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Abstract Let V denote a vector space over C with finite positive dimension. By a
Leonard triple on V we mean an ordered triple of linear operators on V such that
for each of these operators there exists a basis of V with respect to which the matrix
representing that operator is diagonal and the matrices representing the other two
operators are irreducible tridiagonal.

Let D denote a positive integer and let QD denote the graph of the D-dimensional
hypercube. Let X denote the vertex set of QD and let A ∈ MatX(C) denote the adja-
cency matrix of QD . Fix x ∈ X and let A∗ ∈ MatX(C) denote the corresponding dual
adjacency matrix. Let T denote the subalgebra of MatX(C) generated by A,A∗. We
refer to T as the Terwilliger algebra of QD with respect to x. The matrices A and
A∗ are related by the fact that 2iA = A∗Aε − AεA∗ and 2iA∗ = AεA − AAε, where
2iAε = AA∗ − A∗A and i2 = −1.

We show that the triple A, A∗, Aε acts on each irreducible T -module as a Leonard
triple. We give a detailed description of these Leonard triples.
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1 Introduction

We start by recalling the definition of a Leonard pair. To describe this object we use
the following terms. Let C denote the field of complex numbers. A square matrix
with entries in C is called tridiagonal whenever each nonzero entry lies on either
the diagonal, the subdiagonal, or the superdiagonal. A tridiagonal matrix is called
irreducible whenever each entry on the subdiagonal is nonzero and each entry on the
superdiagonal is nonzero.

Definition 1.1 [21, Definition 1.1] Let V denote a vector space over C with finite
positive dimension. By a Leonard pair on V we mean an ordered pair of linear oper-
ators A : V → V and A∗ : V → V which satisfy the conditions (i), (ii) below.

(i) There exists a basis for V with respect to which the matrix representing A is
diagonal and the matrix representing A∗ is irreducible tridiagonal.

(ii) There exists a basis for V with respect to which the matrix representing A∗ is
diagonal and the matrix representing A is irreducible tridiagonal.

Leonard pairs have been explored as linear algebraic objects, in connection with or-
thogonal polynomials, and as representations of certain algebras [17–27]. The notion
of a Leonard triple was introduced by Curtin in [5]. We recall the definition.

Definition 1.2 [5, Definition 1.2] Let V denote a vector space over C with finite
positive dimension. By a Leonard triple on V we mean an ordered triple of linear
operators A : V → V , A∗ : V → V , Aε : V → V which satisfy the conditions (i)–
(iii) below.

(i) There exists a basis for V with respect to which the matrix representing A is di-
agonal and the matrices representing A∗ and Aε are each irreducible tridiagonal.

(ii) There exists a basis for V with respect to which the matrix representing A∗ is di-
agonal and the matrices representing Aε and A are each irreducible tridiagonal.

(iii) There exists a basis for V with respect to which the matrix representing Aε is di-
agonal and the matrices representing A and A∗ are each irreducible tridiagonal.

Leonard triples are closely related to Leonard pairs. Indeed, any ordered pair of dis-
tinct elements of a Leonard triple form a Leonard pair. This allows us to take ad-
vantage of the literature concerning Leonard pairs in our study of Leonard triples.
The isomorphism classes of Leonard pairs are in bijective correspondence with the
polynomials in the terminating branch of Askey-Wilson scheme [24, 25]. In partic-
ular, results concerning Leonard pairs also have interpretations as results concerning
such polynomials. Consequently, results concerning Leonard triples also have inter-
pretations as results concerning such polynomials. Leonard pairs play a role in rep-
resentation theory [12, 14, 20, 21, 28] and combinatorics [4, 7, 8, 10, 12, 17–19,
23]. Consequently, also Leonard triples play a role in representation theory and com-
binatorics. Leonard triples are also related to spin models [6], generalized Markov
problem in number theory and the Poncelet problem in projective geometry [15].

In this paper we consider a situation in graph theory where Leonard triples arise
naturally. The situation is described as follows. Let D denote a positive integer, let
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QD denote the graph of the hypercube with dimension D (see Section 4 for formal
definitions), and let X denote the vertex set of QD . Let MatX(C) denote the C-
algebra of matrices with entries in C and with rows and columns indexed by X. Let
A ∈ MatX(C) denote the adjacency matrix of QD . For the rest of this introduction
fix x ∈ X. Let A∗ = A∗(x) denote the diagonal matrix in MatX(C) with (y, y)-entry
D − 2∂(x, y) for y ∈ X, where ∂ denotes path-length distance. The matrix A∗ is
called the dual adjacency matrix of QD with respect to x [17]. Let T = T (x) de-
note the subalgebra of MatX(C) generated by A,A∗. The algebra T is known as
the Terwilliger algebra of QD with respect to x [17]. As we shall see, A and A∗
are related by the fact that 2iA = A∗Aε − AεA∗ and 2iA∗ = AεA − AAε , where
2iAε = AA∗ − A∗A and i2 = −1. We call Aε the imaginary adjacency matrix of QD

with respect to x. The matrices A, A∗, Aε are similar; indeed we display an invertible
matrix P ∈ T such that A∗ = PAP −1, Aε = PA∗P −1, A = PAεP −1.

Let W denote an irreducible T -module. We show that the triple A, A∗, Aε acts on
W as a Leonard triple. We give this triple a detailed description which is summarized
as follows. Consider the three bases for W afforded by Definition 1.2. For each of
these bases we display two normalizations that we find attractive, and this yields six
bases for W . We compute the matrices which represent A, A∗, Aε with respect to
these six bases. We display the inner products between each pair of these bases. We
then display the transition matrices between each pair of these bases. We remark that
our paper extends the work of Go [10].

2 Preliminaries

In this section we review some definitions and basic results concerning distance-
regular graphs. See the book of Brouwer, Cohen and Neumaier [3] for more back-
ground information.

Let X denote a nonempty finite set. Let MatX(C) denote the C-algebra of matrices
with entries in C and with rows and columns indexed by X. For B ∈ MatX(C) let Bt

and B denote the transpose and the complex conjugate of B , respectively. Let V =
CX denote the vector space over C consisting of column vectors with entries in C and
rows indexed by X. We observe MatX(C) acts on V by left multiplication. We refer
to V as the standard module of MatX(C). For v ∈ V let vt and v denote the transpose
and the complex conjugate of v, respectively. We endow V with the Hermitean inner
product 〈u,v〉 = utv (u, v ∈ V ). For y ∈ X let ŷ denote the vector in V with a 1 in the
y coordinate and 0 in all other coordinates. Observe that {ŷ|y ∈ X} is an orthogonal
basis for V . The following will be useful: for each B ∈ MatX(C) we have

〈u,Bv〉 = 〈Bt
u, v〉 (u, v ∈ V ). (1)

Let � = (X,R) denote a finite, undirected, connected graph, without loops or
multiple edges, with vertex set X, edge set R, path-length distance function ∂ , and
diameter D := max{∂(x, y)| x, y ∈ X}. For a vertex x ∈ X and an integer i ≥ 0 let
�i(x) denote the set of vertices at distance i from x. For an integer k ≥ 0 we say �

is regular with valency k whenever |�1(x)| = k for all x ∈ X. We say � is distance-
regular whenever for all integers 0 ≤ h, i, j ≤ D and all x, y ∈ X with ∂(x, y) = h
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the number

ph
ij := |�i(x) ∩ �j (y)|

is independent of x, y. The constants ph
ij are known as the intersection numbers of

�. From now on we assume � is distance-regular with D ≥ 1. For convenience set
ci := pi

1,i−1 (1 ≤ i ≤ D), ai := pi
1i (0 ≤ i ≤ D), bi := pi

1,i+1 (0 ≤ i ≤ D − 1), ki :=
p0

ii (0 ≤ i ≤ D), and c0 = 0, bD = 0. We observe that � is regular with valency
k = k1 = b0 and that ci +ai +bi = k for 0 ≤ i ≤ D. By [3, p. 127] the following hold
for 0 ≤ h, i, j ≤ D: (i) ph

ij = 0 if one of h, i, j is greater than the sum of the other

two; and (ii) ph
ij 
= 0 if one of h, i, j equals the sum of the other two.

We now recall the Bose-Mesner algebra of �. For 0 ≤ i ≤ D let Ai denote the
matrix in MatX(C) with entries

(Ai)xy =
{

1 if ∂(x, y) = i,

0 if ∂(x, y) 
= i
(x, y ∈ X).

