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Abstract For several families F of finite transitive permutation groups it is shown
that each finite group is isomorphic to a 2-point stabilizer of infinitely many members
of F .
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1 Introduction

Graphs, strongly regular graphs, finite distributive lattices and many other combina-
torial objects are universal [1] in the sense that each finite group is isomorphic to the
full automorphism group of one of these objects. In this note we consider a group-
theoretic version of this notion. A family F of finite permutation groups will be called
universal if each finite group is isomorphic to a 2–point stabilizer of a member of F .

We describe a transitive permutation group as A/B , the set of cosets of a subgroup
B of A with the usual action. In each of the following families, the subgroup B is
embedded in A in a “natural” manner, specified more precisely in Sect. 2.

Theorem 1.1 Each of the following families of permutation groups is universal,
where q is any given prime power and n ranges over all positive integers:

(i) S(n
k)

/Sn for fixed k ≥ 2;
(ii) S(nk)q

/P�L(n,q) for fixed k ≥ 1 and q, where the Gaussian coefficient
(
n
k

)
q

is

the number of k-dimensional subspaces of F
n
q;
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(iii) Sa(n,k)q /A�L(n,q) for fixed k ≥ 0 and q, where a(n, k)q denotes the number
of k-dimensional affine subspaces of F

n
q;

(iv) SN/P�I(V ) for any fixed isometry type Ik of N = |Ik(V )| totally singular
or nondegenerate k–dimensional subspaces of an n–dimensional symplectic,
orthogonal or unitary vector space V, over a given finite field, with projective
semilinear isometry group P�I(V ); and

(v) PGL(n, q)/N(n, q) for each q, where N(n,q) is the group of n × n monomial
matrices over Fq modulo scalars.

In Sect. 2 we will show that, whenever n is sufficiently large with respect to |G|, in
each case there is a 2–point stabilizer isomorphic to G. The group-theoretic structure
of G does not enter at all: our arguments are the same for cyclic groups and simple
groups.

This type of question arose in [6], where a stronger version of (ii) in the case k = 1
was used to show that the set of symmetric designs with the parameters of a projec-
tive space PG(d, q) is universal for each q ≥ 3. (The same was accomplished for
Hadamard designs much later in [7], again using a version of (ii) with k = 1.) A gen-
eral conjecture concerning universality appeared in [2] (see below). The preceding
examples were obtained soon afterwards, but universality seemed and still seems an
entertaining rather than a useful property. Nevertheless, our results and related ones
[4, 5] suggest that this notion needs to be examined further.

Each of the permutation groups in the theorem has base size 2 for large n. In fact,
a simple counting argument [2] shows that “almost all” pairs of points are bases.
Our arguments show that there are large numbers of orbits of pairs of points with
stabilizers isomorphic to G (cf. Theorem 2.1′). It is difficult to imagine how mere
counting could prove this.

What these results need is a general theory. Is there a general result that includes
all of the above permutation groups? One possibility is

[2, Conjecture 2.4]: Let G1,G2, . . . be primitive groups of degrees n1, n2, . . .,
where ni → ∞ and Gi �= Sni

or Ani
for all i. Let X be an abstract group which

is embeddable in Gi for infinitely many values of i. Then, for some i, and some
permutation g ∈ Sni

, we have Gi ∩ G
g
i = X.

It might be more reasonable to assume, in addition, that there are “natural” injections
Gi → Gi+1 for all i, as in all known examples of this phenomenon.

Proof outline All of the proofs are elementary. The idea is as follows. In each case we
have a permutation action A/B of a symmetric or linear group A on a large set. We
construct a rather boring faithful permutation action of the target group G on A/B:
a small number of regular orbits together with a very large number of fixed points.
We then construct a permutation or linear transformation α ∈ A that commutes with
G and whose cycles are very restricted. The goal is then to show that, if σ ∈ B and
σα = τ ∈ B ∩ Bα , then σ = τ ∈ G. In general, this is accomplished in two steps.

(1) We prove that α−1ασ = τ−1σ is 1 by playing information concerning the
supports of α and ασ against the fact that τ−1σ ∈ B .

(2) Once σ commutes with α we use the nontrivial cycles of α to restrict σ and
eventually to deduce that σ ∈ G. These cycles are designed to be of different lengths
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whenever this is allowed by the requirement that α commutes with G; and the sup-
ports of these cycles must overlap somewhat when viewed in the underlying set or
vector space.

