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Abstract Let � be a distance-regular graph of diameter d ≥ 2 and a1 �= 0. Let θ

be a real number. A pseudo cosine sequence for θ is a sequence of real numbers
σ0, . . . , σd such that σ0 = 1 and ciσi−1 + aiσi + biσi+1 = θσi for all i ∈ {0, . . . ,

d −1}. Furthermore, a pseudo primitive idempotent for θ is Eθ = s
∑d

i=0 σiAi , where
s is any nonzero scalar. Let v̂ be the characteristic vector of a vertex v ∈ V �. For an
edge xy of � and the characteristic vector w of the set of common neighbours of
x and y, we say that the edge xy is tight with respect to θ whenever θ �= k and a
nontrivial linear combination of vectors Ex̂, Eŷ and Ew is contained in Span{ẑ |
z ∈ V �, ∂(z, x) = d = ∂(z, y)}. When an edge of � is tight with respect to two
distinct real numbers, a parameterization with d + 1 parameters of the members of
the intersection array of � is given (using the pseudo cosines σ1, . . . , σd , and an
auxiliary parameter ε).

Let S be the set of all the vertices of � that are not at distance d from both vertices
x and y that are adjacent. The graph � is pseudo 1-homogeneous with respect to
xy whenever the distance partition of S corresponding to the distances from x and
y is equitable in the subgraph induced on S. We show � is pseudo 1-homogeneous
with respect to the edge xy if and only if the edge xy is tight with respect to two
distinct real numbers. Finally, let us fix a vertex x of �. Then the graph � is pseudo
1-homogeneous with respect to any edge xy, and the local graph of x is connected if
and only if there is the above parameterization with d + 1 parameters σ1, . . . , σd, ε

and the local graph of x is strongly regular with nontrivial eigenvalues a1σ/(1 + σ)

and (σ2 − 1)/(σ − σ2).
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1 Introduction

Let � = (X,R) be a distance-regular graph with vertex set X, edge set R and diame-
ter d . For u ∈ X and i ∈ {0, . . . , d} we denote by �i(u) the set of vertices at distance i

from u. Let x, y ∈ X be two adjacent vertices and let us consider the distance partition
of the vertex set X corresponding to x and y. Denoting the intersection �i(x)∩�j (y)

by D
j
i (x, y) or just by D

j
i , we can describe this partition in the following way

π = {Dj
i | i, j = 0, . . . , d}. (1)

Note that D
j
i = ∅ when |i − j | > 1 by the triangle inequality and Di+1

i �= ∅ �= Di
i+1

for i = 1, . . . , d − 1. Let us assume a1 �= 0. Then we have also Di
i �= ∅ for 1 ≤ i < d

(see Figure 4.1 and Section 5). Finally, Dd
d = ∅ if and only if ad = 0. Next we study

this partition from an algebraic point of view.
Let MatX(R) denote the R-algebra consisting of all matrices with entries in R,

whose rows and columns are indexed by X and let A ∈ MatX(R) be the adjacency
matrix of �. Let V = R

X be the vector space consisting of all column vectors with
entries in R, whose coordinates are indexed by X. Observe that MatX(R) acts on V

by left multiplication. For a subset S ⊆ X let its characteristic vector be an element
of V , whose coordinates equal 1 if they correspond to the elements of S and 0 other-
wise. Let wij be the characteristic vector of D

j
i and W = W(x,y) = Span{wij | i, j =

0, . . . , d}. Hence

dim W =
{

3d if ad �= 0,

3d − 1 if ad = 0.
(2)

One way to define a vertex partition of � to be equitable is to require that the span
of characteristic vectors of all the parts of π be A-invariant, cf. [5, Lem. 5.2.1]. We
say that the graph � is 1-homogeneous with respect to xy whenever the partition π

defined in (1) is equitable. Let us assume this is the case, i.e., AW ⊆ W . Since the
Bose-Mesner algebra of �, denoted by M, is the subalgebra of MatX(R) generated
by A, we also have MW = W .

Let v̂ denote the characteristic vector of {v}, where v is a vertex of �. Set w = w11
and H = H(x,y) = Span{x̂, ŷ,w}. We study the action of M on H . Since � is 1-
homogeneous, an easy induction argument implies that the action of M on H gener-
ates the whole W , i.e., MH = W , where MH means Span{mh | m ∈ M, h ∈ H }.
Since the primitive idempotents E0,E1, . . . ,Ed form a basis for the Bose-Mesner
algebra M, we have in view of EiEj = δijEi for all i, j ∈ {0, . . . , d},

MH =
d∑

i=0

EiH (direct sum).
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Note that dim (E0H) = 1. Furthermore, for all i ∈ {1, . . . , d} we have 3 ≥ dim (EiH)

and, since the vectors Eix̂ and Eiŷ are linearly independent, cf. [7, Lem. 2.7], we
also have dim (EiH) ≥ 2. We say the edge xy is tight with respect to Ei (or to
the corresponding eigenvalue θ ) whenever the vectors Eix̂, Eiŷ, Eiw are linearly
dependent. So the edge xy is tight with respect to Ei if and only if dim (EiH) = 2.
By [7, Thm.5.2], dim (EiH) = 2 implies i ∈ {1, d}, so

dim (MH) = 3d + 1 − t, (3)

where t denotes the number of nontrivial eigenvalues of � with respect to which
dim (EiH) = 2, and t ∈ {0,1,2}. However, the graph � is 1-homogeneous with re-
spect to xy, so we have t �= 0 by (2) and t = 2 if and only if ad = 0.

Let � be a distance-regular graph of diameter d ≥ 3, and eigenvalues θ0 > θ1 >

· · · > θd . It was shown in Jurišić, Koolen and Terwilliger [7] that the intersection
numbers a1, b1 satisfy the following inequality

(

θ1 + k

a1 + 1

)(

θd + k

a1 + 1

)

≥ − ka1b1

(a1 + 1)2
, (4)

called the Fundamental Bound, and � was defined to be tight whenever it is not
bipartite, and equality holds in (4). Tight graphs have been characterized in a number
of interesting ways. See Jurišić, Koolen and Terwilliger [7], Pascasio [8] and Go &
Terwilliger [4]. We collect some of their results in the following theorem.

Theorem 1.1 Let � be a distance-regular graph with diameter d ≥ 3, eigenvalues
θ0 > · · · > θd and θ , θ ′ a pair of distinct nontrivial eigenvalues. Then � is tight if and
only if any of the following conditions is true.