We abbreviate A = A1 and call this the adjacency matrix of �. Let M denote the
subalgebra of MatX(C) generated by A. By [3, p. 44] the matrices A0,A1, . . . ,AD

form a basis for M . We call M the Bose-Mesner algebra of �. We observe that M is
commutative and semi-simple. By [3, p. 45] there exists a basis E0,E1, . . . ,ED for
M such that

E0 = |X|−1J, (2)

E0 + E1 + · · · + ED = I, (3)

Et
i = Ei (0 ≤ i ≤ D), (4)

Ei = Ei (0 ≤ i ≤ D), (5)

EiEj = δijEi (0 ≤ i, j ≤ D), (6)

where I and J denote the identity and the all-ones matrix of MatX(C), respectively.
For convenience we define Ei = 0 if i < 0 or i > D. The matrices E0,E1, . . . ,ED

are known as the primitive idempotents of �, and E0 is called the trivial idempotent.
We recall the eigenvalues of �. Since E0,E1, . . . ,ED is a basis for M , there exist
scalars θ0, θ1, . . . , θD ∈ C such that

A =
D∑

i=0

θiEi. (7)

Combining this with (2) and (6) we find AEi = EiA = θiEi for 0 ≤ i ≤ D and
θ0 = k. The scalars θ0, θ1, . . . , θD are real [2, p. 197]. Observe that θ0, θ1, . . . , θD are
mutually distinct since A generates M . We refer to θi as the eigenvalue of � associ-
ated with Ei . For 0 ≤ i ≤ D let mi denote the rank of Ei . We call mi the multiplicity
of θi .

By (3)–(6),

V = E0V + E1V + · · · + EDV (orthogonal direct sum). (8)
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By linear interpolation,

Ei =
∏

0≤j≤D
j 
=i

A − θj I

θi − θj

(0 ≤ i ≤ D). (9)

We now recall the Q-polynomial property. Note that Ai ◦ Aj = δijAi for 0 ≤ i, j ≤
D, where ◦ is the entry-wise multiplication. Therefore M is closed under ◦. Thus
there exist qh

ij ∈ C (0 ≤ h, i, j ≤ D) such that

Ei ◦ Ej = |X|−1
D∑

h=0

qh
ijEh (0 ≤ i, j ≤ D).

By [3, Proposition 4.1.5] the scalars qh
ij are real and nonnegative for 0 ≤ h, i, j ≤ D.

The qh
ij are called the Krein parameters of �. The graph � is said to be Q-polynomial

(with respect to the given ordering E0,E1, . . . ,ED of the primitive idempotents)
whenever the following hold for 0 ≤ h, i, j ≤ D: (i) qh

ij = 0 if one of h, i, j is greater

than the sum of the other two; and (ii) qh
ij 
= 0 if one of h, i, j equals the sum of the

other two.

3 The Terwilliger algebra

In this section we recall the dual Bose-Mesner algebra and the Terwilliger algebra of
�. For the rest of this section fix x ∈ X. For 0 ≤ i ≤ D let E∗

i = E∗
i (x) denote the

diagonal matrix in MatX(C) with entries

(E∗
i )yy =

{
1 if ∂(x, y) = i,

0 if ∂(x, y) 
= i
(y ∈ X).

We call E∗
i the ith dual idempotent of � with respect to x. We observe

E∗
0 + E∗

1 + · · · + E∗
D = I, (10)

E∗t
i = E∗

i (0 ≤ i ≤ D), (11)

E∗
i = E∗

i (0 ≤ i ≤ D), (12)

E∗
i E∗

j = δijE
∗
i (0 ≤ i, j ≤ D). (13)

By construction E∗
0 ,E∗

1 , . . . ,E∗
D are linearly independent. Let M∗ = M∗(x) denote

the subalgebra of MatX(C) spanned by E∗
0 ,E∗

1 , . . . ,E∗
D . We call M∗ the dual Bose-

Mesner algebra of � with respect to x. We observe M∗ is commutative and semi-
simple.

Assume � is Q-polynomial with respect to the ordering E0,E1, . . . ,ED of the
primitive idempotents. Let A∗ = A∗(x) denote the diagonal matrix in MatX(C) with
(y, y)-entry

A∗
yy = |X|Exy (y ∈ X), (14)
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where E = E1. We call A∗ the dual adjacency matrix of � with respect to x. By
[17, Lemma 3.11] M∗ is generated by A∗. We recall the dual eigenvalues of �. Since
E∗

0 ,E∗
1 , . . . ,E∗

D is a basis for M∗ there exist θ∗
0 , θ∗

1 , . . . , θ∗
D ∈ C such that

A∗ =
D∑

i=0

θ∗
i E∗

i . (15)

Combining this with (13) we find A∗E∗
i = E∗

i A∗ = θ∗
i E∗

i (0 ≤ i ≤ D). By [17,
Lemma 3.11] θ∗

0 , θ∗
1 , . . . , θ∗

D are real. The scalars θ∗
0 , θ∗

1 , . . . , θ∗
D are mutually dis-

tinct since A∗ generates M∗. Note that θ∗
i is an eigenvalue of A∗ and E∗

i V is the
corresponding eigenspace (0 ≤ i ≤ D). Using (10)–(13) we find

V = E∗
0V + E∗

1V + · · · + E∗
DV (orthogonal direct sum). (16)

We call the sequence θ∗
0 , θ∗

1 , . . . , θ∗
D the dual eigenvalue sequence of �. Observe that

for 0 ≤ i ≤ D the rank of E∗
i is ki . Therefore ki is the multiplicity with which θ∗

i

appears as an eigenvalue of A∗.

By linear interpolation we obtain

E∗
i =

∏
0≤j≤D

j 
=i

A∗ − θ∗
j I

θ∗
i − θ∗

j

. (17)

By [17, Lemma 3.2] the following hold for 0 ≤ h, j ≤ D:

E∗
j AE∗

h = 0 if and only if ph
1j = 0; (18)

EjA
∗Eh = 0 if and only if qh

1j = 0. (19)

Let T = T (x) denote the subalgebra of MatX(C) generated by M and M∗. We call
T the Terwilliger algebra of � with respect to x [17, Definition 3.3].

By a T -module we mean a subspace W of V such that BW ⊆ W for all B ∈ T .
Let W denote a T -module. Then W is said to be irreducible whenever W is nonzero
and W contains no T -modules other than 0 and W .

By construction T is closed under the conjugate-transpose map so T is semi-
simple [17, Lemma 3.4(i)]. By [17, Lemma 3.4(ii)] V decomposes into an orthogonal
direct sum of irreducible T -modules. Let W denote an irreducible T -module. By [17,
Lemma 3.4(iii)] W is the orthogonal direct sum of the nonvanishing EiW (0 ≤ i ≤
D) and the orthogonal direct sum of the nonvanishing E∗

i W (0 ≤ i ≤ D). By the
endpoint of W we mean min{i|0 ≤ i ≤ D, E∗

i W 
= 0}. By the diameter of W we
mean |{i|0 ≤ i ≤ D, E∗

i W 
= 0}|− 1. By the dual endpoint of W we mean min{i|0 ≤
i ≤ D, EiW 
= 0}. By the dual diameter of W we mean |{i|0 ≤ i ≤ D, EiW 
=
0}|− 1. By [12, Lemma 4.5] the diameter and the dual diameter of W coincide. Let r

and r∗ denote the endpoint and the dual endpoint of W , respectively, and let d denote
the diameter of W . By [17, Lemma 3.9(ii), Lemma 3.12(ii)] the following hold for
0 ≤ i ≤ D:

EiW 
= 0 if and only if r∗ ≤ i ≤ r∗ + d, (20)
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E∗
i W 
= 0 if and only if r ≤ i ≤ r + d. (21)

Let W denote an irreducible T -module. By [17, Lemma 3.9, Lemma 3.12] the
following are equivalent: (i) dim(EiW) ≤ 1 for 0 ≤ i ≤ D; (ii) dim(E∗

i W) ≤ 1 for
0 ≤ i ≤ D. In this case W is called thin.