In order for both (1) and (2) to work we need to have a highly structured set,
or basis of a vector space, underlying A; and a detailed description of the desired
element α, including the lengths and supports its different cycles. Nevertheless, there
is a great deal of freedom in our constructions. Our choices for α are certainly far
from optimal.

We emphasize that our elementary arguments are far more combinatorial than they
are group-theoretic.

2 Proofs

There is an obvious permutation action of Sn on the set
(
X
k

)
of all k-subsets of the

n-set X underlying Sn. We begin with the case k = 2:

Theorem 2.1 If G is a finite group and n > (2|G| + 1)[log |G| + 3] + 4, then G is
isomorphic to a 2–point stabilizer in the permutation group S(n

2)
/Sn.

1

Proof Let G = 〈g1, . . . , gd〉 with d minimal, so that all gj �= 1 and d ≤ log |G|; let
d = 0 if G = 1. We will use the following n–set X:

X := (G × M)∪̇{u}∪̇Y with M := {1, . . . ,m} for m := d + 3

for some set {u}∪̇Y , where g ∈ G acts faithfully on X by inducing 1 on {u} ∪ Y and
sending (h, i) → (hg, i) for h ∈ G, i ∈ M . Thus, we can view G as a subgroup of Sn.
Note that

|Y | − 2 = n − |G|m − 3 > |G|m + m + 1 > m (1)

by hypothesis.
Choose distinct points y0, . . . , ym ∈ Y .
Let {Z,u} := {{z,u} | z ∈ Z} ⊆ (

X
2

)
whenever Z ⊆ X\{u}.

Let γ (k) denote the k–cycle (1, . . . , k) of M ; we will use various k.
We will show that, for the permutation α ∈ S(n

2)
defined as follows, Sn ∩ Sα

n and
CSn(α) both turn out to be G:

• α: {(g, i), u} → {(g, iγ (m)), u} for all g ∈ G, i ∈ M ,
• α: {(g, i), y0} ↔ {(g, i), yi} for all g ∈ G, i ∈ M ,
• α: {(g, i), (gj g, iγ (j+2))} → {(g, iγ (j+2)), (gj g, iγ (j+2)2

)}
for all g ∈ G,1 ≤ j ≤ d,1 ≤ i ≤ j + 2, and

• α is a (|Y | + 1)–cycle on {Y,u} ∪ {{y0, y1}
}
.

1Logarithms will be to the base 2.
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(We assume that σ fixes every 2-subset not mentioned. We will adopt this con-
vention in all descriptions of permutations in later proofs.) To see that this is
well-defined, suppose that {(g, i), (gj g, iγ (j+2))} = {(g′, i′), (gj ′g′, i′γ (j ′+2))} for
some g, i, j, g′, i′, j ′ with j ≥ j ′ (so that i ≤ j + 2). The possibility i = i′γ (j ′+2),

iγ (j+2) = i′, cannot occur: the support of the product of γ (j + 2) = (1, . . . , j + 2)

and γ (j ′ + 2) = (1, . . . , j ′ + 2) is {1, . . . , j + 2} since j + 2 ≥ j ′ + 2 ≥ 3. It follows
that g = g′, i = i′ and gjg = gj ′g, so that j = j ′.

Note that γ (j + 2) is not used when G = 1 (i.e., d = 0). Also note that every pair
containing u is in the support of α.

Clearly G centralizes α.
Consider σ, τ ∈ Sn such that σα = τ . We must show that σ = τ ∈ G.

Claim 1 α centralizes σ .

Otherwise, 1 �= ρ := α−1ασ = α−1σ−1ασ = τ−1σ ∈ Sn. The only pairs in
(
X
2

)
that

might be moved by ρ are those in the support of α or ασ , namely

{(g, i), u}, {(g, i), y0}, {(g, i), yi},
{(g, i), (gj g, iγ (j+2))}, {y,u}, {y0, y1},

{(g, i), u}σ , {(g, i), y0}σ , {(g, i), yi}σ ,

{(g, i), (gj g, iγ (j+2))}σ , {y,u}σ , {y0, y1}σ ,

for some g, i, j, y. If ρ moves some x ∈ X then it moves all n − 2 pairs {x, x′} with
x′ ∈ X − {x, xρ}. Since n − 2 > 2(|G|m + 2) by hypothesis, the only members of X

occurring in (at least) n − 2 members of the above list are u and uσ . It follows that
these are the only points moved by ρ, and hence ρ = (u,uσ ).