(i) a1 �= 0 and there exists an edge of � which is tight with respect to both θ1, θd .
(ii) There exists x ∈ X such that the local graph of x is connected, strongly-regular

with eigenvalues a1, −1 − b1/(1 + θd) and −1 − b1/(1 + θ1).
(iii) a1 �= 0, ad = 0, and � is 1-homogeneous with respect to at least one edge.
(iv) There exist real scalars ξ0, . . . , ξd , ε, h such that ξ0 = 1, ξd−1 = ξ1ξd , ε �= −1,

k = cd = h(ξ1 − ε)/(ξ1 − 1), and for all i ∈ {1, . . . , d − 1} we have

bi = h
(ξi−1 − ξ1ξi)(ξi+1 − εξi)

(ξi−1 − ξi+1)(ξi+1 − ξi)
, ci = h

(ξi+1 − ξ1ξi)(ξi−1 − εξi)

(ξi+1 − ξi−1)(ξi−1 − ξi)
.

Moreover, if � is tight, then the above conditions are satisfied for all edges and ver-
tices of �, {θ, θ ′} = {θ1, θd}, the sequence ξ0, . . . , ξd is a cosine sequence correspond-
ing to θ1 or θd and |ε| = (k2 − θ1θd)/(k(θ1 − θd)).

Other characterizations include the existence of tight cosine sequences, a property of
primitive idempotents and the existence of short irreducible T (x)-modules with end-
point 1 for a vertex x. By extending this theory to so-called pseudo 1-homogeneous
graphs, we are extending the approach that was developed in Jurišić, Koolen and
Terwilliger [7]. Our theory is satisfied by examples that are not necessarily tight, for
example the halved cubes of odd diameter and the complement of the Higman-Sims
graph.
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This paper is organized as follows. After preliminaries about cosine sequences
in Section 2, we introduce in Section 3 pseudo cosine sequences as a sequence of
real numbers that satisfy all but the last recurrence relation of the cosine sequences.
Then we introduce pseudo primitive idempotents that correspond to pseudo cosine
sequences and were first defined in Terwilliger and Weng [11]. In Section 4 we define
what it means for an edge to be tight with respect to a real number distinct from the
valency of the graph, establish some basic properties and, in Section 5, we study some
combinatorial consequences of this property.

Let � be a distance-regular graph with diameter d ≥ 2, that is not triangle-free. In
Section 6 we introduce an auxiliary parameter ε and in Section 7 we study the case
when an edge of � is tight with respect to two distinct real numbers, in which case we
give a parameterization with d + 1 parameters of the members of intersection array
of � (namely with the pseudo cosines σ1, . . . , σd and ε).

Let S be the set of vertices of � that are not at distance d from both vertices x

and y. The graph � is pseudo 1-homogeneous with respect to xy whenever the
distance partition of S corresponding to the distances from x and y is equitable in
the subgraph induced on S. Finally, we give two characterizations of the pseudo 1-
homogeneous property with respect to an edge in Section 9. First, we show that the
graph � is pseudo 1-homogeneous with respect to the edge xy if and only if the edge
xy is tight with respect to two distinct real numbers. For the second, we first define
the graph � to be pseudo 1-homogeneous with respect to a vertex x whenever it
is pseudo 1-homogeneous with respect to all edges incident with x. Curtin and No-
mura [3] have characterized graphs with this property in terms of their subconstituent
algebra. We offer another characterization: the distance-regular graph � is pseudo 1-
homogeneous with respect to a vertex x such that the local graph of x is connected if
and only if � allows the above parameterization with d + 1 parameters σ1, . . . , σd, ε

and the local graph of x is strongly regular with a nontrivial eigenvalues a1σ/(1 +σ)

and (σ2 − 1)/(σ − σ2). We conclude the paper with an open problem.

2 Preliminaries

In this section, we review some definitions and basic concepts that have not been cov-
ered in the introduction. See the books of Bannai and Ito [1], Godsil [5], or Brouwer,
Cohen and Neumaier [2] for more background information.

Let � = (X,R) be a graph. Let 
 denote a subset of X. By the subgraph of �

induced on 
, we mean the graph with vertex set 
, and edge set consisting of
those edges of � that have both ends in 
. The subgraph induced on �(u) = �1(u)

is called the local graph of u and will be denoted by �(u). We set ki = |�i(u)|, and
for v ∈ �i(u) also ci = |�i−1(u) ∩ �(v)|, ai = |�i(u) ∩ �(v)|, bi = |�i+1(u) ∩ �(v)|
(note that the last three sets partition the local graph of v). Assume from now on � is
distance-regular. Then ai , bi , ci and ki are independent of choice of u and v ∈ �i(u).
Furthermore, for each i, j, h ∈ {0, . . . , d} there exists a constant ph

ij such that ph
ij =

|�i(x) ∩ �j (y)| for any two vertices x and y at distance h. Observe � is regular with
valency k = b0 = ci + ai + bi and the subgraph induced on �i(u) is regular with
valency ai and ki vertices.
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For each integer i, 0 ≤ i ≤ d , let Ai be the ith distance matrix in MatX(R), de-
fined with

(
Ai

)
xy

= 1, if ∂(x, y) = i and 0 otherwise. Then A = A1. Observe A0 = I ,

A0 +· · ·+Ad = J , where J is the all 1’s matrix, At
i = Ai for all i ∈ {0, . . . , d}, where

t denotes transposition, and for all i, j ∈ {0, . . . , d} we have AiAj = ∑d
h=0 ph

ijAh. In
particular, by the triangle inequality, we have AAj = cj+1Aj+1 + ajAj + bj−1Aj−1

for all j ∈ {0, . . . , d}, where A−1 = Ad+1 = 0 and b−1, cd+1 are unspecified. Us-
ing the above properties one can readily show that matrices A0, . . . ,Ad form a ba-
sis for the Bose-Mesner algebra M. For i ∈ {0, . . . , d} let fi ∈ R[λ] denote the
unique polynomial with degree i such that fi(A) = Ai . Then f0 = 1 and λfi =
ci+1fi+1 + aifi + bi−1fi−1 for all i ∈ {0, . . . , d − 1}, with f−1 = 0. For 0 ≤ i ≤ d

we define pi = f0 + · · · + fi .
By Bannai and Ito [1, p.59, p.64], the algebra M has a second basis E0, . . . ,Ed

such that E0 = |X|−1J , E0 + . . . + Ed = I , Et
i = Ei for all i ∈ {0, . . . , d}, and

EiEj = δijEi for all i, j ∈ {0, . . . , d}. The matrices E0, . . . ,Ed are known as the
primitive idempotents of �. We refer to E0 as the trivial idempotent. Let θ0, . . . , θd

be the real numbers satisfying A = ∑d
i=0 θiEi . Observe AEi = EiA = θiEi for all

i ∈ {0, . . . , d}, and that θ0, . . . , θd are distinct as A generates M. It follows from the
above properties that θ0 = k, and it is known that −k ≤ θi < k for all i ∈ {1, . . . , d},
see for example Bannai and Ito [1, p. 197]. We refer to θi as the eigenvalue of �

associated with Ei , and call θ0 the trivial eigenvalue. For each integer i, 0 ≤ i ≤ d ,
let mi denote the rank of Ei . We refer to mi as the multiplicity of Ei (or θi ) and
observe m0 = 1.

