Z-algebra R, Mλ
R

is a right S2n-submodule of Bn,R .

Proof This follows directly from Proposition 2.9. �

Theorem 2.11 For any partition λ ∈ 2Pn and any commutative Z-algebra R, the
canonical map R ⊗Z Mλ → Mλ

R is an isomorphism, and the set{
Xν,t

∣∣∣ t ∈ Std(ν), λ � ν ∈ 2Pn

}
forms an R-basis of Mλ

R . In particular, the set{
Xλ,t

∣∣∣ t ∈ Std(λ), λ ∈ 2Pn

}
forms an R-basis of Bn,R .
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Proof We take λ = (2n), then XλZ[S2n] = Bn. It is well-known that Bn,R
∼= R ⊗Z

Bn for any commutative Z-algebra R. Applying Proposition 2.9 and counting the
dimension, we get that for any Z-algebra R which is a field, the set{

Xλ,t

∣∣∣ t ∈ Std(λ), λ ∈ 2Pn

}
must form an R-basis of Bn,R . Since for any commutative Z-algebra R, the natural
map r ⊗Z d �→ rd , ∀ r ∈ R,d ∈ Bn, defines an R-module isomorphism R ⊗Z Bn

∼=
Bn,R , it follows that the above set is still an R-basis of Bn,R for any commutative
Z-algebra R.

By the R-linear independence of the elements in this set and Corollary 2.10, we
also get that, for any partition λ ∈ 2Pn, the set{

Xν,t

∣∣∣ t ∈ Std(ν), λ � ν ∈ 2Pn

}
must form an R-basis of Mλ

R . Therefore, for any commutative Z-algebra R, the
canonical map R ⊗Z Mλ → Mλ

R is an isomorphism. �

Remark 2.12 Note that for any partition λ ∈ 2Pn, XλZ[S2n] ⊆ Mλ. But XλZ[S2n]
is not necessarily equal to Mλ in general. For example, one sees easily that

X(6,2) /∈ X(4,4)Z[S8].
In fact, if this is not the case, then we can write

X(6,2) +
∑

i

aiX(4,4) ∗ wi =
∑
j

bjX(4,4) ∗ w′
j ,

for some positive integers ai, bj and some elements wi,w
′
j ∈ S2n. However, if we

express both sides into linear combinations of Brauer 4-diagrams and count the num-
ber of terms, we find that this is impossible (as the equation 15 + 9a = 9b has no
solutions in Z).

Theorem 2.13 For any partition λ ∈ 2Pn and any commutative Z-algebra R, we
define

M�λ
R := R-Span

{
Xν,t

∣∣∣ t ∈ Std(ν), λ � ν ∈ 2Pn

}
.

Then M�λ
R is a right R[S2n]-submodule of Mλ

R , and there is a R[S2n]-module
isomorphism

Mλ
R/M�λ

R
∼= Sλ

R.

In particular, Bn,R has a multiplicity free Specht filtration.

Proof It suffices to consider the case where R = Z. We first show that

Mλ
Q

∼= ⊕λ�μ∈2Pn
S

μ

Q
, M�λ

Q
∼= ⊕λ�μ∈2Pn

S
μ

Q
.
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For each μ ∈ 2Pn, we use ρλ
μ to denote the composition of the embedding Mλ

Q
↪→

Bn,Q and the projection Bn,Q � S
μ

Q
. Suppose that ρλ

μ �= 0. Then ρλ
μ must be a sur-

jection. We claim that μ � λ. In fact, if μ � λ, then for any λ � ν ∈ 2Pn, μ � ν, and
xνZ[S2n]wμ′xμwμyμ′ = 0, hence Xν,t ∗ (wμ′xμwμyμ′) = 0 for any t ∈ Std(ν). It
follows that Mλ

Q
(wμ′xμwμyμ′) = 0. Therefore, S

μ

Q
(wμ′xμwμyμ′) = 0. On the other

hand, since S
μ

Q
∼= xμwμ′yμ′Q[S2n], and by [25, Lemma 5.7],

xμwμ′yμ′(wμ′xμwμyμ′) =
( ∏

(i,j)∈[μ]
h

μ
i,j

)
xμwμ′yμ′ �= 0,

where h
μ
i,j is the (i, j)-hook length in [μ], we get a contradiction. Therefore, ρλ

μ �=
0 must imply that μ � λ. Now counting the dimensions, we deduce that Mλ

Q
∼=

⊕λ�μ∈2Pn
S

μ

Q
. In a similar way, we can prove that M�λ

Q
∼= ⊕λ�μ∈2Pn

S
μ

Q
. It follows

that Mλ
Q
/M�λ

Q
∼= Sλ

Q
.

We now consider the natural map from xλZ[S2n] onto Mλ/M�λ ∼= Sλ. Since
Q ⊗Z Mλ

S0,� does not contain Sλ
Q

as a composition factor, it follows that (by Propo-

sition 2.9) the image of Mλ
S0,� must be contained in M�λ. Therefore we get a sur-

jective map from Sλ onto Mλ/M�λ ∼= Sλ. This map sends the standard basis of Sλ

to the canonical basis of Mλ/M�λ. So it must be injective as well, as required. �

3 The n-tensor space V ⊗n

In this section, we shall use the results obtained in Section 2 and in [11] to give an
explicit and characteristic-free description of the annihilator of the n-tensor space
V ⊗n in the Brauer algebra Bn(−2m).