There are at least |Y |−2 choices for z1 ∈ Y such that {z1, u}α−1 �= {y0, y1}, {u,uσ },
and then {z1, u}α−1 = {z2, u} with z2 ∈ Y and z2 �= uσ = uρ . For each such z1 we
have {z2, u}ασ = {z1, u}α−1ασ = {zρ

1 , uρ} = {z1, u
σ } �= {z2, u}, so that {z2, u} lies in

the support of ασ and hence must be a pair of the form {(g, i)σ , uσ }, {(g, i)σ , yσ
0 },

{(g, i)σ , yσ
i }, {(g, i)σ , (gjg, iγ (j+2))σ }, {yσ ,uσ } or {yσ

0 , yσ
1 }. Since uσ �= z2, u, no

pair {yσ ,uσ } can occur here. Thus, for each of (at least) |Y | − 2 choices for z1,
we have z2 ∈ (G × M)σ ∪ {yσ

i | 0 ≤ i ≤ m}. Then |Y | − 2 ≤ |G|m + m + 1, which
contradicts (1). This proves our claim.

Claim 2 σ ∈ G.

Clearly σ = τ permutes the cycles of α. Since α has a unique (|Y | + 1)–cycle (as
n < 2|Y | + 1), σ ∈ Sn centralizes the (|Y | + 1)–cycle on {Y,u} ∪ {{y0, y1}}, hence
fixes {y0, y1} and thus is 1 on Y ∪ {u}.

Since j + 2 ≤ d + 2 = m − 1, each m–cycle of α has support {g × M,u} for
some g ∈ G, so that these sets are permuted by σ . Since σ fixes u, it permutes the
subsets of X of the form g × M , g ∈ G: there is a permutation g → ḡ of G such that
(g × M)σ = ḡ × M for all g ∈ G.
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If i ∈ M , then σ permutes the transpositions of α involving yi = yσ
i , and hence

sends G × i to itself. Thus, (g, i)σ = (ḡ, i) for all g, i.
This completes the proof if G = 1. Thus, we now assume that G �= 1. In view of

the action of G on X, by replacing σ by σ 1̄−1 we may assume that 1̄ = 1. We must
show that σ = 1.

Fix g and j . Then the pairs {(g, i), (gj g, iγ (j+2))}, 1 ≤ i ≤ j + 2, lie in a (j + 2)-
cycle of α that is sent by σ to another (j + 2)-cycle. Thus,

{{(g, i), (gj g, iγ (j+2))} |
1 ≤ i ≤ j + 2

}σ = {{(ḡ, i), (gj g, iγ (j+2)) | 1 ≤ i ≤ j + 2}} must have the form{{(g′, i′), (gjg
′, i′γ (j+2))} | 1 ≤ i′ ≤ j + 2

}
for some g′. As before, there cannot be

a pair i, i′ ∈ {1, . . . , j + 2} such that (ḡ, i) = (gjg
′, i′γ (j+2)) and (gjg, iγ (j+2)) =

(g′, i′). Consequently, ḡ = g′ and gjg = gjg
′= gj ḡ for each j .

Since the gj generate G it follows that hg = hḡ for all h,g ∈ G. Letting g = 1 we
see that h̄ = h1̄ = h for all h ∈ G, and hence (g, i)σ = (g, i) for all g, i, as claimed. �

There are many choices for α in the above simple construction. Perhaps more
interesting is the observation that there are so many choices that the number of non-
conjugate pairs {Sn,S

α
n } with G = Sn ∩ Sα

n is enormous:

Theorem 2.1′ In Theorem 2.1, if also n ≥ 40 then there are more than nn2/10 orbits
of S(n

2)
on the pairs of points whose stabilizers are isomorphic to G.

Proof We let X and G be the same as before, and construct permutations α as above
for a given choice y0, . . . , ym ∈ Y such that α also has one further cycle of length(|Y |−1

2

)
using all of Y\{y0}. The same argument as above shows that we still have

Sn ∩ Sα
n = G. The number of α obtained in this manner is the number of choices for

our additional cycle, namely N := ((|Y |−1
2

) − 1
)!, where |Y | > 1 + n/2.

The subgroup Sn of S(n
2)

is self-normalizing, and each orbit of Sn on S(n
2)

/Sn has
size at most n!. Thus, the number of inequivalent pairs Sn,Snα of points for which
Sn ∩ Sα

n = G is at least

N/n! > (n2/8) · · · (n + 1) > n(n2−8n)/8 ≥ nn2/10. �

The above lower bound estimate is clearly very crude. Similar addenda are easily
obtained for our remaining theorems.