4 The hypercubes

In this section we recall the hypercube graph and some of its basic properties. Let D

denote a positive integer, and let {0,1}D denote the set of sequences (t1, t2, . . . , tD),
where ti ∈ {0,1} for 1 ≤ i ≤ D. Let QD denote the graph with vertex set X = {0,1}D ,
and where two vertices are adjacent if and only if they differ in exactly one coordi-
nate. We call QD the D-cube or a hypercube. The graph QD is connected and for
y, z ∈ X the distance ∂(y, z) is the number of coordinates at which y and z differ.
In particular the diameter of QD equals D. The graph QD is bipartite with biparti-
tion X = X+ ∪ X−, where X+ (resp. X−) is the set of vertices of QD with an even
(resp. odd) number of positive coordinates. By [3, p. 261] QD is distance-regular
with intersection numbers

ai = 0, bi = D − i, ci = i, ki =
(

D

i

)
(0 ≤ i ≤ D). (22)

Let θ0 > · · · > θD denote the eigenvalues of QD . By [3, p. 261] these eigenvalues
and their multiplicities are given by

θi = D − 2i, mi =
(

D

i

)
(0 ≤ i ≤ D). (23)

For 0 ≤ i ≤ D let Ei denote the primitive idempotent of QD associated with θi . By
[3, Corollary 8.4.2], QD is Q-polynomial with respect to E0,E1, . . . ,ED . Moreover,
it follows from [3, Theorem 8.4.4] that

ph
ij = qh

ij (0 ≤ h, i, j ≤ D). (24)

Since QD is bipartite,

ph
ij = 0 if h + i + j is odd (0 ≤ h, i, j ≤ D). (25)

Let θ∗
0 , . . . , θ∗

D denote the dual eigenvalue sequence of QD for the given Q-
polynomial structure. Then θ∗

i = θi (0 ≤ i ≤ D) [10, Lemma 3.7]. Fix x ∈ X. Let
A∗ = A∗(x) denote the corresponding dual adjacency matrix, and let T = T (x) de-
note the corresponding Terwilliger algebra. By (15) and since θ∗

i = D − 2i we have

A∗
yy = D − 2∂(x, y) (y ∈ X). (26)

Since QD is vertex-transitive the isomorphism class of T (x) does not dependent on
x. For notational convenience, for the rest of this paper we assume x = (0,0, . . . ,0).
By [10, Theorem 4.2] we have

A∗2A − 2A∗AA∗ + AA∗2 = 4A, (27)
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A2A∗ − 2AA∗A + A∗A2 = 4A∗. (28)

Let W denote an irreducible T -module. By [10, Theorem 6.3] W is thin. By [10,
Theorem 6.3, Theorem 8.1] the endpoint and the dual endpoint of W coincide. De-
noting this common value by r we have d = D − 2r and 0 ≤ r ≤ D/2, where d is the
diameter of W [10, Theorem 6.3].

5 The Cartesian product and the Kronecker product

In this section we recall the Cartesian product of graphs and the Kronecker product
of matrices. For graphs � = (X,R) and �′ = (X′,R′) let � × �′ denote the graph
with vertex set X × X′, and with vertex (u,u′) being adjacent to vertex (v, v′) if and
only if either u = v and u′ is adjacent to v′ in �′, or u′ = v′ and u is adjacent to v

in �. We call � × �′ the Cartesian product of � and �′.
For B ∈ MatX(C) and B ′ ∈ MatX′(C) let B⊗B ′ denote the matrix in MatX×X′(C),

with a ((u,u′), (v, v′))-entry equal to the (u, v)-entry of B times the (u′, v′)-entry of
B ′. We call B ⊗ B ′ the Kronecker product of B and B ′. By [9, p. 107]

(B1 ⊗ B ′
1)(B2 ⊗ B ′

2) = (B1B2) ⊗ (B ′
1B

′
2). (29)

Also by [9, p. 107]

B ⊗ (γ1B
′
1 + γ2B

′
2) = γ1B ⊗ B ′

1 + γ2B ⊗ B ′
2, (30)

(γ1B
′
1 + γ2B

′
2) ⊗ B = γ1B

′
1 ⊗ B + γ2B

′
2 ⊗ B, (31)

where γ1, γ2 ∈ C. It is also known that

(B ⊗ B ′)t = Bt ⊗ B ′t , B ⊗ B ′ = B ⊗ B ′. (32)

For a matrix B ∈ MatX(C) and an integer r ≥ 0 let B⊗r denote B ⊗ B ⊗ · · · ⊗ B (r
copies). We interpret B⊗0 = 1. Let � and �′ be graphs with adjacency matrices A

and A′, respectively. By construction the adjacency matrix of � × �′ is equal to A ⊗
I ′ + I ⊗ A′, where I and I ′ are the identity matrices of appropriate dimensions (see,
for example, [11, Section 12.4]). The hypercube QD can be viewed as a Cartesian
product Q1 × Q1 × · · · × Q1 (D copies). By a simple induction argument we find
that the adjacency matrix A of QD satisfies

A =
D−1∑
i=0

I⊗i
1 ⊗ A1 ⊗ I

⊗(D−1−i)
1 , (33)

where A1 and I1 denote the adjacency matrix of Q1 and the 2 × 2 identity matrix,
respectively. The reader is invited to verify that a similar equation holds for the dual
adjacency matrix A∗ of the hypercube QD :

A∗ =
D−1∑
i=0

I⊗i
1 ⊗ A∗

1 ⊗ I
⊗(D−1−i)
1 . (34)
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6 The imaginary adjacency matrix of QD

In this section we define the imaginary adjacency matrix of the hypercube QD . We
use the following notation.

Notation 6.1 Let D denote a positive integer and let QD = (X,R) denote the D-
cube. Let A denote the adjacency matrix of QD and let I denote the identity matrix
in MatX(C). Fix x = (0,0, . . . ,0) ∈ X, and let A∗ = A∗(x) and T = T (x) denote the
corresponding dual adjacency matrix and the Terwilliger algebra, respectively. We
define the matrix Aε = Aε(x) by

Aε = −i(AA∗ − A∗A)/2, (35)

where i2 = −1.

Note that Aε ∈ T . We have the following observation.

Lemma 6.2 With reference to Notation 6.1, for y, z ∈ X the (y,z)-entry of Aε is given
by

Aε
yz = i(∂(x, z) − ∂(x, y))Ayz.

PROOF. Since A∗ is diagonal we obtain (AA∗)yz = AyzA
∗
zz and (A∗A)yz = A∗

yyAyz.
By (26) A∗

yy = D − 2∂(x, y) and A∗
zz = D − 2∂(x, z). The result now follows using

(35). �

Motivated by Lemma 6.2 we call Aε the imaginary adjacency matrix of QD with
respect to x. The following result will be useful.

Lemma 6.3 With reference to Notation 6.1 the following (i)–(iii) hold.

(i) AA∗ − A∗A = 2iAε ,
(ii) A∗Aε − AεA∗ = 2iA,

(iii) AεA − AAε = 2iA∗.

PROOF. (i) Immediate from (35).

(ii), (iii) Eliminate Aε using (35) and simplify using (27) and (28). �

Lemma 6.4 With reference to Notation 6.1 we have

Aε =
D−1∑
i=0

I⊗i
1 ⊗ Aε

1 ⊗ I
⊗(D−1−i)
1 , (36)

where Aε
1 denotes the imaginary adjacency matrix of Q1 and I1 denotes the 2 × 2

identity matrix.

PROOF. Evaluate the left-hand side using (35) and then (33), (34). Simplify the result
using (29)–(31) and Aε

1 = −i(A1A
∗
1 − A∗

1A1)/2. �
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7 The eigenvalues of the imaginary adjacency matrix

In this section we describe the eigenvalues for the imaginary adjacency matrix of QD .
We begin with a definition.

Definition 7.1 With reference to Notation 6.1 we define

P = P ⊗D
1 (37)

where P1 is the matrix with rows and columns indexed by the set {0,1}, and with
(0,0)-entry 1, (0,1)-entry 1, (1,0)-entry −i, and (1,1)-entry i.

Lemma 7.2 With reference to Notation 6.1 and Definition 7.1 we have P ∈ T .

PROOF. Observe that the symmetric group SD acts on X as a group of automorphisms
of QD by the rule

(t1, t2, . . . , tD)σ = (tσ (1), tσ (2), . . . , tσ (D)) (σ ∈ SD), (38)

where (t1, t2, . . . , tD) is a vertex of QD . In fact SD is isomorphic to the stabilizer of
the vertex x in the full automorphism group of QD [3, Theorem 9.2.1].

Observe that the above SD-action on X induces an SD-action on V . For σ ∈ SD

let Mσ denote the matrix in MatX(C) that represents σ with respect to the basis
{ŷ|y ∈ X}. By [16, Subsection I.C] T is the centralizer algebra for SD on V , i.e.

T = {M ∈ MatX(C)|MMσ = Mσ M ∀σ ∈ SD}.
Pick distinct 1 ≤ i, j ≤ D and consider the involution σ = (i, j) ∈ SD . Since SD is
generated by the involutions, to show P ∈ T it suffices to show PMσ = Mσ P . For
y, z ∈ X the (y, z)-entry of Mσ is 1 if yσ = z and 0 if yσ 
= z. By this and matrix
multiplication the (y, z)-entry of PMσ is Pyzσ and the (y, z)-entry of Mσ P is Pyσ z.
By (37) and the definition of the Kronecker product Pyzσ = Pyσ z. By these comments
(PMσ )yz = (Mσ P )yz. Therefore PMσ = Mσ P so P ∈ T . �

We have an observation.

Lemma 7.3 With reference to Notation 6.1 and Definition 7.1 the following (i)–(iii)
hold.