Let K be an arbitrary infinite field. Let m,n ∈ N. Let V be a 2m-dimensional
symplectic K-vector space. Let Sp(V ) be the corresponding symplectic group, act-
ing naturally on V , and hence on the n-tensor space V ⊗n from the left-hand side.
As we mentioned in the introduction, this left action on V ⊗n is centralized by the
specialized Brauer algebra Bn(−2m)K := K ⊗Z Bn(−2m), where K is regarded as
a Z-algebra by sending each integer a to a · 1K . The Brauer algebra Bn(−2m)K acts
on the n-tensor space V ⊗n from the right-hand side. Let ϕ be the natural K-algebra
homomorphism

ϕ : (Bn(−2m)K)op → EndK

(
V ⊗n

)
.

By the discussion in [11, Section 3], V ⊗n is a tilting module over KSp(V ). By
[14, (4.4)], the dimension of EndKSp(V )

(
V ⊗n

)
is independent of the choice of the

infinite field K . Therefore, the dimension of Kerϕ := {
y ∈ Bn(−2m)K

∣∣ ϕ(y) =
0
}

is also independent of the choice of the infinite field K . That is, the dimension
of the annihilator of the n-tensor space V ⊗n in the Brauer algebra Bn(−2m)K is
independent of the choice of the infinite field K .
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Lemma 3.1 With the notations as above, we have that

dim(Kerϕ) =
∑

λ∈2Pn
λ1>2m

dimSλ.

Proof By Lemma 2.2 and Lemma 1.1, it suffices to consider the case where K = C

and to show that

dim EndCSp2m(V )

(
V ⊗n

) =
∑

λ∈2Pn
λ1≤2m

dimSλ.

Note that dimSλ = dimSλ′
, and

EndCSp2m(V )

(
V ⊗n

) ∼=
((

V ⊗n
) ⊗ (

V ⊗n
)∗)Sp(V ) ∼= (

V ⊗2n
)Sp(V )

.

Therefore, it suffices to show that

dim
(
V ⊗2n

)Sp(V ) =
∑

λ∈2Pn
λ1≤2m

dimSλ′
.

By the well-known Schur–Weyl duality between the general linear group GL(V )

and the symmetric group S2n on the tensor space V ⊗2n, we know that there is a
(GL(V ),S2n)-bimodules decomposition

V ⊗2n ∼=
⊕
λ�2n

�(λ)≤2m

�̃λ ⊗ Sλ,

where �̃λ denotes the irreducible Weyl module with highest weight λ over GL(V ).
Here we identify λ with λ1ε1 + · · · + λ2mε2m, εi is the weight of GL(V ) defined by

εi

(
diag{t1, t2, · · · , t2m}) = ti , ∀ t1, · · · , t2m ∈ K×,

for i = 1,2, · · · ,2m. It follows that

dim
(
V ⊗2n

)Sp(V ) =
∑
λ�2n

�(λ)≤2m

dim
(
(�̃λ ↓Sp(V ))

Sp(V )
)

dim(Sλ).

By the branching law (see [26, Proposition 2.5.1]) from GL(V ) to Sp(V ), we know
that

dim
(
(�̃λ ↓Sp(V ))

Sp(V )
)

= 1

if λ′ ∈ 2Pn; and 0 otherwise. This proves that

dim
(
V ⊗2n

)Sp(V ) =
∑

λ∈2Pn
λ1≤2m

dimSλ′
,
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as required. �

Let a, b be two integers such that 0 ≤ a, b ≤ n and a + b is even. Let

I odd
a := {1,3,5, · · · ,2a − 1}, I even

b := {2,4,6, · · · ,2b}.
If a ≥ b, we define Bdn(a, b) to be the set of all Brauer n-diagrams D such that:

• for each integer s with a + 1 ≤ s ≤ n, D connects the vertex labeled by 2s − 1
with the vertex labeled by 2s;

• for each integer s with 1 ≤ s ≤ (a − b)/2, D connects the vertex labeled by 2b +
4s − 2 with the vertex labeled by 2b + 4s.

If b ≥ a, we define Bdn(a, b) to be the set of all Brauer n-diagrams D such that:

• for each integer b + 1 ≤ s ≤ n, D connects the vertex labeled by 2s − 1 with the
vertex labeled by 2s;

• for each integer 1 ≤ s ≤ (b − a)/2, d connects the vertex labeled by 2a + 4s − 3
with the vertex labeled by 2a + 4s − 1.

For example, let D1 be the following Brauer 7-diagram

Then D1 ∈ Bd7(5,3). Let D2 be the following Brauer 7-diagram

Then D2 ∈ Bd7(3,5).

Lemma 3.2 Let a, b be two integers such that 0 ≤ a, b ≤ n and a+b is even. Suppose
that a + b ≥ 2m + 2, then ∑

D∈Bdn(a,b)

D ∈ Kerϕ.

The proof of Lemma 3.2 is somewhat complicated and will be given in Section 4.
Given any two subsets A(1) ⊆ {1,3, · · · ,2n − 1},A(2) ⊆ {2,4, · · · ,2n} with

|A(1)| + |A(2)| is even, we set 2n0 = |A(1)| + |A(2)|, and{
a1, a2, · · · , a2n−2n0

} := {
1,2, · · · ,2n

} \ (
A(1) ∪ A(2)

)
.