Theorem 2.2 If G is a finite group, k ≥ 3 and n ≥ 2|G|[log |G| + k]2, then G is
isomorphic to a 2–point stabilizer in the permutation group S(n

k)
/Sn.

Proof Let G = 〈g1, . . . , gd〉 be as before, where d ≤ log |G|, and let m := d + k and
M := {1, . . . ,m}. This time let our n-set be the disjoint union

X = (G × M)∪̇{u}∪̇W ∪̇Y,

where G acts on G×M as before, inducing 1 on {u}∪W ∪Y , and where |W | = k−2.
Note that |Y | = n − |G|m − 1 − (k − 2) > |G|mk by hypothesis.
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Let y0, . . . , ym ∈ Y and γ (k) be as before. Let Yk−2 = {y2, . . . , yk−1}, and let Y ∗
be any set of (m + 1) − (k − 2) members of

(
Y
k

)
.

If K is any (k − 2)−subset of X, for any distinct a, b ∈ X\K write

{a, b,K} := {a, b} ∪ K ∈
(

X

k

)
, and

{A;b,K} := {{a, b,K} | a ∈ A
} ⊆

(
X

k

)
if A ⊆ X\(K ∪ {b}).

Define α ∈ S(n
k)

as follows:

• α: {(g, i), u,W } → {(g, iγ (m)), u,W } for all g ∈ G, i ∈ M ,
• α: {(g, i), y0,W } ↔ {(g, i), yi,W } for all g ∈ G, i ∈ M ,
• α: {(g, i), (gj g, iγ (j+2)),W } → {(g, iγ (j+2)), (gj g, iγ (j+2)2

),W } for all g ∈ G,

1 ≤ j ≤ d, 1 ≤ i ≤ j + 2,
• α is a (|Y | + 1)–cycle on all |Y | + 1 members of {Y ;u,W } ∪ {{y0, y1,W }}, and
• α is an (m + 1)–cycle on all m + 1 members of {W ;y0, Yk−2} ∪ Y ∗.

Note that j + 2 ≤ d + 2 < m, so that 1 ≤ i ≤ j + 2 implies that i ∈ M . Once again,
α is well-defined and centralizes G.

Let σ, τ ∈ Sn and σα = τ . Once again we claim that α centralizes σ . This time,
the only k–sets that might be moved by ρ := α−1ασ = τ−1σ ∈ Sn are

{(g, i), u,W }, {(g, i), y0,W }, {(g, i), yi,W }
{(g, i), (gj g, iγ (j+2)),W }, {y;u,W }, {y0, y1,W }, {w;y0, Yk−2}, in Y ∗,

{(g, i), u,W }σ , {(g, i), y0,W }σ , {(g, i), yi,W }σ ,

{(g, i), (gj g, iγ (j+2)),W }σ , {y;u,W }σ , {y0, y1,W }σ , {w;y0, Yk−2}σ , in Y ∗σ ,

for some j, g, i, y,w. If ρ moves some x ∈ X then it moves all
(
n−2
k−1

)
of the k–sets

containing x but not xρ . However, it follows from the above list that fewer than 4n of
the k–sets moved by ρ contain any given member of X, where 4n ≤ (

n−2
2

) ≤ (
n−2
k−1

)
.

Thus, ρ = 1, as claimed. (N.B.–Thus, the case k ≥ 3 is somewhat easier than the case
k = 2 was.)

Consequently, σ = τ permutes the cycles of α, which have lengths m, 2, j + 2,
m + 1 or |Y | + 1, where 2 < j + 2 ≤ d + 2 < m < m + 1 < |Y | + 1. Since σ ∈ Sn

centralizes the (|Y |+1)–cycle on {Y ;u,W }∪{{y0, y1,W }}, it sends this set to itself,
hence fixes u, {y0, y1}, Y and W , and then is 1 on Y . Also σ centralizes the (m+ 1)–
cycle of α and is 1 on {u} ∪ Yk−2 and Y ∗, and hence it is also 1 on W .

Since σ permutes the m–cycles of α it permutes the sets {g × M;u,W }, g ∈ G,

and hence also the sets g × M . Then there is a permutation g → ḡ of G such that
(g × M)σ = ḡ × M for all g. Moreover, since σ permutes the transpositions in α

it fixes each subset G × i, i ∈ M , and we obtain σ ∈ G precisely as in the proof of
Theorem 2.1. �
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Theorem 2.3 If G is a finite group, k ≥ 1, n > 4k|G| + 2k and q is any prime
power, then G is isomorphic to a 2–point stabilizer in the permutation group
S(nk)q

/P�L(n, q).