(i) PP
t = P

t
P = 2DI ;

(ii) P 3 = 2D(1 − i)DI ;
(iii) P −1 exists.

PROOF. (i) We first observe that P1P1
t = 2I1, where I1 denotes the 2 × 2 identity

matrix. Using (29) and (32) we now obtain

P P
t = P ⊗D

1

(
P1

t)⊗D = (
P1 P1

t)⊗D = (2I1)
⊗D = 2DI.
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(ii) We first observe that P 3
1 = 2(1 − i)I1. Using (29) we now obtain

P 3 = P ⊗D
1 P ⊗D

1 P ⊗D
1 = (

P 3
1

)⊗D = (
2(1 − i)I1

)⊗D = 2D(1 − i)DI.

(iii) Clear from (ii) above. �

Theorem 7.4 With reference to Notation 6.1 and Definition 7.1,

A∗ = PAP −1, Aε = PA∗P −1, A = PAεP −1.

PROOF. To verify the equation on the left, evaluate A∗ using (34) and PAP −1 using
(29), (33), (37). Comparing the results using A∗

1 = P1A1P
−1
1 we find A∗ = PAP −1.

The other two equations are similarly obtained. �

Corollary 7.5 With reference to Notation 6.1 the following (i)–(iii) hold.

(i) The matrix Aε is diagonalizable.
(ii) The eigenvalues of Aε are D − 2i (0 ≤ i ≤ D).

(iii) For 0 ≤ i ≤ D the eigenvalue D − 2i of Aε has multiplicity
(
D
i

)
.

PROOF. Use (23) and the equation on the right in Theorem 7.4. �

8 The primitive idempotents of the imaginary adjacency matrix

In this section we consider the primitive idempotents for the imaginary adjacency
matrix of QD . We start with a definition.

Definition 8.1 With reference to Notation 6.1, for 0 ≤ i ≤ D we define Eε
i =

P −1EiP , where P is from Definition 7.1 and Ei is the ith primitive idempotent
of QD .

Adopt Notation 6.1. Using Definition 8.1, (3)–(7), (9), Lemma 7.3(i), and the equa-
tion on the right in Theorem 7.4 we routinely find

Eε
0 + Eε

1 + · · · + Eε
D = I, (39)

Eε
i

t = Eε
i (0 ≤ i ≤ D), (40)

Eε
i E

ε
j = δijE

ε
i (0 ≤ i, j ≤ D), (41)

Aε =
D∑

i=0

(D − 2i)Eε
i , (42)

AεEε
i = Eε

i A
ε = (D − 2i)Eε

i (0 ≤ i ≤ D), (43)

Eε
i =

∏
0≤j≤D

j 
=i

Aε − θj I

θi − θj

(0 ≤ i ≤ D). (44)
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For 0 ≤ i ≤ D we note that Eε
i is the primitive idempotent of Aε associated with

the eigenvalue D − 2i. It follows from (44) that Eε
i ∈ T . We call Eε

i the ith imagi-
nary idempotent of QD with respect to x. For the rest of this paper we consider the
following situation.

Notation 8.2 Let D denote a positive integer and let QD = (X,R) denote the D-
cube. Let A denote the adjacency matrix of QD and let I denote the identity matrix in
MatX(C). Let V denote the standard module of MatX(C). Fix x = (0,0, . . . ,0) ∈ X,
and let A∗ = A∗(x) and Aε = Aε(x) denote the corresponding dual adjacency and
the imaginary adjacency matrix, respectively. Let T = T (x) denote the corresponding
Terwilliger algebra. Let Ei , E∗

i , Eε
i (0 ≤ i ≤ D) denote the primitive idempotents, the

dual idempotents and the imaginary idempotents of QD , respectively. Let the matrix
P be as in Definition 7.1.

We record the following for later use.

Lemma 8.3 With reference to Notation 8.2 the following (i), (ii) hold.

(i) For 0 ≤ i ≤ D, Eε
i V is the eigenspace of Aε for the eigenvalue D − 2i.

(ii) V = Eε
0V + Eε

1V + · · · + Eε
DV (orthogonal direct sum).

PROOF. (i) This follows from (43).
(ii) Evaluate V = P −1IPV using (3) and Definition 8.1 to obtain V = ∑D

i=0 Eε
i V

(direct sum). This sum is orthogonal by (40) and (41). �

Lemma 8.4 With reference to Notation 8.2 the following holds for 0 ≤ i ≤ D:

E∗
i = PEiP

−1, Eε
i = PE∗

i P −1, Ei = PEε
i P

−1.

PROOF. To verify the left equation, simplify the right-hand side using (9) and the
equation on the left in Theorem 7.4. Compare the result with (17) and recall θi = θ∗

i

for 0 ≤ i ≤ D. The other two equations are similarly obtained. �

Corollary 8.5 With reference to Notation 8.2, let W denote an irreducible T -module.
Then the following holds for 0 ≤ i ≤ D:

PEiW = E∗
i W, PE∗

i W = Eε
i W, PEε

i W = EiW.

PROOF. Immediate from Lemma 8.4 and since P −1W = W by Lemma 7.2. �

Corollary 8.6 With reference to Notation 8.2, let W denote an irreducible T -module.
Then dim(Eε

i W) ≤ 1 for 0 ≤ i ≤ D.

PROOF. This follows from Corollary 8.5 and since dim(E∗
i W) ≤ 1 for 0 ≤ i ≤ D. �

Lemma 8.7 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D − 2r . Then the following (i), (ii) hold.
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(i) Eε
i W 
= 0 if and only if r ≤ i ≤ r + d (0 ≤ i ≤ D);

(ii) W = Eε
r W + Eε

r+1W + · · · + Eε
r+dW (orthogonal direct sum).

PROOF. (i) By Corollary 8.5 we have Eε
i W = PE∗

i W . By (21) we have E∗
i W 
= 0 if

and only if r ≤ i ≤ r + d . The result follows.
(ii) Recall that W = ∑d

i=0 E∗
r+iW (direct sum) by (21). Therefore PW =∑d

i=0 PE∗
r+iW (direct sum). Simplify this equation using W = PW and Corollary

8.5 to obtain W = ∑d
i=0 Eε

r+iW (direct sum). This sum is orthogonal by (40) and
(41). �

Lemma 8.8 With reference to Notation 8.2 the following (i)–(v) are equivalent for
0 ≤ h, j ≤ D:

(i) ph
1j = 0;

(ii) EhA
εEj = 0;

(iii) E∗
hAεE∗

j = 0;

(iv) Eε
hAEε

j = 0;

(v) Eε
hA

∗Eε
j = 0.

PROOF. By Theorem 7.4 and Lemma 8.4 we have PE∗
hAE∗

j P −1 = Eε
hA

∗Eε
j ,

P 2E∗
hAE∗

j P −2 = EhA
εEj , PEhA

∗EjP
−1 = E∗

hAεE∗
j and P 2EhA

∗EjP
−2 =

Eε
hAEε

j . The result now follows in view of (18), (19) and (24). �

9 Six bases for an irreducible T -module

With reference to Notation 8.2, let W denote an irreducible T -module. We are going
to show that the triple A, A∗, Aε acts on W as a Leonard triple. We start with a
lemma.

Lemma 9.1 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D − 2r . Then the following (i)–(iii) hold.

(i) For a nonzero u ∈ ErW , each of the following two sequences is a basis for W :

E∗
r u,E∗

r+1u, . . . ,E∗
r+du; (45)

Eε
r u,Eε

r+1u, . . . ,Eε
r+du. (46)

(ii) For a nonzero u∗ ∈ E∗
r W , each of the following two sequences is a basis for W :

Eε
r u

∗,Eε
r+1u

∗, . . . ,Eε
r+du∗; (47)

Eru
∗,Er+1u

∗, . . . ,Er+du∗. (48)
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(iii) For a nonzero uε ∈ Eε
r W , each of the following two sequences is a basis for W :

Eru
ε,Er+1u

ε, . . . ,Er+duε; (49)

E∗
r uε,E∗

r+1u
ε, . . . ,E∗

r+duε. (50)

PROOF. It follows from [10, Corollaries 6.8 and 8.5] that the pair A,A∗ acts on W as
a Leonard pair. Therefore (45) and (48) are bases for W by [24, Lemma 10.2].

By Lemma 8.4 and Corollary 8.5 the sequence (47) (resp. (49)) is the image under
P (resp. P 2) of the sequence (45), provided u is normalized so that Pu = u∗ (resp.
P 2u = uε). Similarly, the sequence (50) (resp. (46)) is the image under P (resp. P 2)
of the sequence (48), provided u∗ is normalized so that Pu∗ = uε (resp. P 2u∗ = u).
Since P is invertible, the sequences (46), (47), (49) and (50) are bases for W . �
The following result will be useful.