Let (i1, j1, i2, j2, · · · , in−n0 , jn−n0) be a fixed permutation of{
a1, a2, · · · , a2n−2n0

}
.
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Let

i := (i1, i2, · · · , in−n0), j := (j1, j2, · · · , jn−n0).

We define Bdi,j
n (A(1),A(2)) to be the set of all Brauer n-diagrams D such that: for

each integer s with 1 ≤ s ≤ n − n0, D connects the vertex labeled by is with the
vertex labeled by js . Note that the set Bdn(a, b) we defined before is a special case
of the set Bdi,j

n (A(1),A(2)) we defined here.

Corollary 3.3 With the notations as above and suppose that 2n0 = |A(1)| + |A(2)| ≥
2m + 2, then we have ∑

D∈Bdi,j
n (A(1),A(2))

D ∈ Kerϕ.

Proof Let n1 = |A(1)|, n2 = |A(2)|. If n1 ≥ n2, then for any Brauer diagram D ∈
Bdi,j

n (A(1),A(2)), there exist at least n1−n2
2 bottom horizontal edges between the ver-

tices labeled by the integers in the following set

{
2,4,6, · · · ,2n

} \ A(2).

As a result, we deduce that there exist elements σA(1) ∈ S(1,3,··· ,2n−1), σA(2) ∈
S(2,4,··· ,2n) and a Brauer diagram D1, such that

(1) for any integer a with 1 ≤ a ≤ n1, D1 connects the vertex labeled by 2a − 1 with
the vertex labeled by 2a.

(2)

σA(1)

( ∑
D∈Bdi,j

n (A(1),A(2))

D
)
σA(2) = D1

( ∑
D∈Bdn(|A(1)|,|A(2)|)

D
)
.

In this case, since both ϕ(σA(1) ) and ϕ(σA(2) ) are invertible, it follows directly from
Lemma 3.2 that

∑
D∈Bdi,j

n (A(1),A(2))
D ∈ Kerϕ.

If n1 ≤ n2, then for any Brauer diagram D ∈ Bdi,j
n (A(1),A(2)), there exist at least

n2−n1
2 top horizontal edges between the vertices labeled by the integers in the follow-

ing set {
1,3,5, · · · ,2n − 1

} \ A(1).

As a result, we deduce that there exist elements σA(1) ∈ S(1,3,··· ,2n−1), σA(2) ∈
S(2,4,··· ,2n) and a Brauer diagram D2, such that

(3) for any integer a with 1 ≤ a ≤ n2, D2 connects the vertex labeled by 2a − 1 with
the vertex labeled by 2a.

(4)

σA(1)

( ∑
D∈Bdi,j

n (A(1),A(2))

D
)
σA(2) = D2

( ∑
D∈Bdn(|A(1)|,|A(2)|)

D
)
.
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By the same argument as before, we deduce that
∑

D∈Bdi,j
n (A(1),A(2))

D ∈ Kerϕ in this
case. This completes the proof of the corollary. �

The following is the main result of this section, which gives an explicit and
characteristic-free description of the annihilator of the n-tensor space V ⊗n in the
Brauer algebra Bn(−2m).

Theorem 3.4 With the notations as in Lemma 1.1 and Lemma 3.1, we have that

Kerϕ = M(2m+2,2n−m−1)
K ,

where (2m + 2,2n−m−1) := (2m + 2, 2, · · · ,2︸ ︷︷ ︸
n − m − 1 copies

), M(2m+2,2n−m−1)
K is the right

K[S2n]-module associated to (2m + 2,2n−m−1) as defined in Section 2. In particu-
lar, Kerϕ is a S2n-submodule.

Proof It is easy to see that for any partition μ ∈ 2Pn, μ � (2m + 2,2n−m−1) if and
only if μ1 > 2m. Therefore,

dimM(2m+2,2n−m−1)
K =

∑
λ∈2Pn
λ1>2m

dimSλ.

Applying Lemma 1.1 and Lemma 3.1, we see that to prove this theorem, it suffices to

show that M(2m+2,2n−m−1)
K ⊆ Kerϕ. Equivalently, it suffices to show that for any par-

tition λ = (λ1, · · · , λs) ∈ 2Pn satisfying λ1 > 2m, and any w ∈ S2n, ϕ(Xλ ∗ w) = 0.
By the definition of the element Xλ, the action “∗” and the multiplication rule of

Brauer diagrams, we deduce that

Xλ ∗ w =
∑
i,j

∑
D∈Bdi,j

n (A(1),A(2))

D,

where

A(1) :=
{
(i)w

∣∣∣ i = 1,2,3, · · · , λ1

}
∩

{
1,3,5, · · · ,2n − 1

}
,

A(2) :=
{
(i)w

∣∣∣ i = 1,2,3, · · · , λ1

}
∩

{
2,4,6, · · · ,2n

}
,

and |A(1)| + |A(2)| = 2n0 = λ1, and i := (i1, i2, · · · , in−n0), j := (j1, j2, · · · , jn−n0)

such that (i1, j1, i2, j2, · · · , in−n0 , jn−n0) is a permutation of the integers in
{
1,2, · · · ,

2n
} \ (A(1) ∪ A(2)). We now apply Corollary 3.3. It follows immediately that

ϕ(Xλ ∗ w) = 0 as required. This completes the proof of the theorem. �

Let VZ be a free Z-module with basis {v1, v2, · · · , v2m}. For any commutative Z-
algebra R, we define VR := R ⊗Z VZ. We have an action of the algebra Bn(−2m)

on V ⊗n
Z

which is obtained by restricting the earlier action, and hence an action of
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Bn(−2m)R on V ⊗n
R . Let S

sy
R (m,n) (see [11, Section 2] and [32]) be the symplectic

Schur algebra over R. If R is a field, then S
sy
R (m,n) is a quasi-hereditary algebra over