We now recall the cosines. Let θ be an eigenvalue of �, and E the associated
primitive idempotent. Let σ0, . . . , σd be the real numbers satisfying

E = m

|X|
d∑

i=0

σiAi, (5)

where m is the multiplicity of θ . Taking the trace in (5), we find σ0 = 1. We often
abbreviate σ = σ1. We refer to σi as the ith cosine of � with respect to θ (or E),
and call σ0, . . . , σd the cosine sequence of � associated with θ (or E). The cosines
can be interpreted as follows. We endow V = R

X with the Euclidean inner product
satisfying 〈u,v〉 = utv for u,v ∈ V , and note that {x̂ |x ∈ X} is an orthonormal basis
for R

X . The following is an easy application of properties of primitive idempotents
that we mentioned above. See [7, Lemma 2.1].

Lemma 2.1 Let � = (X,R) be a distance-regular graph with diameter d . Let E

be a primitive idempotent and σ0, . . . , σd its cosine sequence. Then for all integers
i ∈ {0, . . . , d}, and for all vertices x and y at distance i, the following holds.

(i) 〈Ex̂, ŷ〉 = 〈x̂,Eŷ〉 = 〈Ex̂,Eŷ〉 = mσi |X|−1, where m denotes the multiplicity
of E.

(ii) The cosine of the angle between the vectors Ex̂ and Eŷ equals σi .

Let � be a distance-regular graph with diameter d and let θ, σ0, . . . , σd be any
complex numbers. Then, by Brouwer, Cohen and Neumaier [2, Sect. 4.1.B], θ is an
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eigenvalue of � and σ0, . . . , σd is the associated cosine sequence if and only if σ0 = 1,
and we have for all i ∈ {0, . . . , d} the following recursion

ciσi−1 + aiσi + biσi+1 = θσi, (6)

where σ−1 and σd+1 are indeterminates.

3 Pseudo primitive idempotents

Let � be a distance-regular graph with diameter d . Suppose θ is a real number (not
necessarily an eigenvalue of �) and that the scalars σ0, . . . , σd are defined by σ0 = 1
and the above recursion (6) for all i ∈ {0, . . . , d − 1}, or equivalently by σ0 = 1,
kσ = θ , and

ci(σi−1 − σi) − bi(σi − σi+1) = k(σ − 1)σi for all i ∈ {1, . . . , d − 1}. (7)

Then we call σ0, . . . , σd the pseudo cosine sequence for θ . In particular, we have
σ1 = θ/k and σ2 = (θ2 − a1θ − k)/(kb1) when d ≥ 2. If θ �= k, then we say that
the pseudo cosine sequence for θ is nontrivial. It is straightforward to verify that
fi(θ) = σiki for all i ∈ {0, . . . , d}. Therefore, for all i ∈ {0, . . . , d − 1} we have, by
the recursion pi+1 = fi+1 + pi and (7), also

pi(θ) = kibi

σi − σi+1

k − θ
. (8)

This can be used in the following result, which describes three instances, where the
pseudo cosine sequence is especially well behaved.

Lemma 3.1 Let � be a distance-regular graph with diameter d ≥ 2, and eigenval-
ues θ0 > · · · > θd . Let θ be a real number and assume k �= θ ≥ θ1 or θ ≤ θd . Let
σ0, . . . , σd be a pseudo cosine sequence for θ .

(i) If θ > k then σ0 < · · · < σd .
(ii) If k > θ ≥ θ1 then σ0 > · · · > σd .

(iii) If θ ≤ θd then (−1)iσi > 0 for all i ∈ {0, . . . , d}.
Proof Let i (0 ≤ i ≤ d −1) be an integer. By Terwilliger [9, Lem. 4.5], we get for θ ≥
θ1 that pi(θ) > 0. Now the statements (i) and (ii) follow immediately by (8). Finally,
the statement (iii) follows directly from [2, Prop. 4.1.1(ii)] and [2, Prop. 4.1.1(i)] that
holds for any real number (and not just an eigenvalue). �

Let θ be a real number. By a pseudo primitive idempotent for θ we mean

Eθ = s

d∑

i=0

σiAi, (9)

where s is any nonzero scalar and σ0, . . . , σd is the pseudo cosine sequence for θ

defined above. While E2
θ is in general not necessarily equal to Eθ , we can still derive

at least one property of primitive idempotents mentioned in the above Lemma 2.1.



J Algebr Comb (2008) 28: 509–529 515

Lemma 3.2 Let � be a distance-regular graph with diameter d . Let σ0, . . . , σd be a
pseudo cosine sequence, let s be a nonzero scalar and E the corresponding pseudo
primitive idempotent. Then for all integers i ∈ {0, . . . , d}, and for all vertices x and
y at distance i

〈Ex̂, ŷ〉 = 〈x̂,Eŷ〉 = sσi .

Proof By the definition of a pseudo primitive idempotent, see (9), we have

〈x̂,Eŷ〉 = s

d∑

h=0

σh〈x̂,Ahŷ〉 = sσi .

Similarly we obtain also 〈Ex̂, ŷ〉 = sσi . �

The following result provides an alternative view of pseudo primitive idempotents.

Lemma 3.3 Let � be a distance-regular graph with diameter d . Let θ be a real num-
ber. Let E be an element of the Bose-Mesner algebra. Then E is a pseudo primitive
idempotent for θ if and only if E �= 0 and

(A − θI)E ∈ Span(Ad). (10)

Proof Suppose E �= 0 and that (10) holds. Set E = ∑d
i=0 σiAi for some real numbers

σi . Then there exists γ ∈ R, such that

γAd = (A− θI)E = (A− θI)

d∑

j=0

σjAj =
d∑

j=0

Aj(cjσj−1 + ajσj + bjσj+1 − θσj ).

Hence cjσj−1 + ajσj + bjσj+1 = θσj for all j ∈ {0,1, . . . , d − 1}. The number σ0

is nonzero, as otherwise σi = 0 for all i ∈ {1, . . . , d} and thus also E = 0. Therefore,
if we divide all the members of the sequence σ0, . . . , σd by σ0, we obtain a pseudo
cosine sequence for θ . Thus E is a pseudo primitive idempotent. The converse is
straightforward. �

4 Tight edges

We generalize the definition of an edge being tight with respect to an eigenvalue of a
graph to the definition of an edge being tight with respect to any real number.