Lemma 9.2 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D − 2r . Then the following (i)–(iii) hold.

(i) For a nonzero u ∈ ErW ,

u =
d∑

i=0

E∗
r+iu, u =

d∑
i=0

Eε
r+iu. (51)

(ii) For a nonzero u∗ ∈ E∗
r W ,

u∗ =
d∑

i=0

Eε
r+iu

∗, u∗ =
d∑

i=0

Er+iu
∗. (52)

(iii) For a nonzero uε ∈ Eε
r W ,

uε =
d∑

i=0

Er+iu
ε, uε =

d∑
i=0

E∗
r+iu

ε. (53)

PROOF. (i) Evaluate u = Iu using (10) and (21) to obtain the equation on the left in
(51). Evaluate u = Iu using (39) and Lemma 8.7(i) to obtain the equation on the right
in (51).

(ii), (iii) Similar to the proof of (i) above. �
For future use we record an idea from the proof of Lemma 9.1.

Lemma 9.3 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D − 2r . Then the following (i), (ii) hold.

(i) The basis (47) (resp. (49), (45)) is the image under P of the basis (45) (resp. (47),
(49)), provided u (resp. u∗, uε) is normalized so that Pu = u∗ (resp. Pu∗ = uε ,
Puε = u).
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(ii) The basis (48) (resp. (50), (46)) is the image under P of the basis (46) (resp. (48),
(50)), provided u (resp. u∗, uε) is normalized so that Pu = u∗ (resp. Pu∗ = uε ,
Puε = u).

Remark 9.4 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D − 2r . Note that the definition of a standard basis
for W [10, Definition 6.4] is different from the definition of the basis (45). However,
it turns out that these definitions are equivalent. Similarly, the definition of a dual
standard basis for W [10, Definition 8.2] is equivalent to the definition of the basis
(48). We will therefore prove all the results of Section 10 and Section 11, although
some of these results were already proven in [10].

10 The action of A, A∗, Aε on the six bases

With reference to Notation 8.2, let W denote an irreducible T -module with diam-
eter d . In this section we display the matrices which represent the action of A, A∗
and Aε on W with respect to the six bases from Lemma 9.1. We use the following
notation. Let Matd+1(C) denote the C-algebra of all (d + 1) × (d + 1) matrices with
entries in C. The rows and columns of matrices in Matd+1(C) shall be indexed by
0,1, . . . , d . Let v0, v1, . . . , vd denote a basis for W . For B ∈ Matd+1(C) and Y ∈ T

we say B represents Y with respect to v0, v1, . . . , vd whenever Yvj = ∑d
i=0 Bij vi

for 0 ≤ j ≤ d . We have a comment. For an invertible S ∈ T the following are equiv-
alent: (i) the matrix B represents Y with respect to v0, v1, . . . , vd ; (ii) the matrix B

represents SYS−1 with respect to Sv0, Sv1, . . . , Svd .

Theorem 10.1 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D − 2r . Then the following (i)–(iii) hold.

(i) The matrix which represents A with respect to the basis (48) of W and with
respect to the basis (49) of W is diag(d, d − 2, d − 4, . . . ,−d).

(ii) The matrix which represents A∗ with respect to the basis (45) of W and with
respect to the basis (50) of W is diag(d, d − 2, d − 4, . . . ,−d).

(iii) The matrix which represents Aε with respect to the basis (46) of W and with
respect to the basis (47) of W is diag(d, d − 2, d − 4, . . . ,−d).

PROOF. (i) Recall that the basis (48) of W is of the form Eru
∗,Er+1u

∗, . . . ,Er+du∗,
where u∗ is a nonzero vector in E∗

r W . Similarly, the basis (49) of W is of the form
Eru

ε,Er+1u
ε, . . . ,Er+duε , where uε is a nonzero vector in Eε

r W . For 0 ≤ i ≤ d

each of Er+iu
∗, Er+iu

ε is an eigenvector for A with eigenvalue θr+i = d − 2i. The
result follows.

(ii), (iii) Similar to the proof of (i) above. �

Theorem 10.2 With reference to Notation 8.2, let W denote an irreducible T -
module with endpoint r and diameter d = D − 2r . Consider the following matrix
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in Matd+1(C): ⎛
⎜⎜⎜⎜⎜⎜⎝

0 d 0
1 0 d − 1

2 · ·
· · ·

· · 1
0 d 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (54)

Then the following (i)–(iii) hold.

(i) The matrix (54) represents A with respect to the bases (45) and (46) of W .
(ii) The matrix (54) represents A∗ with respect to the bases (47) and (48) of W .

(iii) The matrix (54) represents Aε with respect to the bases (49) and (50) of W .

PROOF. (i) Recall that the basis (45) is of the form E∗
r u,E∗

r+1u, . . . ,E∗
r+du where u

is a nonzero vector in ErW . Let B denote the matrix in Matd+1(C) which represents
A with respect to this basis. We show that B is equal to the matrix (54).

For 0 ≤ i ≤ D we have AE∗
i V ⊆ E∗

i−1V + E∗
i+1V by (18) and (25); there-

fore AE∗
i W ⊆ E∗

i−1W + E∗
i+1W , implying that B is tridiagonal with diagonal

entries 0. Further, (A − dI)u = 0 since u ∈ ErW and θr = d . Therefore (B −
dI)(1,1, . . . ,1)t = 0 by the equation on the left in (51). By these comments

B0,1 = d, Bi,i−1 + Bi,i+1 = d (1 ≤ i ≤ d − 1), Bd,d−1 = d. (55)

By (19), (24) and (25) we find A∗ErV ⊆ Er−1V + Er+1V . By this and since W has
endpoint r we find A∗ErW ⊆ Er+1W . Therefore A∗u ∈ Er+1W . Now (A − (d −
2)I )A∗u = 0 since θr+1 = d − 2. As A∗u = ∑d

i=0 θr+iE
∗
r+iu by construction, this

implies (B − (d − 2)I )(θr , θr+1, . . . , θr+d)t = 0. Combining this with the fact that B

is tridiagonal with diagonal entries 0 we find

Bi,i−1θr+i−1 + Bi,i+1θr+i+1 = (d − 2)θr+i (1 ≤ i ≤ d − 1). (56)

Combining (55) and (56) and using θr+j = d −2j for 0 ≤ j ≤ d we obtain Bi,i−1 = i

for 1 ≤ i ≤ d and Bi,i+1 = d − i for 0 ≤ i ≤ d − 1. Therefore B is equal to the matrix
(54).

Next recall that the basis (46) is of the form Eε
r u,Eε

r+1u, . . . ,Eε
r+du where u is

a nonzero vector in ErW . Let B ′ denote the matrix in Matd+1(C) which represents
A with respect to this basis. We show that B ′ is equal to the matrix (54). Since the
proof is similar to the proof that B is equal to the matrix (54), we just indicate the
main steps.

Similarly as in the first part of the proof, but using Lemma 8.8 instead of (18), we
find that B ′ is tridiagonal with diagonal entries 0. Since (A − dI)u = 0 we obtain
(B ′ − dI)(1,1, . . . ,1)t = 0 by the equation on the right in (51). Hence

B ′
0,1 = d, B ′

i,i−1 + B ′
i,i+1 = d (1 ≤ i ≤ d − 1), B ′

d,d−1 = d. (57)

Further, AεErW ⊆ Er+1W by Lemma 8.8 and (25), implying (A − (d − 2)I ) ×
Aεu = 0. This gives us (B ′ − (d − 2)I )(θr , θr+1, . . . , θr+d)t = 0 since Aεu =
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∑d
i=0 θr+iE

ε
r+iu. Hence

B ′
i,i−1θr+i−1 + B ′

i,i+1θr+i+1 = (d − 2)θr+i (1 ≤ i ≤ d − 1). (58)

Combining (57) and (58) we find that B ′ is equal to the matrix (54).

(ii), (iii) Use Theorem 7.4, Lemma 9.3 and the comment above Theorem 10.1. �

Theorem 10.3 With reference to Notation 8.2, let W denote an irreducible T -
module with endpoint r and diameter d = D − 2r . Consider the following matrix
in Matd+1(C):

i

⎛
⎜⎜⎜⎜⎜⎜⎝

0 d 0
−1 0 d − 1

−2 · ·
· · ·

· · 1
0 −d 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (59)

Then the following (i)–(iii) hold.

(i) The matrix (59) represents A with respect to the basis (47) of W .
(ii) The matrix (59) represents A∗ with respect to the basis (49) of W .

(iii) The matrix (59) represents Aε with respect to the basis (45) of W .