R, and V ⊗n
R is a tilting module over S

sy
R (m,n). Applying [14, (4.4)], we know that,

for any commutative Z-algebra R, there is a canonical isomorphism

R ⊗Z EndS
sy

Z
(m,n)

(
V ⊗n

Z

) ∼= EndS
sy
R (m,n)

(
V ⊗n

R

)
. (3.1)

Note that ϕ
(
Bn(−2m)C

) = EndS
sy

C
(m,n)

(
V ⊗n

C

)
. By restriction, we get that

ϕ
(
Bn(−2m)Z

) ⊆ EndS
sy

Z
(m,n)

(
V ⊗n

Z

)
.

Hence for any commutative Z-algebra R,

ϕ
(
Bn(−2m)R

) ⊆ EndS
sy
R (m,n)

(
V ⊗n

R

)
.

By the main result in [11], we know that the above inclusion “⊆” can be replaced
by “=” when R = K is an infinite field. Counting dimensions, we see that the above
inclusion “⊆” can be replaced by “=” when R = K is an arbitrary field.

Corollary 3.5 For any commutative Z-algebra R,

ϕ
(
Bn(−2m)R

) = EndS
sy
R (m,n)

(
V ⊗n

R

)
.

In particular, Theorem 3.4 is always true if we replace the infinite field K by any
commutative Z-algebra R.

Proof By (3.1), it suffices to show that

ϕ
(
Bn(−2m)Z

) = EndS
sy

Z
(m,n)

(
V ⊗n

Z

)
.

Let N :=
(

EndS
sy

Z
(m,n)

(
V ⊗n

Z

))
/ϕ

(
Bn(−2m)Z

)
. It is enough to show that N = 0.

By [1, Proposition 3.8], it suffices to show that N(p) = 0 for each prime num-
ber p. Let kp := Z/(p), the residue field at the prime number p. It is clear that
kp

∼= Z(p)/(p)Z(p). Note that

N(p)/(p)N(p)
∼= kp ⊗Z(p)

N(p)
∼= kp ⊗Z N

∼=
(

EndS
sy
kp

(m,n)

(
V ⊗n

kp

))
/ϕ

(
Bn(−2m)kp

) = 0.

Applying Nakayama’s lemma ([1, 2.6]), we conclude that N(p) = 0. This completes
the proof of the corollary. �
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4 Proof of Lemma 3.2

We shall first fix some notations and conventions. Since the element
∑

D∈Bdn(a,b) D

in Lemma 3.2 actually lies in Bn, we can choose to work inside the Brauer algebra
Bn(−2m)C in this section. Furthermore, throughout this section, we shall recover our
original way of labeling of vertices in each Brauer n-diagram. That is, the vertices in
each row of a Brauer n-diagram will be labeled by the indices 1,2, · · · , n from left to
right. This way of labeling is more convenient when we need to express each Brauer
diagram in terms of the standard generators si , ei for 1 ≤ i ≤ n − 1 and to consider
the action of Brauer diagrams on the n-tensor space V ⊗n.

Let f be an integer with 0 ≤ f ≤ [n/2], where [n/2] is the largest non-negative
integer not bigger than n/2. Define

Df :=
{

d ∈ Sn

∣∣∣∣∣
(2j − 1)d < (2j)d for 1 ≤ j ≤ f ,

1d < 3d < · · · < (2f − 1)d ,
(2f + 1)d < (2f + 2)d < · · · < nd

}
.

For each partition λ of n − 2f , we denote by Std2f (λ) the set of all the stan-
dard λ-tableaux with entries in {2f + 1, · · · , n}. The initial tableau tλ in this case
has the numbers 2f + 1, · · · , n in order along successive rows. Again, for each
t ∈ Std2f (λ), let d(t) be the unique element in S{2f +1,··· ,n} ⊆ Sn with tλd(t) = t.
Let σ ∈ S{2f +1,··· ,n} and d1, d2 ∈ Df . Then d−1

1 e1e3 · · · e2f −1σd2 corresponds to
the Brauer n-diagram where the top horizontal edges connect (2i − 1)d1 and (2i)d1,
the bottom horizontal edges connect (2i − 1)d2 and (2i)d2, for i = 1,2, · · · , f , and
the vertical edges connect (j)d1 with (j)σd2 for j = 2f + 1,2f + 2, · · · , n.

Lemma 4.1 ([11, Corollary 3.3]) With the above notations, the set{
d−1

1 e1e3 · · · e2f −1σd2

∣∣∣ 0 ≤ f ≤ [n/2], σ ∈ S{2f +1,··· ,n}, d1, d2 ∈ Df

}
is a basis of the Brauer algebra Bn(x)R , which coincides with the natural basis given
by Brauer n-diagrams.

Given an element d−1
1 e1e3 · · · e2f −1σd2 as above, let D be its representing Brauer

n-diagram. Let vi := vi1 ⊗ vi2 ⊗ · · · ⊗ vin be a simple n-tensor in V ⊗n.