Let � be a distance-regular graph with diameter d ≥ 2, a1 �= 0. Let us define the
scalar f = f (x, y) to be the average valency of the complement of the subgraph
induced on D1

1 = D1
1(x, y). Then the subgraph induced on D1

1 has a1(a1 − 1 − f )/2
edges. Moreover, there are a1f edges connecting vertices in D1

1 with vertices in
D2

1 , and a1(b1 − f ) edges connecting vertices in D1
1 with vertices in D2

2 . Therefore,
0 ≤ f ≤ min{a1 − 1, b1}. Moreover, f = 0 if and only if the set D1

1 induces a clique,
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Fig. 1 Local distance partitions of the graph �, the left corresponding to a vertex x and the right corre-
sponding to an edge xy. In the left figure we put in the circles the number of their vertices, while in the
right one we put in the corresponding names of the sets. The number beside edges connecting two cells
indicate how many neighbours a vertex from the closer cell has in the other cell. The number beside a cell
is the valency of the graph induced by the vertices of the cell

f = a1 − 1 if and only if the graph induced on D1
1 has no edges, and f = b1 if and

only if the graph induced on D2
1(x, y) has no edges.

Let � be a distance-regular graph with diameter d ≥ 2 and a1 �= 0. Let θ be a
nontrivial eigenvalue of � and E the corresponding primitive idempotent. Then the
determinant of the matrix of inner products for vectors Ex̂, Eŷ and Ew is nonnega-
tive, and this inequality translates to the following bound on f :

(k + θ)(1 + θ) f ≤ b1
(
k + θ(a1 + 1)

)
, (11)

see Jurišić et al. [7, Lemma 3.3]. Equality is attained in (11) if and only if the vectors
Ex̂, Eŷ and Ew are linearly dependent. Therefore, the edge xy is tight with respect
to an eigenvalue θ whenever equality holds in (11). We will generalize the property
of an edge being tight with respect to an eigenvalue. To do this we need to introduce
one more matrix. For i, j ∈ {0, . . . , d} let E∗

ij be a diagonal matrix in MatX(R) with

(E∗
ij )zz =

{
1, if z ∈ D

j
i (x, y),

0, otherwise.

Then E∗
ijV = Span{ẑ | z ∈ D

j
i (x, y)}.

Definition 4.1 Let � be a distance-regular graph with diameter d ≥ 2 and a1 �= 0.
Let θ be a real number, E the corresponding pseudo primitive idempotent and let xy

be an edge of �. We say the edge xy is tight with respect to θ whenever

(i) θ �= k, and
(ii) a nontrivial linear combination of vectors Ex̂, Eŷ and Ew is contained in E∗

ddV .

Let θ be a nontrivial eigenvalue and xy an edge of �. Then the edge xy is tight with
respect to θ in the original sense if and only if the edge xy is tight with respect to
θ by Definition 4.1. Since the “only if” part is obvious, let us show the “if” part.
Let E be the primitive idempotent corresponding to θ and suppose the condition (ii)
holds. Let � denote a nontrivial linear combination of vectors x̂, ŷ and w. Then
the assumptions 〈E�, x̂〉 = 0, 〈E�, ŷ〉 = 0 and 〈E�, ẑ〉 = 0 for each z ∈ D1

1(x, y)

imply 〈E�,�〉 = 0. Since E2 = E we have 〈E�,E�〉 = 0 and finally E� = 0.
We now obtain a result that is related to [7, Cor. 3.4(iii)].



J Algebr Comb (2008) 28: 509–529 517

Lemma 4.2 Let � be a distance-regular graph with diameter d ≥ 2 and a1 �= 0. Let
θ be a real number and E the corresponding pseudo primitive idempotent. Suppose
an edge xy is tight with respect to θ . Then θ �= −k. Let σ be the corresponding first
cosine and observe σ �= −1. Then

Ew − a1σ

1 + σ
(Ex̂ + Eŷ) ∈ E∗

ddV . (12)

Proof By assumption, there exists real scalars α, β , γ , not all zero, such that

αEx̂ + βEŷ + γEw ∈ E∗
ddV . (13)

Since a1 �= 0 there exists u ∈ D1
1 . Let σ0, . . . , σd be the pseudo cosine sequence for

θ . Evaluating the x, y and u coordinates in the above line, by Lemma 3.2 and d ≥ 2,
we obtain the following system of linear equations

0 = α + βσ + γ σa1, (14)

0 = ασ + β + γ σa1, (15)

0 = ασ + βσ + γ (1 + hσ + (a1 − 1 − h)σ2), (16)

where h is the number of neighbours of u in D1
1 . Observe σ �= 1, since θ �= k. Suppose

θ = −k, i.e., σ = −1. Then from (14), (15) we find γ = 0 and α = β , which does not
work for (16). Thus we have σ 2 �= 1, so we obtain the desired result by solving (14),
(15) for α and β . �

5 Combinatorial regularity and tight edges

Let � be a distance-regular graph with diameter d ≥ 2, eigenvalues θ0 > · · · > θd

and a1 �= 0. Let θ be a real number. Suppose an edge xy is tight with respect to θ .
Our first result in this section is that local graphs of vertices x and y contain certain
combinatorial regularities that we express by a1 and the pseudo cosine sequence of θ .
Then we show an edge xy is tight with respect to at most two real numbers. We
assume the edge xy is tight with respect to real numbers θ and τ , with τ < θ , and
show a1 − k < τ ≤ θd and θ1 ≤ θ . Finally, we use the first result of this section to
derive a connection between the pseudo cosine sequences of θ and τ that will later
allow us to parameterize the intersection numbers of � using only d + 1 parameters.

Before we state our first result we need to determine for which integers i and j the
sets D

j
i = D

j
i (x, y) are nonempty. Since |Dj

i | = p1
ij , the triangle inequality implies

|i − j | ≤ 1 if D
j
i �= ∅. By Brouwer et al. [2, Prop. 5.5.1], the assumption a1 �= 0

implies ai �= 0 for all i ∈ {1, . . . , d − 1}. Observe that for all i ∈ {1, . . . , d} we have

|Di
i−1| = |Di−1

i | = b1b2 . . . bi−1

c1c2 . . . ci−1
,

(17)

|Di
i | = |�i(y)| − |Di

i−1| − |Di
i+1| = ai

b1b2 . . . bi−1

c1c2 . . . ci

.
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Therefore, Di
i+1 �= ∅ �= Di+1

i for all i ∈ {0, . . . , d − 1}, and Di
i �= ∅ for all i ∈

{1, . . . , d − 1}. Moreover, Dd
d = ∅ if and only if ad = 0.

Theorem 5.1 Let � be a distance-regular graph with diameter d ≥ 2 and a1 �= 0.
Let θ be a real number, σ0, . . . , σd the corresponding pseudo cosine sequence. Let us
assume an edge xy is tight with respect to θ and let us set D

j
i = D

j
i (x, y). Then the

following holds.