PROOF. (i) Let B,B∗ and Bε denote the matrices in Matd+1(C) which represent A,
A∗ and Aε with respect to the basis (47) of W . We have B = −i(B∗Bε − BεB∗)/2
by Lemma 6.3(ii). Recall that Bε is equal to diag(d, d − 2, d − 4, . . . ,−d) by The-
orem 10.1(iii) and that B∗ is equal to the matrix (54) by Theorem 10.2(ii). By these
comments B is equal to the matrix (59).

(ii), (iii) Use Theorem 7.4, Lemma 9.3 and the comment above Theorem 10.1. �

Theorem 10.4 With reference to Notation 8.2, let W denote an irreducible T -
module with endpoint r and diameter d = D − 2r . Consider the following matrix
in Matd+1(C):

i

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −d 0
1 0 1 − d

2 · ·
· · ·

· · −1
0 d 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (60)

Then the following (i)–(iii) hold.

(i) The matrix (60) represents A with respect to the basis (50) of W .
(ii) The matrix (60) represents A∗ with respect to the basis (46) of W .

(iii) The matrix (60) represents Aε with respect to the basis (48) of W .
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PROOF. (i) Let B,B∗ and Bε denote the matrices in Matd+1(C) which represent A,
A∗ and Aε with respect to the basis (50) of W . We have B = −i(B∗Bε − BεB∗)/2
by Lemma 6.3(ii). Recall that B∗ is equal to diag(d, d − 2, d − 4, . . . ,−d) by The-
orem 10.1(ii) and that Bε is equal to the matrix (54) by Theorem 10.2(iii). By these
comments B is equal to the matrix (60).

(ii), (iii) Use Theorem 7.4, Lemma 9.3 and the comment above Theorem 10.1. �

Corollary 10.5 With reference to Notation 8.2, let W denote an irreducible T -
module. Then the triple A,A∗,Aε acts on W as a Leonard triple.

PROOF. Immediate from Theorems 10.1 – 10.4. �

11 The inner products

With reference to Notation 8.2, let W denote an irreducible T -module. In Lemma 9.1
we displayed six bases for W . Later in the paper we will find the transition matrices
between these bases. Before we get to this it is convenient to find the inner products
for the vectors in these bases.

Theorem 11.1 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D − 2r . Then the following (i)–(iii) hold for 0 ≤
i, j ≤ d .

(i) For a nonzero u ∈ ErW ,

〈E∗
r+iu,E∗

r+j u〉 = δij

(
d

i

)
2−d‖u‖2, 〈Eε

r+iu,Eε
r+ju〉 = δij

(
d

i

)
2−d‖u‖2.

(ii) For a nonzero u∗ ∈ E∗
r W ,

〈Eε
r+iu

∗,Eε
r+ju

∗〉 = δij

(
d

i

)
2−d‖u∗‖2, 〈Er+iu

∗,Er+j u
∗〉 = δij

(
d

i

)
2−d‖u∗‖2.

(iii) For a nonzero uε ∈ Eε
r W ,

〈Er+iu
ε,Er+j u

ε〉 = δij

(
d

i

)
2−d‖uε‖2, 〈E∗

r+iu
ε,E∗

r+j u
ε〉 = δij

(
d

i

)
2−d‖uε‖2.

PROOF. (i) Concerning the equation on the left, it holds for i 
= j since E∗
r+iu and

E∗
r+j u are orthogonal by (16). To verify the equation for i = j we first claim that

‖E∗
r+iu‖2 = (

d
i

)‖E∗
r u‖2. To prove the claim we assume i ≥ 1; otherwise the result is
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clear. By (1) and since A
t = A we have

〈AE∗
r+i−1u,E∗

r+iu〉 = 〈E∗
r+i−1u,AE∗

r+iu〉.

In this equation we evaluate both sides using Theorem 10.2(i) and simplify the result
using the fact that E∗

r u,E∗
r+1u, . . . ,E∗

r+du are mutually orthogonal; we obtain

i‖E∗
r+iu‖2 = (d − i + 1)‖E∗

r+i−1u‖2.

The claim follows from this and induction on i. Next we claim that ‖E∗
r u‖2 =

2−d‖u‖2. To see this, recall that E∗
r u,E∗

r+1u, . . . ,E∗
r+du are mutually orthogonal

and that u = ∑d
i=0 E∗

r+iu by the equation on the left in Lemma 9.2(i). By these com-
ments and the first claim,

‖u‖2 =
d∑

i=0

‖E∗
r+iu‖2 = ‖E∗

r u‖2
d∑

i=0

(
d

i

)
= 2d‖E∗

r u‖2

and the second claim is proved. Combining the two claims we get the equation on
the left for i = j . We have now verified the equation on the left. The proof for the
equation on the right is similar, so we just indicate the main steps. If i 
= j then
Eε

r+iu and Eε
r+j u are orthogonal by Lemma 8.3(ii). Assume now i = j . By (1) we

have 〈AEε
r+i−1u,Eε

r+iu〉 = 〈Eε
r+i−1u,AEε

r+iu〉. Evaluating and simplifying this us-
ing Theorem 10.2(i) and the fact that Eε

r u,Eε
r+1u, . . . ,Eε

r+du are mutually orthog-
onal we obtain i‖Eε

r+iu‖2 = (d − i + 1)‖Eε
r+i−1u‖2. Using induction on i we find

‖Eε
r+iu‖2 = (

d
i

)‖Eε
r u‖2. Using this and the equation on the right in Lemma 9.2(i)

we find ‖u‖2 = 2d‖Eε
r u‖2. Combining the above results we get the equation on the

right.

(ii), (iii) Use (1), Lemma 7.3(i), Lemma 9.3 and (i) above. �

We have a comment.

Theorem 11.2 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D − 2r . Then the following (i)–(iii) hold for 0 ≤
i ≤ d and nonzero vectors u ∈ ErW , u∗ ∈ E∗

r W , uε ∈ Eε
r W .

(i) Er+iu
ε = ii (1 − i)d〈uε,u∗〉‖u∗‖−2Er+iu

∗.
(ii) E∗

r+iu = ii (1 − i)d〈u,uε〉‖uε‖−2E∗
r+iu

ε .
(iii) Eε

r+iu
∗ = ii (1 − i)d〈u∗, u〉‖u‖−2Eε

r+iu.

PROOF. (i) Each of Er+iu
ε , Er+iu

∗ is a basis for Er+iW so there exists a nonzero
λi ∈ C such that Er+iu

ε = λiEr+iu
∗. We first claim that λi = iiλ0. To prove the

claim assume i ≥ 1; otherwise the result is clear. Note that A∗Er+iu
ε = λiA

∗Er+iu
∗.
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Evaluating both sides of this equation using Theorem 10.2(ii) and Theorem 10.3(ii)
and then comparing the results we find that λi = iλi−1. The claim follows from this
and induction on i. Next we claim that λ0 = (1− i)d〈uε,u∗〉‖u∗‖−2. To see this recall
that uε = ∑d

i=0 Er+iu
ε and u∗ = ∑d

i=0 Er+iu
∗ by Lemma 9.2(ii),(iii). By this, (8),

Theorem 11.1(ii) and the first claim we find

〈uε,u∗〉 =
d∑

i=0

〈Er+iu
ε,Er+iu

∗〉 = λ0

d∑
i=0

ii‖Er+iu
∗‖2

= λ0‖u∗‖2

2d

d∑
i=0

(
d

i

)
ii = λ0‖u∗‖2(1 + i)d

2d

and the second claim follows. Combining the two claims we obtain the desired result.

(ii), (iii) Use (1), Lemma 7.3(i), Lemma 9.3 and (i) above. �

Corollary 11.3 With reference to Notation 8.2, let W denote an irreducible T -
module with endpoint r . Let u, u∗, uε denote nonzero vectors in ErW , E∗

r W , Eε
r W ,

respectively. Then each of 〈uε,u∗〉, 〈u,uε〉, 〈u∗, u〉 is nonzero.

PROOF. The vectors Eru
ε , E∗

r u and Eε
r u

∗ are nonzero by Lemma 9.1. Combining
this with Theorem 11.2 we get the result. �

Theorem 11.4 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D − 2r . Then the following (i)–(iii) hold for 0 ≤
i, j ≤ d and nonzero vectors u ∈ ErW , u∗ ∈ E∗

r W , uε ∈ Eε
r W .

(i) 〈Er+iu
ε,Er+ju

∗〉 = δij ii
(
d
i

)
(1 + i)−d〈uε,u∗〉.

(ii) 〈E∗
r+iu,E∗

r+j u
ε〉 = δij ii

(
d
i

)
(1 + i)−d〈u,uε〉.

(iii) 〈Eε
r+iu

∗,Eε
r+j u〉 = δij ii

(
d
i

)
(1 + i)−d〈u∗, u〉.

PROOF. Immediate from Theorem 11.1 and Theorem 11.2. �
Before proceeding we recall a definition. For an integer n ≥ 0 and a ∈ C we define

(a)n = a(a + 1)(a + 2) · · · (a + n − 1).