Lemma 4.2 With the notations as above, we have that

viD = (−1)�(d
−1
1 σd2)

(
vi ◦ D)

)
,

where vi ◦ D can be described as follows:

(1) If (j)d−1
1 σd2 = (k) for j ∈ {

(2f + 1)d1, (2f + 2)d1, · · · , (n)d1
}
, then the kth

position of vi ◦ D is vij ;
(2) For each 1 ≤ j ≤ f , the ((2j −1)d2, (2j)d2)th position of vi ◦D is the following

sum:

εi(2j−1)d1 ,i(2j)d1

m∑
k=1

(vk′ ⊗ vk − vk ⊗ vk′).
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Remark 4.3 Intuitively, the action of the Brauer n-diagram D on vi can be thought as
follows. Let (a1, b1), · · · , (af , bf ) be the set of all the horizontal edges in the top row
of D, where as < bs for each s and a1 < a2 < · · · < af . Let (c1, d1), · · · , (cf , df ) be
the set of all the horizontal edges in the bottom row of D, where cs < ds for each s

and c1 < c2 < · · · < cf . Then for each 1 ≤ j ≤ f , the (cj , dj )th position of vi ◦ D is
the following sum:

εiaj
,ibj

m∑
k=1

(vk′ ⊗ vk − vk ⊗ vk′).

We list those vertices in the top row of D which are not connected with horizontal
edges from left to right as ik2f +1 , ik2f +2 , · · · , ikn . Then, for each integer j with 2f +
1 ≤ j ≤ n, the (jσd2)th position of vi ◦ D is vikj

.

Given an arbitrary element d2 ∈ Df , we define

Bd(f )(n;d2) := {
d−1

1 e1e3 · · · e2f −1σd2
∣∣ d1 ∈ Df , σ ∈ S{2f +1,2f +2,··· ,n}

}
.

Note that Bd(f )(n;d2) consists of all the Brauer n-diagrams whose bottom horizontal
edges are

((1)d2, (2)d2), ((3)d2, (4)d2), · · · , ((2f − 1)d2, (2f )d2).

Lemma 4.4 Let f be an integer with 0 ≤ f ≤ [n/2]. Let d2 ∈ Df . Then for any
σ ∈ Sn,

σ
( ∑

D∈Bd(f )(n;d2)

D
)

=
∑

D∈Bd(f )(n;d2)

D.

Proof It suffices to show that for each integer 1 ≤ i < n,

si

( ∑
D∈Bd(f )(n;d2)

D
)

=
∑

D∈Bd(f )(n;d2)

D. (4.1)

In fact, for D,D′ ∈ Bd(f )(n;d2) with D �= D′, it is clear that siD �= siD
′, and both

siD and siD
′ are still lie in Bd(f )(n;d2). Now counting the number of Brauer n-

diagrams occurring in both sides, we prove (4.1) and hence also prove the lemma. �

Similarly, given an arbitrary element d1 ∈ Df , we define

Bd(f )(d1;n) := {
d−1

1 e1e3 · · · e2f −1σd2
∣∣ d2 ∈ Df , σ ∈ S{2f +1,2f +2,··· ,n}

}
.

Then Bd(f )(d1;n) consists of all the Brauer n-diagrams whose top horizontal edges
are

((1)d1, (2)d1), ((3)d1, (4)d1), · · · , ((2f − 1)d1, (2f )d1).

The following result can be proved in the same way as Lemma 4.4.
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Lemma 4.5 Let f be an integer with 0 ≤ f ≤ [n/2]. Let d1 ∈ Df . Then for any
σ ∈ Sn, ( ∑

D∈Bd(f )(d1;n)

D
)
σ =

∑
D∈Bd(f )(d1;n)

D.

Let i = (i1, i2, · · · , in), where 1 ≤ ij ≤ 2m for each j . An ordered pair (s, t) (1 ≤
s < t ≤ n) is called a symplectic pair in i if is = i′t . Two ordered pairs (s, t) and (u, v)

are called disjoint if
{
s, t

} ∩ {
u,v

} = ∅. We define the symplectic length �s(i) to be
the maximal number of disjoint symplectic pairs (s, t) in i. Let

I (2m,n) := {
i = (i1, · · · , in)

∣∣ 1 ≤ ij ≤ 2m, ij ∈ N,∀ j
}
.

For an arbitrary element v ∈ V ⊗n, we say the simple tensor vi = vi1 ⊗ · · · ⊗ vin

is involved in v, if vi has nonzero coefficient in writing v as linear combination∑
j∈I (2m,n) kj vj of the basis {vj |j ∈ I (2m,n)} of V ⊗n. We now consider a special

case of Lemma 3.2.

Proposition 4.6 We have that ∑
D∈Bdn(m+1,m+1)

D ∈ Kerϕ.

Proof By the above discussion and the definition of Bdn(m + 1,m + 1), any Brauer
diagram D ∈ Bdn(m+1,m+1) only acts on the first m+1 components of any simple
n-tensor vi1 ⊗ vi2 ⊗ · · · ⊗ vin ∈ V ⊗n. Therefore, to show that

∑
D∈Bdn(m+1,m+1) D ∈

Kerϕ, we can assume without loss of generality that n = m + 1. Note that∑
D∈Bdn(m+1,m+1)

D =
∑

0≤f ≤[n/2]

∑
d2∈Df

∑
D∈Bd(f )(n;d2)

D

=
∑

0≤f ≤[n/2]

∑
d1∈Df

∑
D∈Bd(f )(d1;n)

D.