(i) For 1 ≤ i ≤ d we have σi−1 �= σi and for all u ∈ Di
i−1,

|�i−1(u) ∩ D1
1 | = a1

1 + σ

σσi−1 − σi

σi−1 − σi

,

(18)

|�i(u) ∩ D1
1 | = a1

1 + σ

σi−1 − σσi

σi−1 − σi

.

(ii) For 1 ≤ i ≤ d − 1, and for all v ∈ Di
i ,

|�i+1(v) ∩ D1
1 | = |�i−1(v) ∩ D1

1 |σi−1 − σi

σi − σi+1
+ a1

1 − σ

1 + σ

σi

σi − σi+1
, (19)

|�i(v) ∩ D1
1 | = −|�i−1(v) ∩ D1

1 |σi−1 − σi+1

σi − σi+1
+ a1

2σ

1 + σ

− a1
1 − σ

1 + σ

σi+1

σi − σi+1
. (20)

The denominators in (18)–(20) are nonzero.

Proof (i) Observe D1
1 contains a1 vertices, and each is either at distance i − 1 or i

from u, so

|�i−1(u) ∩ D1
1 | + |�i(u) ∩ D1

1 | = a1. (21)

Let E be a pseudo primitive idempotent corresponding to θ . Then we have Ew −
a1σ(Ex̂ + Eŷ)/(1 + σ) ∈ E∗

ddV by Lemma 4.2. Evaluating the u coordinate we
obtain

σi−1|�i−1(u) ∩ D1
1 | + σi |�i(u) ∩ D1

1 | = a1σ

1 + σ
(σi−1 + σi). (22)

Before we proceed, we verify σi−1 �= σi . Suppose σi−1 = σi . Combining (22)
and (21), we find σia1(1 − σ) is zero. Observe σi �= 0; otherwise σi = σi−1 = 0
and recursively σ0 = 0, a contradiction. Observe σ �= 1, since θ �= k. Finally, by as-
sumption a1 �= 0, we conclude σi−1 �= σi . Solving the system (21), (22), we routinely
obtain (18).

(ii) Proceeding as in the proof of (i) part we find

|�i−1(v) ∩ D1
1 | + |�i(v) ∩ D1

1 | + |�i+1(v) ∩ D1
1 | = a1, (23)

σi−1|�i−1(v) ∩ D1
1 | + σi |�i(v) ∩ D1

1 | + σi+1|�i+1(v) ∩ D1
1 | = 2σσia1

1 + σ
. (24)



J Algebr Comb (2008) 28: 509–529 519

Solving (23), (24) for |�i(v) ∩ D1
1 |, |�i+1(v) ∩ D1

1 |, we routinely obtain (19)
and (20). �

Corollary 5.2 Let � be a distance-regular graph with diameter d ≥ 2 and a1 �= 0.
Let θ be a real number and let us assume an edge xy is tight with respect to θ . Then
the partition {{x},D1

1(x, y),D1
2(x, y)} of the local graph of y is equitable, i.e., the

subgraphs induced on D1
1(x, y) and D1

2(x, y) are regular; denoting the valency of
the complements resp. by f and g, we have

(k + θ)(1 + θ)f = b1(k + θ(a1 + 1)), (25)

(k + θ)(1 + θ)g = a1(k + θ(a1 + 1)). (26)

Moreover, θ �= −1 and a1θ/(k + θ), −1 − b1/(θ + 1) are eigenvalues of the local
graph of y and are therefore algebraic integers.

Proof For z ∈ D1
1(x, y) define f (z) = |�2(z) ∩ D1

1(x, y)|. Setting i = 1 in (19) we
find

f (z) = 1 − σ

σ − σ2
+ a1

1 − σ

1 + σ

σ

σ − σ2
. (27)

Therefore, f (z) is independent of z, and thus the subgraph induced on D1
1(x, y) is

regular. Evaluate (27) using (7) we get (25). Similarly, by setting i = 2 in the left
equality in (18), we obtain (26), so the subgraph induced on D1

2(x, y) is regular.
Therefore, the partition {x} ∪ D1

1(x, y) ∪ D1
2(x, y) is equitable. Observe θ �= −1,

otherwise the LHS of (25) is 0 and the RHS of (25) is b2
1. By Lemma 4.2, we have

θ �= −k. The eigenvalues of this partition are a1, a1θ/(k+θ), −1−b1/(θ +1). These
scalars must be eigenvalues of the local graph of y, so they are algebraic integers. �

Suppose the assumptions of Corollary 5.2 hold. Then the subgraphs induced on
D1

1(x, y) and D1
2(x, y) are regular, so we can consider the identities in Corollary 5.2

from a different point of view, namely as equations for θ . Since we can obtain the
relation gb1 = f a1 by a two way counting of edges between D1

1(x, y) and D1
2(x, y),

the relations (25) and (26) are equivalent when considered as equations for θ .

Lemma 5.3 Let � be a distance-regular graph with diameter d ≥ 2, eigenvalues
θ0 > · · · > θd and a1 �= 0. Let xy be an edge of � and f denote the average valency
of the complement of the subgraph induced on D1

1(x, y). Let q(λ) be the following
polynomial

(k + λ)(1 + λ)f − b1(k + λ(a1 + 1)). (28)

Then the following (i) and (ii) hold.

(i) Suppose f = 0. Then −k/(a1 + 1) is the only root of q(λ).
(ii) Suppose f �= 0. Then the polynomial q(λ) has two distinct real roots. The smaller

root lies in interval [a1 − k, θd ] and the bigger root is at least θ1.
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Proof (i) is clear. (ii) Observe, the coefficient of λ2 in q(λ) is f . The inequality (11)
implies q(θ1) ≤ 0 and q(θd) ≤ 0. Therefore, the roots θ and τ , θ ≥ τ , of the quadratic
function q(λ) satisfy θ ≥ θ1 and τ ≤ θd . By (11) and f ≤ b1, we have q(a1 − k) ≥ 0,
so a1 − k ≤ τ . �

Corollary 5.4 Let � be a distance-regular graph with diameter d ≥ 2, eigenvalues
θ0 > · · · > θd and a1 �= 0. Let xy be an edge of � and f denote the average valency
of the complement of the subgraph induced on D1

1(x, y). Then the following (i)-(iv)
hold.

(i) For θ ∈ R, if the edge xy is tight with respect to θ , then θ is a root of the
polynomial q(λ) defined in (28).

(ii) Suppose f = 0. Then the edge xy is tight with respect to at most one real number.
(iii) Suppose f �= 0. Then the edge xy is tight with respect to at most two distinct

real numbers.
(iv) Suppose θ, τ ∈ R, θ > τ . If the edge xy is tight with respect to θ and τ , then

a1 − k ≤ τ ≤ θd and θ1 ≤ θ .