We interpret (a)0 = 1. For integers 0 ≤ i, j ≤ d we define

2F1

(−i,−j

−d
;2

)
=

d∑
n=0

(−i)n(−j)n

(−d)n n! 2n. (61)

The sum (61) is an example of a hypergeometric series [1, Section 2.1]. We will use
the fact that

2F1

(−i,−j

−d
;2

)
= d − 2j

d − i + 1
2F1

(1 − i,−j

−d
;2

)
− i − 1

d − i + 1
2F1

(2 − i,−j

−d
;2

)
(62)
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provided i ≥ 2. Line (62) follows from [13, Equation 1.10.3] and since each side of
(61) is equal to Ki(j ;1/2, d) [13, Definition 1.10.1] where the Kn(x;p,N) are the
Krawtchouk polynomials.

Theorem 11.5 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D − 2r . Then the following (i)–(iii) hold for 0 ≤
i, j ≤ d and nonzero vectors u ∈ ErW , u∗ ∈ E∗

r W , uε ∈ Eε
r W .

(i)

〈Er+iu
∗,E∗

r+j u〉 = 2−d〈u∗, u〉
(

d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
.

(ii)

〈E∗
r+iu

ε,Eε
r+j u

∗〉 = 2−d〈uε,u∗〉
(

d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
.

(iii)

〈Eε
r+iu,Er+ju

ε〉 = 2−d〈u,uε〉
(

d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
.

PROOF. (i) We first claim that

〈Er+iu
∗,E∗

r+j u〉 = 〈Eru
∗,E∗

r u〉
(

d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
. (63)

We will follow the approach of Go [10, Theorem 9.1] and prove the claim using
induction on i + j . It is clear that (63) holds for i = j = 0. Assume now d ≥ 1;
otherwise we are done. To show that (63) holds for (i, j) = (0,1) observe by (1),
Theorem 10.1(i) and Theorem 10.2(i) that

〈Eru
∗,E∗

r+1u〉 = 〈Eru
∗,AE∗

r u〉 = 〈AEru
∗,E∗

r u〉 = d〈Eru
∗,E∗

r u〉. (64)

Similarly (63) holds for (i, j) = (1,0) since

〈Er+1u
∗,E∗

r u〉 = 〈A∗Eru
∗,E∗

r u〉 = 〈Eru
∗,A∗E∗

r u〉 = d〈Eru
∗,E∗

r u〉.
To show that (63) holds for (i, j) = (1,1), observe by (1), Theorem 10.1(ii) and
Theorem 10.2(ii) that

〈Er+1u
∗,E∗

r+1u〉 = 〈A∗Eru
∗,E∗

r+1u〉 = 〈Eru
∗,A∗E∗

r+1u〉 = (d−2)〈Eru
∗,E∗

r+1u〉,
and that the last expression is equal to d(d − 2)〈Eru

∗,E∗
r u〉 by (64).

For the rest of this proof assume d ≥ 2 and i ≥ 2 or j ≥ 2; otherwise we are done.
We first assume i ≥ 2. By Theorem 10.2(ii),

Er+iu
∗ = 1

i
A∗Er+i−1u

∗ − d − i + 2

i
Er+i−2u

∗.
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Using this, (1) and Theorem 10.1(ii) we obtain

〈Er+iu
∗,E∗

r+j u〉 = d − 2j

i
〈Er+i−1u

∗,E∗
r+j u〉 − d − i + 2

i
〈Er+i−2u

∗,E∗
r+j u〉.

(65)
By the induction hypothesis the right-hand side of (65) is equal to

(
d
i

)(
d
j

)〈Eru
∗,E∗

r u〉
times

d − 2j

d − i + 1
2F1

(1 − i,−j

−d
;2

)
− i − 1

d − i + 1
2F1

(2 − i,−j

−d
;2

)
.

Evaluating the above expression using (62) we obtain (63). Now assume j ≥ 2. By
Theorem 10.2(i),

E∗
r+j u = 1

j
AE∗

r+j−1u − d − j + 2

j
E∗

r+j−2u.

Using this, (1) and Theorem 10.1(i) we obtain

〈Er+iu
∗,E∗

r+j u〉 = d − 2i

j
〈Er+iu

∗,E∗
r+j−1u〉 − d − j + 2

j
〈Er+iu

∗,E∗
r+j−2u〉.

(66)
By the induction hypothesis the right-hand side of (66) is equal to

(
d
i

)(
d
j

)〈Eru
∗,E∗

r u〉
times

d − 2i

d − j + 1
2F1

(−i,1 − j

−d
;2

)
− j − 1

d − j + 1
2F1

(−i,2 − j

−d
;2

)
.

Evaluating the above expression using (62) we obtain (63) and our first claim is
proved. Next we claim that 〈Eru

∗,E∗
r u〉 = 2−d〈u∗, u〉. To see this, observe by (1),

(11), (12), Lemma 9.2(ii) and (63) that

〈u∗, u〉 = 〈E∗
r u∗, u〉 = 〈u∗,E∗

r u〉 =
d∑

i=0

〈Er+iu
∗,E∗

r u〉

= 〈Eru
∗,E∗

r u〉
d∑

i=0

(
d

i

)
= 〈Eru

∗,E∗
r u〉 2d

and the second claim follows. Combining the two claims we get the desired result.

(ii), (iii) Use (1), Lemma 7.3(i), Lemma 9.3 and (i) above. �

Theorem 11.6 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D − 2r . Then the following (i)–(iii) hold for 0 ≤
i, j ≤ d and nonzero vectors u ∈ ErW , u∗ ∈ E∗

r W , uε ∈ Eε
r W .

(i)

〈Er+iu
∗,E∗

r+j u
ε〉 = ij 2−d〈u∗, uε〉

(
d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
.
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(ii)

〈E∗
r+iu

ε,Eε
r+j u〉 = ij 2−d〈uε,u〉

(
d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
.

(iii)

〈Eε
r+iu,Er+j u

∗〉 = ij 2−d〈u,u∗〉
(

d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
.

PROOF. (i) By Theorem 11.2(ii) and (63),

〈Er+iu
∗,E∗

r+ju
ε〉 = ij 〈Eru

∗,E∗
r uε〉

(
d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
. (67)

We claim that 〈Eru
∗,E∗

r uε〉 = 2−d〈u∗, uε〉. To see this, observe by (1), (11), (12),
Lemma 9.2(ii) and (67) that

〈u∗, uε〉 = 〈E∗
r u∗, uε〉 = 〈u∗,E∗

r uε〉 =
d∑

i=0

〈Er+iu
∗,E∗

r uε〉

= 〈Eru
∗,E∗

r uε〉
d∑

i=0

(
d

i

)
= 〈Eru

∗,E∗
r uε〉2d

and the claim follows. Combining (67) with the claim we get the desired result.

(ii), (iii) Use (1), Lemma 7.3(i), Lemma 9.3 and (i) above. �

Theorem 11.7 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D − 2r . Then the following (i)–(iii) hold for 0 ≤
i, j ≤ d and nonzero vectors u ∈ ErW , u∗ ∈ E∗

r W , uε ∈ Eε
r W .

(i)

〈Er+iu
ε,E∗

r+ju〉 = ii 2−d〈uε,u〉
(

d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
.

(ii)

〈E∗
r+iu,Eε

r+ju
∗〉 = ii 2−d〈u,u∗〉

(
d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
.

(iii)

〈Eε
r+iu

∗,Er+j u
ε〉 = ii 2−d〈u∗, uε〉

(
d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
.

PROOF. (i) By Theorem 11.2(i),(ii) and (67),

〈Er+iu
ε,E∗

r+j u〉 = ii〈Eru
ε,E∗

r u〉
(

d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
. (68)
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We claim that 〈Eru
ε,E∗

r u〉 = 2−d〈uε,u〉. To see this, observe by (1), (4), (5), Lem-
ma 9.2(i) and (68) that

〈uε,u〉 = 〈uε,Eru〉 = 〈Eru
ε,u〉 =

d∑
j=0

〈Eru
ε,E∗

r+j u〉

= 〈Eru
ε,E∗

r u〉
d∑

j=0

(
d

j

)
= 〈Eru

ε,E∗
r u〉 2d

and the claim follows. Combining (68) with the claim we get the desired result.

(ii), (iii) Use (1), Lemma 7.3(i), Lemma 9.3 and (i) above. �

Theorem 11.8 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D − 2r . Then the following (i)–(iii) hold for 0 ≤
i, j ≤ d and nonzero vectors u ∈ ErW , u∗ ∈ E∗

r W , uε ∈ Eε
r W .

(i)

〈Er+iu
∗,Eε

r+j u
∗〉 = i−i−j (2 − 2i)−d‖u∗‖2

(
d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
.