Suppose that
∑

D∈Bdn(m+1,m+1) D �∈ Kerϕ. Then there exists a simple n-tensor vi =
vi1 ⊗ vi2 ⊗ · · · ⊗ vin ∈ V ⊗n, such that

vi

∑
D∈Bdn(m+1,m+1)

D �= 0.

Suppose that �s(i) = f for some integer 0 ≤ f ≤ [n/2]. By Lemma 4.4, for any
σ ∈ Sn,

σ−1
∑

D∈Bdn(m+1,m+1)

D =
∑

D∈Bdn(m+1,m+1)

D.

Therefore, replacing vi by viσ if necessary, we can assume without loss of generality
that i2s−1 = i′2s < i2s for each integer 1 ≤ s ≤ f , i1 ≤ i3 ≤ · · · ≤ i2f −1 and i2f +1 ≤
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i2f +2 ≤ · · · ≤ in. Furthermore, if ij = ik for some integers j �= k, then

vi

∑
D∈Bdn(m+1,m+1)

D = vi

1 + s(j,k)

2

∑
D∈Bdn(m+1,m+1)

D = 0,

where s(j,k) denotes the transposition (j, k) in Sn, and we have used the fact that
the length of s(j,k) is an odd integer. Therefore, we can deduce that i1, i2, · · · , in are
pairwise distinct. Hence, i2s−1 = i′2s < i2s for each integer 1 ≤ s ≤ f , i1 < i3 < · · · <
i2f −1 and i2f +1 < i2f +2 < · · · < in. Since n = m + 1, i1, i2, · · · , in are pairwise
distinct implies that f must be bigger than 0. Hence 0 < f ≤ [n/2].

Note that if g > f and D ∈ Bd(g)(d1, n), then viD = 0. Hence we get that

vi

∑
0≤g≤f

∑
d1∈Dg

∑
D∈Bd(g)(d1;n)

D �= 0. (4.2)

By Lemma 4.5, it is easy to see that for any σ ∈ Sn,

vi

∑
0≤g≤f

∑
d1∈Dg

∑
D∈Bd(g)(d1;n)

Dσ = vi

∑
0≤g≤f

∑
d1∈Dg

∑
D∈Bd(g)(d1;n)

D. (4.3)

Given any simple n-tensor vb := vb1 ⊗ · · · ⊗ vbn which is involved in the left-hand
side of (4.2), we claim that �s(b) = f and b1, · · · , bn are pairwise distinct. In fact,
since �s(i) = f , it is clear that �s(b) = f . Suppose that bj = bk for some integers
j �= k and vb appears with coefficient Ab �= 0 in the expansion of the left-hand side
of (4.2), then vb also appears with coefficient Ab �= 0 in the expansion of

vi

∑
0≤g≤f

∑
d1∈Dg

∑
D∈Bd(g)(d1;n)

Ds(j,k) = vi

∑
0≤g≤f

∑
d1∈Dg

∑
D∈Bd(g)(d1;n)

D.

As a result, vb also appears with coefficient Ab �= 0 in the expansion of

vi

∑
0≤g≤f

∑
d1∈Dg

∑
D∈Bd(g)(d1;n)

D(1 + s(j,k))/2,

which is impossible, since

(vb1 ⊗ · · · ⊗ vbn)(1 + s(j,k))/2 = 0.

By (4.3), for any σ ∈ Sn, vb is involved in the left-hand side of (4.2) if and only
if vbσ is involved in the left-hand side of (4.2). Therefore, we can choose a simple
n-tensor vb which is involved in the expansion of the left-hand side of (4.2) such that
b2s−1 = b′

2s < b2s for each integer 1 ≤ s ≤ f , b1 < b3 < · · · < b2f −1, and b1, · · · , bn

are pairwise distinct. We now consider the intersection of indices in i and b. By
Remark 4.3, the symplectic pairs in b \ i must be produced through the action of
contraction operators (i.e., horizontal edges in top row), while the symplectic pairs
in b ∩ i may be produced through either the action of contraction operators or the
permutation action of vertical edges. Therefore, by the argument at the beginning of
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this paragraph, we can further require that there exists an integer 0 ≤ r ≤ f such
that:

(a) bt = it for each integer 2r + 1 ≤ t ≤ n, and
(b) {b1, b2, · · · , b2r} ∩ {i1, i2, · · · , in} = ∅.

Since n = m+1, the above conditions and the fact that i1, · · · , in are pairwise distinct
imply that r must be less than f . Hence 0 ≤ r < f .

Let g be an integer with 0 ≤ g ≤ f , d1 ∈ Dg , D ∈ Bd(g)(d1;n), where

D = d−1
1 e1e3 · · · e2g−1σd2, σ ∈ S{2g+1,2g+2,··· ,n}, d2 ∈ Dg.

We claim that vb appears with nonzero coefficient in the expansion of viD if and only
if

(1) g ≥ r , σ = 1, and
(2) the horizontal edges in the top row of D are of the form

(1,2), (3,4), · · · , (2r − 1,2r), (2a1 − 1,2a1), (2a2 − 1,2a2), · · · ,

(2ag−r − 1,2ag−r ),

where a1, · · · , ag−r are some integers satisfying r + 1 ≤ a1 < a2 < · · · < ag−r ≤
f , and

(3) the horizontal edges in the bottom row of D is the same as those in the top row
of D, i.e., d2 = d1.