Theorem 5.5 Let � be a distance-regular graph with diameter d ≥ 2 and a1 �= 0. Let
θ and τ be two distinct real numbers, and let σ0, . . . , σd and ρ0, . . . , ρd be the corre-
sponding pseudo cosine sequences. Let us assume an edge xy is tight with respect to
both θ and τ . Then

σσi−1 − σi

(1 + σ)(σi−1 − σi)
= ρρi−1 − ρi

(1 + ρ)(ρi−1 − ρi)
for all i ∈ {1, . . . , d}, (29)

and the denominators in (29) are nonzero.

Proof Straightforward by the second equation in (18). The denominators in (29) are
nonzero by Lemma 3.1 and Corollary 5.4(iv). �

6 The auxiliary parameter

Lemma 6.1 Let � be a distance-regular graph with diameter d ≥ 2 and a1 �= 0. Let θ

and τ be real numbers such that θ > τ , and let σ0, . . . , σd and ρ0, . . . , ρd respectively
be their pseudo cosine sequences. Let us assume an edge xy is tight with respect to
both θ and τ . Then there exists a real scalar ε such that

σiρi − σi−1ρi−1 = ε(σi−1ρi − ρi−1σi) for all i ∈ {1, . . . , d}. (30)

Moreover, for each integer i ∈ {1, . . . , d} the following hold:
(i) σi−1 �= εσi , (ii) σi �= εσi−1.

Proof Clearing the denominators in (29) and simplifying it using ε = (1 −σρ)/(σ −
ρ), we get (30). By Corollary 5.4(iv), we have τ ≤ θd and θ1 ≤ θ . Together with
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Lemma 3.1 this implies σi−1 �= σi+1 for all i ∈ {1, . . . , d − 1} and ρi �= 0 for all
i ∈ {0, . . . , d}. By k �= θ > τ and a1 − k ≤ τ ≤ θd , we have

ε + 1 = (k − τ)(k + θ)(θ − τ)−1k−1 > 0 and

ε − 1 = (k + τ)(k − θ)(θ − τ)−1k−1 �= 0.

Suppose σi−1 = εσi for some i ∈ {1, . . . , d}. Then, by (30), we find σiρi(1− ε2) = 0.
Suppose for the moment that σi = 0. Then σi−1 = 0, contradicting σ0 = 1 by (6).
Thus σi �= 0. But then we have ρi = 0, which is not possible. Hence σi−1 �= εσi and
(i) holds. The proof of (ii) is similar to the proof of (i). �

We refer to ε as the auxiliary parameter for θ and τ , and note that ε = (k2 −
θτ)/(k(θ − τ)), cf. [7, Sect.8].

Theorem 6.2 Let � be a distance-regular graph with diameter d ≥ 2 and a1 �= 0.
Let θ and τ be real numbers such that θ > τ , and let σ0, . . . , σd and ρ0, . . . , ρd

respectively be their pseudo cosine sequences. Let us assume an edge xy is tight with
respect to both θ and τ , and let ε be the auxiliary parameter for θ and τ . Then

ρi =
i∏

j=1

σj−1 − εσj

σj − εσj−1
for all i ∈ {1, . . . , d}. (31)

and the denominators in (31) are nonzero.

Proof By assumptions the relation (30) holds. Rearranging terms in it, we obtain

ρi(σi − εσi−1) = ρi−1(σi−1 − εσi) for all i ∈ {1, . . . , d}. (32)

Observe σi �= εσi−1 for 1 ≤ i ≤ d by Lemma 6.1(ii), so the coefficient of ρi in (32)
is never zero. Solving that equation for ρi and applying induction, we routinely ob-
tain (31). �

7 A parameterization

We begin with a result about arbitrary distance-regular graphs.

Lemma 7.1 Let � be a distance-regular graph with diameter d ≥ 2, eigenvalues
θ0 > · · · > θd and a1 �= 0. Let θ and τ be distinct real numbers, such that k �= θ ≥ θ1
and τ ≤ θd . Let σ0, . . . , σd and ρ0, . . . , ρd denote the corresponding pseudo cosine
sequences. Then the intersection numbers of � are given by

k = (σ − σ2)(1 − ρ) − (ρ − ρ2)(1 − σ)

(ρ − ρ2)(1 − σ)σ − (σ − σ2)(1 − ρ)ρ
, (33)

bi = k
(σi−1 − σi)(1 − ρ)ρi − (ρi−1 − ρi)(1 − σ)σi

(ρi − ρi+1)(σi−1 − σi) − (σi − σi+1)(ρi−1 − ρi)
, (34)
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ci = k
−(σi+1 − σi)(1 − ρ)ρi + (ρi+1 − ρi)(1 − σ)σi

(ρi − ρi+1)(σi−1 − σi) − (σi − σi+1)(ρi−1 − ρi)
, (35)

for i ∈ {1, . . . , d − 1}, and the denominators in (33)–(35) are nonzero.

Proof To obtain (34) and (35) pick any integer i (1 ≤ i ≤ d − 1), and recall, by (7),
that

ci(σi−1 − σi) − bi(σi − σi+1) = k(σ − 1)σi, (36)

ci(ρi−1 − ρi) − bi(ρi − ρi+1) = k(ρ − 1)ρi . (37)

To solve this linear system for ci and bi , consider the determinant

Di := det

(
σi−1 − σi σi − σi+1
ρi−1 − ρi ρi − ρi+1

)

= (ρi − ρi+1)(σi−1 − σi) − (σi − σi+1)(ρi−1 − ρi).

By Lemma 3.1, we have ρi − ρi+1 �= 0 �= ρi − ρi−1, σi−1 − σi �= 0 �= σi − σi+1, and
sgn(ρi −ρi+1) = sgn(ρi −ρi−1), sgn(σi−1 − σi) = sgn(σi − σi+1), thus Di �= 0. Now
equations (36), (37) has the unique solution (34), (35) by elementary linear algebra.
The denominators in (34) and (35) equal Di ; in particular they are not zero. To get
(33), we use (35) and the fact that c1 = 1. �

Theorem 7.2 Let � be a distance-regular graph with diameter d ≥ 2 and a1 �= 0.
Let θ and τ be real numbers such that θ > τ , and let σ0, . . . , σd be the pseudo cosine
sequence corresponding to θ . Let us assume an edge xy is tight with respect to both
θ and τ . Let ε denote the auxiliary parameter for θ and τ . Then the intersection
numbers are given by

k = h
σ − ε

σ − 1
, (38)

bi = h
(σi−1 − σσi)(σi+1 − εσi)

(σi−1 − σi+1)(σi+1 − σi)
, (39)

ci = −h
(σi+1 − σσi)(σi−1 − εσi)

(σi−1 − σi+1)(σi−1 − σi)
, (40)

for i ∈ {1, . . . , d − 1}, where

h = (1 − σ)(1 − σ2)

(σ 2 − σ2)(1 − εσ )
. (41)

We remark the denominators in (38)–(41) are all nonzero.