(ii)

〈E∗
r+iu

ε,Er+j u
ε〉 = i−i−j (2 − 2i)−d‖uε‖2

(
d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
.

(iii)

〈Eε
r+iu,E∗

r+ju〉 = i−i−j (2 − 2i)−d‖u‖2
(

d

i

)(
d

j

)
2F1

(−i,−j

−d
;2

)
.

PROOF. (i) By Theorem 11.2(i),

〈Er+iu
∗,Eε

r+ju
∗〉 = ‖u∗‖2

ii (1 − i)d〈uε,u∗〉 〈Er+iu
ε,Eε

r+ju
∗〉.

The result now follows from Theorem 11.7(iii).

(ii), (iii) Use (1), Lemma 7.3(i), Lemma 9.3 and (i) above. �

12 The inner products between u, u∗ and uε

With reference to Notation 8.2, let W denote an irreducible T -module with endpoint
r , and pick nonzero vectors u ∈ ErW , u∗ ∈ E∗

r W , uε ∈ Eε
r W . In this section we

display some equations involving the inner products between u,u∗, uε .
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Theorem 12.1 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D − 2r . Then the following (i)–(iii) hold for
nonzero vectors u ∈ ErW , u∗ ∈ E∗

r W , uε ∈ Eε
r W .

(i) ‖u‖2 = (1 + i)d〈u,u∗〉〈uε,u〉〈uε,u∗〉−1.
(ii) ‖u∗‖2 = (1 + i)d〈u∗, uε〉〈u,u∗〉〈u,uε〉−1.

(iii) ‖uε‖2 = (1 + i)d〈uε,u〉〈u∗, uε〉〈u∗, u〉−1.

PROOF. (i) Using Theorem 11.2(iii) and Theorem 11.5(ii) we obtain

〈E∗
r uε,Eε

r u〉 = ‖u‖2 〈uε,u∗〉
2d (1 + i)d 〈u,u∗〉 .

Comparing the above value for 〈E∗
r uε,Eε

r u〉 with the value given in Theorem 11.6(ii)
we obtain the desired result.

(ii), (iii) Similar to the proof of (i) above. �

Corollary 12.2 With reference to Notation 8.2, let W denote an irreducible T -
module with endpoint r and diameter d = D − 2r . Pick nonzero vectors u ∈ ErW ,
u∗ ∈ E∗

r W , uε ∈ Eε
r W . Then the scalar

〈u,u∗〉〈u∗, uε〉〈uε,u〉(1 + i)d (69)

is real and positive.

PROOF. By Theorem 12.1(i) the scalar (69) is equal to ‖u‖2〈u∗, uε〉〈uε,u∗〉. By con-
struction ‖u‖2 is real and positive. Also 〈u∗, uε〉〈uε,u∗〉 is real and positive since
〈uε,u∗〉 = 〈u∗, uε〉 by construction and 〈uε,u∗〉 
= 0 by Corollary 11.3. The result
follows. �
With reference to Theorem 12.1, the inner products 〈u,u∗〉, 〈u∗, uε〉 and 〈uε,u〉 are
independent in the following sense.

Lemma 12.3 Let a, b, c ∈ C be such that abc(1 + i)d is a positive real number. Then
there exist nonzero vectors u ∈ ErW , u∗ ∈ E∗

r W , uε ∈ Eε
r W such that 〈u,u∗〉 = a,

〈u∗, uε〉 = b, 〈uε,u〉 = c.

PROOF. Note that each of a, b, c is nonzero. Pick arbitrary nonzero vectors u1 ∈
ErW , u∗

1 ∈ E∗
r W , uε

1 ∈ Eε
r W and define δ = abc(1 + i)d‖cu∗

1‖−2. Also define λ =
a δ−1/2〈u1, u

∗
1〉−1, λ∗ = δ1/2, λε = b δ−1/2〈uε

1, u
∗
1〉−1. These scalars are well-defined

by Corollary 11.3. We now define u = λu1, u∗ = λ∗u∗
1, uε = λεuε

1 and routinely
obtain 〈u,u∗〉 = a, 〈u∗, uε〉 = b, 〈uε,u〉 = c using Theorem 12.1. �

13 The transition matrices

In this section we display the transition matrices between the bases introduced in
Section 9. We start with a comment. With reference to Notation 8.2, let W denote an
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irreducible T -module with endpoint r and diameter d = D − 2r . Let u0, . . . , ud and
v0, . . . , vd denote bases for W . By the transition matrix from u0, . . . , ud to v0, . . . , vd

we mean the matrix C ∈ Matd+1(C) which satisfies

vj =
d∑

i=0

Cijui (0 ≤ j ≤ d).

We recall a few properties of transition matrices. Let C denote the transition matrix
from u0, . . . , ud to v0, . . . , vd . Then C is invertible and C−1 is the transition matrix
from v0, . . . , vd to u0, . . . , ud . If u0, . . . , ud are mutually orthogonal then the entries
of C are given by

Cij = 〈vj , ui〉
‖ui‖2

(0 ≤ i, j ≤ d). (70)

In order to display the transition matrices in a compact form we abbreviate


ij =
(

d

j

)
2F1

(−i,−j

−d
;2

)

and

D1 = diag(i0, i1, . . . , id), D2 = diag(i−0, i−1, . . . , i−d).

Theorem 13.1 With reference to Notation 8.2, let W denote an irreducible T -module
with endpoint r and diameter d = D−2r . Pick nonzero vectors u ∈ ErW , u∗ ∈ E∗

r W ,
uε ∈ Eε

r W . Then the transition matrices between the bases (45) – (50) are given in
Tables 1 and 2.

PROOF. Combine Theorem 11.1, Theorems 11.4 – 11.8 and (70). �

Table 1

to the basis (45) to the basis (46) to the basis (47)

from the

basis (45)
diag(1,1, . . . ,1) 1

(1−i)d
[
i−i−j 
ij

]d
i,j=0

〈u∗,u〉
‖u‖2

[
i−i 
ij

]d
i,j=0

from the

basis (46)
1

(1+i)d
[
ii+j 
ij

]d
i,j=0 diag(1,1, . . . ,1)

(1−i)d 〈u∗,u〉
‖u‖2 D1

from the

basis (47)
〈u,u∗〉
‖u∗‖2

[
ij 
ij

]d
i,j=0

(1+i)d 〈u,u∗〉
‖u∗‖2 D2 diag(1,1, . . . ,1)

from the

basis (48)
〈u,u∗〉
‖u∗‖2

[

ij

]d
i,j=0

〈u,u∗〉
‖u∗‖2

[
ii 
ij

]d
i,j=0

1
(1+i)d

[
ii+j 
ij

]d
i,j=0

from the

basis (49)
〈u,uε〉
‖uε‖2

[
i−i 
ij

]d
i,j=0

〈u,uε〉
‖uε‖2

[

ij

]d
i,j=0

〈u∗,uε〉
‖uε‖2

[
ij 
ij

]d
i,j=0

from the

basis (50)
(1−i)d 〈u,uε〉

‖uε‖2 D1
〈u,uε〉
‖uε‖2

[
i−j 
ij

]d
i,j=0

〈u∗,uε〉
‖uε‖2

[

ij

]d
i,j=0
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Table 2

to the basis (48) to the basis (49) to the basis (50)

from the

basis (45)
〈u∗,u〉
‖u‖2

[

ij

]d
i,j=0

〈uε,u〉
‖u‖2

[
ij 
ij

]d
i,j=0

(1+i)d 〈uε,u〉
‖u‖2 D2

from the

basis (46)
〈u∗,u〉
‖u‖2

[
i−j 
ij

]d
i,j=0

〈uε,u〉
‖u‖2

[

ij

]d
i,j=0

〈uε,u〉
‖u‖2

[
ii 
ij

]d
i,j=0

from the

basis (47)
1

(1−i)d
[
i−i−j 
ij

]d
i,j=0

〈uε,u∗〉
‖u∗‖2

[
i−i 
ij

]d
i,j=0

〈uε,u∗〉
‖u∗‖2

[

ij

]d
i,j=0

from the

basis (48)
diag(1,1, . . . ,1)

(1−i)d 〈uε,u∗〉
‖u∗‖2 D1

〈uε,u∗〉
‖u∗‖2

[
i−j 
ij

]d
i,j=0

from the

basis (49)
(1+i)d 〈u∗,uε〉

‖uε‖2 D2 diag(1,1, . . . ,1) 1
(1−i)d

[
i−i−j 
ij

]d
i,j=0

from the

basis (50)
〈u∗,uε〉
‖uε‖2

[
ii 
ij

]d
i,j=0

1
(1+i)d

[
ii+j 
ij

]d
i,j=0 diag(1,1, . . . ,1)
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