In fact, for any Brauer diagram D satisfying the above conditions (1), (2), (3), by
Remark 4.3, vb does appear with nonzero coefficient in the expansion of viD, and
the coefficient is (−1)g ; on the other hand, suppose that vb appears with nonzero
coefficient in the expansion of viD. By our assumption on i and b, it is easy to see
that the tensor factor vb2s−1 ⊗ vb2s

with 1 ≤ s ≤ r can only be produced through the
action of e2t−1 for some 1 ≤ t ≤ g. This implies that g ≥ r . For each integer j with
2g + 1 ≤ j ≤ n, by Remark 4.3, the action of D on vi moves the vector in the jd1th
position of vi (i.e., vijd1

) to the (jσd2)th position. By our assumption on i, b again,
we deduce that jd1 = jσd2. But by the definition of Dg ,

(2g + 1)d1 < (2g + 2)d1 < · · · < (n)d1,

(2g + 1)d2 < (2g + 2)d2 < · · · < (n)d2.

It follows that σ = 1, and jd1 = jd2 for any 2g + 1 ≤ j ≤ n. Now the remaining
statements of our claim follows easily from the fact that σ = 1, our assumption on i

and b as well as Remark 4.3.
Therefore, the coefficient of vb in the expansion of∑

d1∈Dg

∑
D∈Bd(g)(d1;n)

viD

is equal to

(−1)g
(

f − r

g − r

)
.
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Note that 0 ≤ r < f , it follows that the coefficient of vb in the left-hand side of (4.2)
is ∑

r≤g≤f

(−1)g
(

f − r

g − r

)
= 0,

a contradiction. This completes the proof of the proposition. �

Next we consider a more general situation than Proposition 4.6, which is still a
special case of Lemma 3.2.

Proposition 4.7 Let a, b be two integers such that 0 ≤ a, b ≤ n and a + b is even.
Suppose that a + b ≥ 2m + 2 and a ≥ b; then∑

D∈Bdn(a,b)

D ∈ Kerϕ.

Proof By the assumption that a ≥ b and the definition of Bdn(a, b), any Brauer di-
agram D ∈ Bdn(a, b) only acts on the first a components of any simple n-tensor in
V ⊗n. Therefore, we can assume without loss of generality that n = a. Also, because
of Proposition 4.6, we can assume that n = a > b. In particular, n + b ≥ 2m + 2
and n = a ≥ m + 2. Suppose that

∑
D∈Bdn(n,b) D �∈ Kerϕ. Then there exists a simple

n-tensor vi ∈ V ⊗n such that

vi

∑
D∈Bdn(n,b)

D �= 0. (4.4)

Applying Lemma 4.4, we know that for any σ ∈ Sn,

σ
∑

D∈Bdn(n,b)

D =
∑

D∈Bdn(n,b)

D.

Therefore, using the same argument as in the proof of Proposition 4.6, we deduce
that i1, · · · , in are pairwise distinct. Furthermore, let f = �s(i), we can choose i

such that i2s−1 = i′2s < i2s for each integer 1 ≤ s ≤ f , i1 < i3 < · · · < i2f −1 and
i2f +1 < i2f +2 < · · · < in.

We define

�f =
{
(1,2), (3,4), · · · , (2f − 1,2f )

}
.

For each D ∈ Bdn(n, b), let �+(D) be the set of horizontal edges in the top row of D.
Let c := (n − b)/2. The assumption (4.4) and the definition of Bdn(n, b) imply that
f ≥ c. If f = c, then (as i1, · · · , in are pairwise distinct) we must have c + b ≤ m,
equivalently, n + b ≤ 2m, which is a contradiction. Therefore, f �= c. So c < f ≤
[n/2].

By our choice of i, it is clear that viD �= 0 only if �+(D) ⊆ �f . Therefore,

vi

∑
D∈Bdn(n,b)

D = vi

∑
D∈Bdn(n,b)

�+(D)⊆�f

D �= 0. (4.5)
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By the definition of Bdn(n, b) and Remark 4.3, if the simple n-tensor vk := vk1 ⊗
· · · ⊗ vkn is involved in the left-hand side of (4.5), then

kb+1 = k′
b+2, kb+3 = k′

b+4, · · · , kn−1 = k′
n.

For any σ ∈ Sb, it is easy to see∑
D∈Bdn(n,b)

Dσ =
∑

D∈Bdn(n,b)

D.

It follows that, for any σ ∈ Sb, vk is involved in the left-hand side of (4.5) if and only
if vkσ is involved in the left-hand side of (4.5). Therefore, we can choose a simple n-
tensor vk which is involved in the left-hand side of (4.5) such that k2s−1 = k′

2s < k2s

for each integer 1 ≤ s ≤ f − c, k2(f −c)+1 < k2(f −c)+2 < · · · < kb , and k1, · · · , kb are
pairwise distinct. Using the same argument as in the proof of Proposition 4.6, we can
further require that there exists an integer 0 ≤ r ≤ f − c such that kt = it for each
integer 2r + 1 ≤ t ≤ b, and {k1, k2, · · · , k2r} ∩ {i1, i2, · · · , in} = ∅. We claim that
r �= f − c. In fact, if r = f − c, then the above empty intersection condition on r and
our assumption on i imply that f −c+n−2f +f ≤ m, equivalently, (n+b)/2 ≤ m,
which is impossible. This proves our claim. Hence, 0 ≤ r < f − c.