Proof Eliminating the pseudo cosine sequence ρ0, . . . , ρd corresponding to τ

in (33)–(35) using (31), we routinely obtain (38)–(41). The denominator of h is
nonzero by Corollary 5.4(ii), Theorem 5.1(i) and Lemma 6.1(ii). The denominators
in (38)–(39) are nonzero by Lemma 3.1 and Corollary 5.4(iv). �
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Corollary 7.3 Let � be a distance-regular graph with diameter d ≥ 2 and a1 �= 0.
Let θ and τ be real numbers such that θ > τ , and let σ0, . . . , σd be the pseudo cosine
sequences corresponding to θ . Let us assume an edge xy is tight with respect to both
θ and τ . Let ε denote the auxiliary parameter for θ and τ . Then

ai = g
(σi+1 − σσi)(σi−1 − σσi)

(σi+1 − σi)(σi−1 − σi)
, (42)

for i ∈ {1, . . . , d}, where

g = (ε − 1)(1 − σ2)

(σ 2 − σ2)(1 − εσ )
. (43)

We remark the denominators in (42)–(43) are all nonzero.

Proof Evaluate the right hand side of ai = k − bi − ci using (38)–(41), and sim-
plify. �

8 The pseudo 1-homogeneous property

In this section we generalize the 1-homogeneous property to the pseudo 1-homogen-
eous property.

Let � be a distance-regular graph with diameter d and let xy be an edge of �.
Set D

j
i = D

j
i (x, y). Then we say � is pseudo 1-homogeneous with respect to xy

whenever the partition

{Dj
i | i, j = 0, . . . , d, and (i, j) �= (d, d)} (44)

is equitable in the subgraph induced on ∪(ij)�=(dd)Dij . Let θ and τ be real numbers
such that θ > τ . We assume d ≥ 2, a1 �= 0 and the edge xy is tight with respect to
both θ and τ . We show that � is pseudo 1-homogeneous with respect to xy. We do
this by calculating all the parameters that correspond to the partition (44) in terms of
the intersection array of � and the pseudo cosine sequence corresponding to θ .

Theorem 8.1 Let � be a distance-regular graph with diameter d ≥ 2 and a1 �= 0.
Let θ and τ be real numbers such that θ > τ . Let σ0, . . . , σd be the pseudo cosine
sequence corresponding to θ . Let xy be an edge of �. Suppose xy is tight with respect
to both θ and τ . Then for all integers i ∈ {1, . . . , d − 1}, and for all vertices v ∈
Di

i (x, y),

|�i−1(v) ∩ D1
1(x, y)| = ci

(σ 2 − σ2)(σi − σi+1)

(σ − σ2)(σσi − σi+1)
, (45)

|�i+1(v) ∩ D1
1(x, y)| = bi

(σ 2 − σ2)(σi−1 − σi)

(σ − σ2)(σi−1 − σσi)
. (46)

Moreover, the denominators in (45), (46) and numbers |�i−1(v) ∩ D1
1(x, y)|,

|�i+1(v) ∩ D1
1(x, y)| are nonzero.
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Proof Let ρ0, . . . , ρd denote pseudo cosine sequence for τ and set D
j
i = D

j
i (x, y).

The edge xy is tight with respect to both θ and τ , so we have, by Theorem 5.1,

|�i+1(v) ∩ D1
1 | = |�i−1(v) ∩ D1

1 | σi−1 − σi

σi − σi+1
+ a1

1 − σ

1 + σ

σi

σi − σi+1
, (47)

|�i+1(v) ∩ D1
1 | = |�i−1(v) ∩ D1

1 |ρi−1 − ρi

ρi − ρi+1
+ a1

1 − ρ

1 + ρ

ρi

ρi − ρi+1
. (48)

Eliminating ρ0, . . . , ρd in (48) using (31), we obtain

|�i+1(v) ∩ D1
1 | = |�i−1(v) ∩ D1

1 |σi−1 − σi

σi − σi+1

σi+1 − εσi

σi−1 − εσi

+ a1
(1 − σ)(σi+1 − εσi)

(1+σ)(1 − ε)(σi − σi+1)
, (49)

where ε denotes the auxiliary parameter for θ and τ . Solving (47), (49) for |�i+1(v)∩
D1

1(x, y)| and |�i−1(v) ∩ D1
1(x, y)|, and evaluating the result using (39)–(43), we

get (45), (46) as desired. The denominators in (45), (46) and the numbers |�i−1(v) ∩
D1

1(x, y)|, |�i+1(v) ∩ D1
1(x, y)| are nonzero by Theorem 7.2. �

Theorem 8.2 Let � be a distance-regular graph with diameter d ≥ 2, and a1 �= 0.
Let θ and τ be real numbers such that θ > τ , and let σ0, . . . , σd be the pseudo cosine
sequences corresponding to θ . Let xy be an edge of �. Suppose xy is tight with
respect to both θ and τ . Then the following (i), (ii) hold.

(i) For all integers i (1 ≤ i ≤ d − 1), and for all v ∈ Di
i (x, y),

|�(v) ∩ Di−1
i−1(x, y)| = ci

(σi − σi+1)(σσi−1 − σi)

(σi−1 − σi)(σσi − σi+1)
, (50)

|�(v) ∩ Di+1
i+1(x, y)| = bi

(σi−1 − σi)(σi − σσi+1)

(σi − σi+1)(σi−1 − σσi)
. (51)

(ii) For all integers i (2 ≤ i ≤ d), and for all u ∈ Di
i−1(x, y) ∪ Di−1

i (x, y),

|�(u) ∩ Di−1
i−1(x, y)| = ai−1

(1 − σ)(σ 2
i−1 − σi−2σi)

(σi−1 − σi)(σi−2 − σσi−1)
. (52)

Proof (i) To prove (50), we assume i ≥ 2; otherwise both sides are zero. Let αi denote
the expression on the left side of (45). Let us fix v ∈ Di

i (x, y). Let N be the number
of ordered pairs pq such that

p ∈ �i−1(v) ∩ D1
1(x, y), q ∈ �(v) ∩ Di−1

i−1(x, y), ∂(p, q) = i − 2.

We compute N in two ways. On one hand, there are precisely αi choices for p, and
given p, there are precisely ci−1 choices for q , so N = αici−1. On the other hand,
there are precisely |�(v) ∩ Di−1

i−1(x, y)| choices for q , and given q , there are pre-

cisely αi−1 choices for p, hence N = |�(v) ∩ Di−1
i−1(x, y)|αi−1. By Theorem 8.1,
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we have αi−1 �= 0; combining this with the obtained expressions for N , we find
|�(v) ∩ Di−1

i−1(x, y)| = ci−1αi/αi−1. Eliminating αi−1 and αi using (45), we ob-
tain (50), as desired.