Notation The indicated symmetric group acts on the set Sk(F
n
q) of all k–spaces of

F
n
q , and P�L(n, q) is the group of all invertible projective semilinear transformations

of that vector space.

Proof We will use 2k copies of the regular representation of G. Namely, write K =
Fq2k and

F
n
q = ( ⊕

g∈G

Kxg) ⊕ Ku ⊕ 〈Y 〉
for vectors u and xg, g ∈ G, that are linearly independent over K , and where 〈Y 〉
denotes the Fq–span of the linearly independent set Y . Let each h ∈ G act linearly on
F

n
q , fixing each member of Y and acting on (⊕g∈GKxg) ⊕ Ku as a K–linear trans-

formation sending xg → xgh while fixing u. Note that |Y | > 2k|G|, by hypothesis.
We will construct a permutation α ∈ S(nk)q

such that P�L(n, q) ∩ P�L(n, q)α and

CP�L(n,q)(α) both turn out to be G. Once again let G = 〈g1, . . . , gd〉 with minimal
d ≤ log |G|. We use several permutations:

• π , a cycle of length
((2k+|Y |

k

)
q

− (2k
k

)
q

− (|Y |
k

)
q

− 2
)

on Sk(Ku + 〈Y 〉)\(Sk(Ku)

∪ Sk(〈Y 〉)) to be defined below;

• π∗, a cycle of length
(2k

k

)
q

on Sk(Kx1); and
• πj , 1 ≤ j ≤ d , a permutation of Sk(Kx1 + 〈xgj

〉 + 〈Y 〉)\Sk(Kx1) that has a sin-
gle nontrivial cycle of k–spaces, and these span Kx1 + 〈xgj

〉 + 〈Y 〉, where the
lengths of the nontrivial cycles differ for different j . Such permutations exist since(2k+1+|Y |

k

)
q

− (2k
k

)
q

− d >
(2k+|Y |

k

)
q
, the number of k–spaces in a hyperplane of

Kx1 + 〈xg〉 + 〈Y 〉.
Note that the nontrivial cycles of all of the above permutations have different lengths.

We still need to define the permutation π . Write A = Ku and B = 〈Y 〉. Choose
any k-spaces X1,X2 in A + B such that dimA ∩ X1 = 1, dimB ∩ X2 = k − 1 and
B ∩X1 = A∩X2 = 0. Let π be a cycle of length |Sk(A+B)|−|Sk(A)|−|Sk(B)|−2
of Sk(A + B)\(Sk(A) ∪ Sk(B)

)
that fixes X1 and X2. The crucial property of π is

that no γ ∈ P�L(n, q) can induce a non-scalar transformation of A + B that fixes A

and B and commutes with π . For, suppose that there is such a γ . Then γ induces a
nontrivial power πj on Sk(A + B)\(Sk(A) ∪ Sk(B)

)
, fixing only X1 and X2 there.

Since (A ∩ X1) + (B ∩ X2) is another k-space fixed by πj , this is impossible.
Define α as follows (where h ranges through G):

• a cycle of length
(2k

k

)
q

− 1 on Sk(Ku);

• a cycle of length
(2k

k

)
q

− 2 on Sk

(
K(u + ∑

g∈G xg)
)
;

• a cycle of length
(〈Y 〉

k

)
q

on Sk(〈Y 〉);
• π on Sk(Ku + 〈Y 〉)\(Sk(Ku) ∪ Sk(〈Y 〉);
• πh∗ on Sk(Kx1)

h = Sk(Kxh); and
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• πh
j on

(
Sk(Kx1 + 〈xgj

〉 + 〈Y 〉)\Sk(Kx1)
)h whenever 1 ≤ j ≤ d .

Since g−1
j �= gi for j �= i, (Kx1 +〈xgj

〉+〈Y 〉)∩ (Kxh +〈xgj h〉+〈Y 〉) = 0 for h �= 1,
and hence the permutation α is well-defined.

Once again G commutes with α. Once again consider σ, τ ∈ P�L(n, q) such that
σα = τ ; later we will view these as elements of �L(n, q). Since n = 2k|G|+2k+|Y |
and |G| < |Y |/2k, it follows that τ−1σ = α−1ασ moves at most

2(|G| + 2)

(
2k

k

)

q

+ 2(d|G| + 2)

(
2k + 1 + |Y |

k

)

q

<
1

2

(
n

k

)

q

members of Sk(F
n
q). However, every nontrivial element of P�L(n, q) moves at least

1
2

(
n
k

)
q

members of Sk(F
n
q) (see, for example, [3, Proposition 3.1]). Consequently,

τ−1σ = 1 and σ centralizes α. (N.B.–This restriction on the possible number of
moved points makes this part of the proof easier than before.)