Let g be an integer with 0 ≤ g ≤ f , d1 ∈ Dg , D ∈ Bd(g)(d1;n), where

D = d−1
1 e1e3 · · · e2g−1σd2, σ ∈ S{2g+1,2g+2,··· ,n}, d2 ∈ Dg.

We claim that vk appears with nonzero coefficient in the expansion of viD if and only
if

(1) g ≥ r + c, σ = 1, and
(2) the horizontal edges in the top row of D are of the form

(1,2), (3,4), · · · , (2r − 1,2r), (2a1 − 1,2a1), (2a2 − 1,2a2), · · · ,

(2ag−r − 1,2ag−r ),

where a1, · · · , ag−r are some integers satisfying r + 1 ≤ a1 < a2 < · · · < ag−r ≤
f , and

(3) the horizontal edges in the bottom row of D are of the form

(1,2), (3,4), · · · , (2r − 1,2r), (2a1 − 1,2a1), (2a2 − 1,2a2), · · · ,

(2ag−c−r − 1,2ag−c−r ), (b + 1, b + 2), (b + 3, b + 4),

· · · , (n − 1, n).

In fact, for any Brauer diagram D satisfying the above conditions (1), (2), (3), by
Remark 4.3, vk does appear with nonzero coefficient in the expansion of viD, and
the coefficient is ( c∏

s=1

εk′
b+2s−1,kb+2s−1

)
(−1)g−c.
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On the other hand, suppose that vk appears with nonzero coefficient in the expansion
of viD. By our assumption on i and k and the definition of Bdn(n, b), it is easy to see
that the tensor factor vk2s−1 ⊗ vk2s

with 1 ≤ s ≤ r and vkb+2t−1 ⊗ vkb+2t
with 1 ≤ t ≤ c

can only be produced through the action of e2t−1 for some 1 ≤ t ≤ g. This implies
that g ≥ r + c. For each integer j with 2g + 1 ≤ j ≤ n, by Remark 4.3, the action
of D on vi moves the vector in the jd1th position of vi (i.e., vijd1

) to the (jσd2)th
position. By our assumption on i, k again, we deduce that jd1 = jσd2. But by the
definition of Dg ,

(2g + 1)d1 < (2g + 2)d1 < · · · < (n)d1,

(2g + 1)d2 < (2g + 2)d2 < · · · < (n)d2.

It follows that σ = 1, and jd1 = jd2 for any 2g + 1 ≤ j ≤ n. Now the remaining
statements of our claim follows easily from the fact that σ = 1, our assumption on i

and k as well as Remark 4.3.
Therefore, the coefficient of vb in the expansion of

∑
d1∈Dg

∑
D∈Bd(g)(d1;n)

viD

is equal to

( c∏
s=1

εk′
b+2s−1,kb+2s−1

)
(−1)g−c

(
f − r

g − r

)
.

Note that 0 ≤ r < f − c, it follows that the coefficient of vb in the left-hand side of
(4.2) is

( c∏
s=1

εk′
b+2s−1,kb+2s−1

) ∑
c+r≤g≤f

(−1)g−c

(
f − r

g − r

)
= 0,

a contradiction. This completes the proof of the proposition. �

Finally, thanks to Proposition 4.7, to complete the proof of Lemma 3.2, we only
need to prove the following proposition. We are grateful to the referee for providing
the following simple proof.

Proposition 4.8 Let a, b be two integers such that 0 ≤ a, b ≤ n and a + b is even.
Suppose that a + b ≥ 2m + 2 and b ≥ a; then

∑
D∈Bdn(a,b)

D ∈ Kerϕ.

Proof Given a Brauer n-diagram D, we define D by reflecting D top to bottom. For
example, let D be the following Brauer 4-diagram:
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then D is the following Brauer 4-diagram:

Extending this linearly to the whole of the Brauer algebra, and it gives an anti-
automorphism of the Brauer algebra.

Given this automorphism, we have a contravariant duality on modules: if M is a
module for the Brauer algebra Bn(−2m)C, then the dual space M∗ is also a module,
with

(f d)(m) := f (md),

for f ∈ M∗, m ∈ M , d ∈ Bn(−2m)C. For each integer i with 1 ≤ i ≤ 2m, let v∗
i ∈ V ∗

be defined by v∗
i (vj ) = δi,j , ∀1 ≤ j ≤ 2m. For any simple n-tensor vi = vi1 ⊗ · · · ⊗

vin ∈ V ⊗n, let v∗
i := v∗

i1
⊗ · · · ⊗ v∗

in
∈ (V ∗)⊗n. We identify (V ∗)⊗n with (V ⊗n

)∗ in a
natural way, i.e., such that

v∗
i (vj ) = δi,j , ∀ i, j ∈ I (2m,n).

We claim that the map

θ :
∑

i∈I (2m,n)

aivi �→
∑

i∈I (2m,n)

aiv
∗
i , ∀ai ∈ C,

defines a Bn(−2m)C-module isomorphism V ⊗n ∼= (
V ⊗n

)∗. In fact, it suffices to
check θ(vix) = θ(x)vi for each simple n-tensor vi ∈ V ⊗n and each generator x

of Bn(−2m)C, which is actually trivial. As a result, we get that for any D ∈ Bdn,
i, j ∈ I (2m,n), the coefficient of vi in vjD is the same as the coefficient of vj

in viD. Therefore, Kerϕ = Kerϕ. Now applying Proposition 4.7, we deduce that∑
D∈Bdn(a,b) D ∈ Kerϕ. This completes the proof of the proposition.

�
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