Thus, σ permutes the nontrivial cycles of α. Since the permutations π, π∗
and πj , were constructed so as to be pairwise not conjugate under the action of
P�L(n, q), σ permutes the nontrivial cycles of α lying in each of the following sets:
Sk(Ku + 〈Y 〉), Sk(Ku), Sk(〈Y 〉), Sk(K(u + ∑

g∈G xg)), ∪h∈GSk(Kxh) | h ∈ G),

and ∪h∈GSk(Kx1 + 〈xg〉 + 〈Y 〉)h whenever 1 ≤ j ≤ d . Each such cycle of k–spaces
spans a subspace of F

n
q , so that σ fixes Ku + 〈Y 〉, Ku, 〈Y 〉 and K(u + ∑

g∈G xg),

and acts on each of the following sets of subspaces:

{Kxh | h ∈ G} and {Kxh + 〈xgj h〉 + 〈Y 〉 | h ∈ G} for 1 ≤ j ≤ d.

For each h ∈ G let h̄ ∈ G satisfy (Kxh)
σ = Kxh̄. By replacing σ by some σh with

h ∈ G we may assume that 1̄ = 1.
Since σ fixes Ku and 〈Y 〉 and commutes with the unique longest cycle on

Sk(Ku + 〈Y 〉), the crucial property of π states that σ is a scalar on Ku + 〈Y 〉. We
may assume that σ = 1 on Ku + 〈Y 〉.

If a ∈ K let a′ ∈ K with a′(u + ∑
g∈G xg) = (a(u + ∑

g∈G xg))
σ = au +∑

g∈G(axg)
σ , where (axg)

σ ∈ Kxḡ . Then a′ = a and (axg)
σ = axḡ .

In particular, if G = 1 then this shows that σ = 1, as required. Now assume that
G �= 1.

Fix g = gj . If h ∈ G let h′ ∈ G with (Kxh +〈xgh〉+〈Y 〉)σ = Kxh′ + 〈xgh′ 〉+ 〈Y 〉.
Then Kxh̄ ⊆ Kxh′ + 〈xgh′ 〉 + 〈Y 〉, so that h′ = h̄ does not depend on g. Now Kxh̄ +
〈xgh〉σ ⊆ Kxh̄ + 〈xgh̄〉 + 〈Y 〉, where 〈xgh〉σ ⊆ (Kxgh)

σ = Kxgh.

Thus, gj h̄ = gjh for all j and h. As before it follows that ḡ = g for all g. Conse-
quently, (axg)

σ = axḡ = axg for all a ∈ K,g ∈ G, so that σ = 1. �

Remark When k = 1 the above result is already “better” than [6, Proposition 10.2],
where it was assumed that n > 20|G|2 in a similar argument. However, that paper
needed to impose many additional restrictions on α for its applications to symmetric
designs. Moreover, we also needed a version of Theorem 2.3: there are exponentially
many different orbits of pairs of points even with the aforementioned additional re-
strictions.



J Algebr Comb (2008) 28: 351–363 359

We turn next to the symmetric group on the set of affine subspaces of a vector
space. Recall that A�L(n, q) denotes the group of all invertible semilinear affine
transformations of F

n
q , and that Sa(n,k)q acts on the set of all a(n, k)q affine k–spaces

of F
n
q .

Theorem 2.4 If G is a finite group, k ≥ 0, n > 4(k + 1)|G| + 2k + 2 and q is any
prime power, then G is isomorphic to a 2–point stabilizer in the permutation group
Sa(n,k)q /A�L(n, q).

Sketch While it is straightforward to imitate previous proofs, it is easier to modify
the proof of Theorem 2.3 slightly. In that proof, use K = Fq2(k+1) and let H be a
hyperplane of F

n
q fixed by G and containing no member of {xg | g ∈ G} ∪ {u} ∪ Y ∪

{u + ∑
g∈G xg}. Choose α to be 1 on Sk(H) and to have one very large cycle on

each subset Sk(Ku), Sk

(
K(u + ∑

g∈G xg)
)
, Sk(〈Y 〉), Sk(Ku + 〈Y 〉), Sk(Kxh), and

Sk(Kx1 + 〈xgj
〉 + 〈Y0〉)h for h ∈ G, 1 ≤ j ≤ d , as before.

Complete the proof of Theorem 2.3 as before. Then restrict from P�L(n, q)

to A�L(n, q) by fixing H and using the same G and α. Then G ≤ A�L(n, q) ∩
A�L(n, q)α ≤ P�L(n, q) ∩ P�L(n, q)α = G. �

Notation Let V be a vector space equipped with a nondegenerate quadratic, alter-
nating or hermitian form. Let P�I(V ) denote the projectivized version of the group
of all semilinear transformations of V that preserve the form up to a field automor-
phism and a scalar. Fix an isometry type Ik of totally singular or nondegenerate
k–dimensional subspaces of V . For any subspace W let Ik(W) denote the set of all
subspaces of type Ik in W .

Theorem 2.5 If G is a finite group, k ≥ 1, n > 8k|G| + 8k, q is any prime power
and V is an n–dimensional Fq–space equipped as above, then G is isomorphic to a
2–point stabilizer in the permutation group SN/P�I(V ), where N = |Ik(V )|.

Proof This time we use 4k copies of the regular representation of G. Namely, write
K = Fq2k , let T :K → Fq denote the trace map, and let

V = (
( ⊕
g∈G

Keg) ⊕ ( ⊕
g∈G

Kfg)
) ⊥ (

Ku ⊕ 〈Y 〉).

Here eg, fg, for g ∈ G, are singular vectors that are linearly independent over
K such that (αeg,βfg) = T (αβ) for all α,β ∈ Fq (or T (αβ̄) when V is uni-
tary with associated involutory field automorphism β → β̄), (eg, eh) = (fg, fh) =
(eg, fh) = 0 for g �= h, and Ku ⊕ 〈Y 〉 is a nondegenerate Fq -subspace perpendicular
to (⊕g∈GKeg) ⊕ (⊕g∈GKfg).

The remainder of the proof is very similar to that of Theorem 2.3. �

This theorem can also be proved by restricting from the groups P�L(V ) and G to
the subgroup P�I(V ) and essentially the same G.
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The preceding results all used permutation representations of the symmetric group
in order to handle 2–point stabilizers. The next result uses a permutation representa-
tion of PGL(n, q), with stabilizer the group N = N(n,q) of all n × n monomial
matrices over Fq , modulo scalar matrices.

Theorem 2.6 If G is a finite group, n > |G|[log |G| + 6], and q is any prime
power, then G is isomorphic to a 2–point stabilizer in the permutation representation
PGL(n, q)/N(n, q).

Proof Let G = 〈g1, . . . , gd〉 with d minimal, so that d ≤ log |G| and d = 0 if G = 1.
Write D := {1, . . . , d} and M := {1, . . . ,m}, where m := n−2|G|−d|G|−1 ≥ 4|G|
by hypothesis. Let F

n
q have the following basis:

{x(g), y(g), w(j, g),u, z(k) | g ∈ G,j ∈ D,k ∈ M},
and let each h ∈ G act on this basis by fixing u and each z(k) and sending x(g) →
x(gh), y(g) → y(gh) and w(j,g) → w(j,gh) for g ∈ G,j ∈ D. Thus, we can view
G as a subgroup of PGL(n, q). Note that there are no basis vectors w(j,g) if G = 1.

View N as the group of monomial transformations with respect to the above basis.
Define α ∈ GL(n, q) as follows, where g ∈ G, j ∈ D, k ∈ M, sx := ∑

g x(g),
sy := ∑

g y(g) and sz := ∑
k z(k):

x(g) → x(g)

y(g) → y(g) + x(g)

w(j, g) → w(j,g) + x(g) +
j∑

1

y(gig) + sz

u → u + sy

z(k) →
k∑

1

z(i) + u + sx + sy.

In order to see that α is invertible, note that Imα contains all x(g) and y(g), then also
u and all z(k), and finally all w(j,g).

As usual α centralizes G. As usual we consider σ, τ,ρ ∈ N such that τ = σα and
ρ = τ−1σ = α−1ασ . Using the definition of α, there are two ways to describe the
action of ασ = αρ:

x(g)σ → x(g)σ

y(g)σ → y(g)σ + x(g)σ

w(j, g)σ → w(j,g)σ + x(g)σ +
j∑

1

y(gig)σ + sσ
z

uσ → uσ + sσ
y

z(k)σ →
k∑

1

z(i)σ + uσ + sσ
x + sσ

y
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and

x(g) → x(g)ρ

y(g) → y(g)ρ + x(g)ρ

w(j, g) → w(j,g)ρ + x(g)ρ +
j∑

1

y(gig)ρ + sρ
z

u → uρ + sρ
y

z(k) →
k∑

1

z(i)ρ + uρ + sρ
x + sρ

y .

The rest of the argument consists of a straightforward comparison of these different
descriptions of ασ = αρ.

As σ,ρ ∈ N , each image of a basis vector under either of these linear transforma-
tions is a scalar multiple of a basis vector.

Define the weight of a vector to be the number of nonzero coordinates when it is
written in our basis. The weights of αρ-images for different “types” of basis vectors
are as follows:

type x(g) y(g) w(j, g) u z(k)

weight 1 2 2 + j + m 1 + |G| 1 + k + 2|G|
where j ∈ D,k ∈ M . We will also use a slight refinement of weight: the number of
nonzero coordinates of a given type (hence, for example, x-weight and xy-weight).
Note that some coincidences are possible for the above weights, for example if G = 1.
However, in general all of the above weights are different (recall that m ≥ 4|G|), and
hence our two descriptions of the action of αρ imply that σ maps each basis vector
to a scalar multiple of one of the same type.

The only basis vectors whose αρ-images have weight 1 are the x(g). Hence,
x(g)σ = agx(ḡ) with ag ∈ F, ḡ ∈ G, and αρ sends

agx(ḡ) → agx(ḡ)

agx(ḡ) → agx(ḡ)ρ.

Then x(g) = x(g)ρ for all g.
Replace σ by σ 1̄−1 in order to have 1̄ = 1.
The only basis vectors whose αρ-images have weight 2 and x-weight 1 are the

y(g) (this uses the fact that x(g) = x(g)ρ ). Since we already know that x(g)σ has x-
weight 1, it follows from the above description of the behavior of y(g)σ that y(g)σ =
bgy(g′) with bg ∈ F, g′ ∈ G, and

bgy(g′) → bgy(g′) + agx(ḡ)

bgy(g′) → bg

[
y(g′)ρ + x(g′)

]
.

Then ag = bg , ḡ = g′, y(g) = y(g)ρ and y(g)σ = agy(ḡ) for all g.
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The only basis vector whose αρ-image has weight 1 + |G|, with x-weight 0, is u.
Since we already know that uσ + sσ

y has x-weight 0, it follows that uσ = f u with
f ∈ F, and f u → f u + sσ

y , f u → f [uρ + sy]. Then u = uρ and all ag = f .
The only basis vector whose αρ-image has weight 1 + k + 2|G|, with xy-weight

2|G|, is z(k). This time z(k)σ = fkz(k) with fk ∈ F, and

fkz(k) →
k∑

1

fiz(i) + f u + sσ
x + sσ

y

fkz(k) → fk

[ k∑

1

z(i)ρ + u + sx + sy

]
.

Then all fk = f , z(i) = z(i)ρ , z(k)σ = f z(k), sσ
z = f sz and s

ρ
z = sz.

Thus, if G = 1 then σ is the scalar transformation f on all basis vectors
x(g), y(g), u, z(k), and we are finished. Now assume that G �= 1.

The only basis vectors whose αρ-images have weight 2 + j +m, with y-weight j ,
are the w(j,g). This time w(j,g)σ = cj,gw(j,ψ(j, g)) with cj,g ∈ F, ψ(j,g) ∈ G,
and (abbreviating ψ = ψ(j,g))

cj,gw(j,ψ) → cj,gw(j,ψ) + f x(ḡ) +
j∑

1

fy(gig) + f sz

cj,gw(j,ψ) → cj,g

[
w(j,ψ)ρ + x(ψ) +

j∑

1

y(giψ) + sz

]
.

Then all cj,g = f , ḡ = ψ and gig = giψ = giḡ for all j, g, i.
As usual, hg = hḡ for all h,g, and then h̄ = h. Thus, σ induces f on each of the

basis vectors, so that σ = 1 in PGL(n, q). �

Remark Of course, the corresponding result and proof hold for PSL(n, q) and
P�L(n, q) with very minor modifications.

The action in the preceding theorem has a building-theoretic description: for each
q and varying n, the permutation representation of PGL(n, q) on the set of apartments
of the underlying building yields a universal family. A similar argument shows that
the corresponding result holds for the buildings of each type of classical group for
each choice of field.
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