We now show (51). Let us first assume i ≤ d − 2. Let βi denote the expression on
the left side of (46). Let N ′ be the number of ordered pairs pq such that

p ∈ �i+1(v) ∩ D1
1(x, y), q ∈ �(v) ∩ Di+1

i+1(x, y), ∂(p, q) = i + 2.

We compute N ′ in two ways. On one hand, there are precisely βi choices for p,
and given p, there are precisely bi+1 choices for q . Since x and y lie on a geodesic
between p and v, these choices for q lie in Di+1

i+1(x, y) as well. Therefore, N ′ =
βibi+1. On the other hand, there are precisely |�(v) ∩ Di+1

i+1(x, y)| choices for q , and

given q , there are precisely βi+1 choices for p, hence N ′ = |�(v)∩Di+1
i+1(x, y)|βi+1.

By Theorem 8.1, we have βi+1 �= 0; combining this with the obtained expressions for
N ′, we find |�(v) ∩ Di+1

i+1(x, y)| = bi+1βi/βi+1. Eliminating βi and βi+1 using (46),
we obtain (51), as desired.
(ii) Let γi denote the expressions on the left side of the left identity in (18). By a
two way counting of pairs of vertices (p, q) such that p ∈ �i−1(u) ∩ D1

1(x, y) and
q ∈ �(u) ∩ �i−2(p), we easily have

γi ci−1 = |�(u) ∩ Di−1
i−1(x, y)|αi−1 + γi−1ci−1.

Since αi−1 �= 0 by Theorem 8.1, we find |�(u)∩Di−1
i−1(x, y)| = ci−1(γi −γi−1)/αi−1,

by symmetry, the same is true if u ∈ Di−1
i (x, y). Now (52) is calculated by (18)

and (45).

(i)-cont. It remains to consider the case when i = d − 1 in (i). A two way counting of
paths of length d −1 from v to D1

1(x, y) implies that |�(v)∩Dd
d (x, y)| is independent

of v ∈ Dd−1
d−1(x, y), cf. [6, Proof of Thm. 3.1]. (51) now follows from a two way

counting of edges between Dd−1
d (x, y) and Dd−1

d−1(x, y). �

9 Two characterizations

In this section we prove two characterizations. For, we need the following results
about an action of the Bose-Mesner algebra.

Lemma 9.1 Let � be a distance-regular graph with diameter d ≥ 2 and a1 �= 0.
Let xy be an edge � and let H = H(x,y) as in Section 1. Suppose � is pseudo
1-homogeneous with respect to xy. Then

MH ⊆ Span{wij | i, j = 0, . . . , d and (i, j) �= (d, d)} + E∗
ddV . (53)

Proof For i < d we have Aix̂ ∈ Span(wi,i−1,wi,i ,wi,i+1). Similarly, taking into ac-
count Theorem 5.1(i)-(ii) (which tells us what are possible distances from a vertex to
the vertices in D1

1(x, y), cf. (21), (23)), we have for i ≤ d − 2

Aiw ∈ Span(wi−1,i−1,wi−1,i ,wi,i−1,wi,i ,wi+1,i ,wi,i+1,wi+1,i+1). (54)
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The above inclusion (54) holds also for i = d − 1 only if we substitute wdd on the
RHS by E∗

ddV . Since the matrices A0, . . . ,Ad−1, J form a basis for M, it remains to
consider the action by J . We have J x̂ = j , J ŷ = j , and Jw = a1j , where j is the all
1’s vector. Observe j is in the RHS of (53), so the relation (53) has been proved. �

Theorem 9.2 Let � be a distance-regular graph with diameter d ≥ 2 and a1 �= 0.
Then for every edge xy the following are equivalent.

(i) The graph � is pseudo 1-homogeneous with respect to the edge xy, and the
subgraph induced on D1

1(x, y) is not a clique.
(ii) The edge xy is tight with respect to two distinct real numbers.

Proof (i) =⇒ (ii): Let θ0 > · · · > θd be the eigenvalues of �. Let t be the number
defined by (3). By [7, Def. 5.1 and Cor. 3.6] we have t ∈ {0,1,2}. If t = 2 then xy is
tight with respect to θ1 and θd . It remains to consider the case when t < 2.

Choose θ to be one of the roots of the polynomial given by (28), and let E be
a pseudo primitive idempotent for θ . Let σ0, . . . , σd be the pseudo cosine sequence
corresponding to E. Then σ +1 �= 0 by Lemma 5.3. Let us define � = w −α(x̂ + ŷ),
where α = a1σ/(1 + σ). We show that the edge xy is tight with respect to θ . To do
this we first show that E� ∈ E∗

ddV and then that θ �= k.
We start by verifying the vector E� is orthogonal to x̂, ŷ and ẑ for all z ∈

D1
1(x, y). By Lemma 3.2 and our choice of α, the x and y coordinates of E� equal

to a1σ − α(1 + σ) = 0. Now let z ∈ D1
1(x, y) and recall that |�2(z)∩ D1

1(x, y)| = f .
Then the z coordinate of E� is, by Lemma 3.2 and our choice of θ , equal to

1 + f σ2 + (a1 − f − 1)σ − 2a1σ
2

1 + σ
= k − θ

k + θ
q(θ) = 0, (55)

where q(θ) is the polynomial defined in (28). As E is an element of the Bose-Mesner
algebra M of � and the graph � is pseudo 1-homogeneous, we have, by Lemma 9.1,

E� −
∑

ij

αijwij ∈ E∗
ddV

for some real numbers αij . We need to show that αij = 0 for i �= d or j �= d . We will
show for all s ∈ {1, . . . , d − 1} that αs−1,s = αs,s−1 = αss = 0 by induction on s. For
s = 1 we have α10 = α01 = α11 = 0, since E� is orthogonal to w10 = x̂, w01 = ŷ

and w = w11. Let us now suppose s > 1. Then, by induction assumption, αij = 0 for
i < s and j < s. Since E is a pseudo primitive idempotent, we have, by Lemma 3.3,
(A − θI)E ∈ Span(Ad), which implies

(A − θI)E� ∈ SpanAd� ⊆ Span(wd−1,d ,wd,d−1,wd−1,d−1) + E∗
ddV . (56)

Now αs−1,s = 0, since otherwise (A − θI)E� has a nonzero contribution from
ws−2,s−1 contradicting (56). Similarly αs,s−1 = 0. We will now prove αss = 0. For,
we first show that there exists an edge between Ds−1

s−1(x, y) and Ds
s (x, y). Suppose

the opposite. By the definition of H , we have

MH = Mx̂ + Mŷ + Mw.
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The dimension of M is d + 1 and J x̂ = J ŷ. We conclude that the dimension of
Mx̂ + Mŷ is at most 2d + 1. Because there is no edge between Ds−1

s−1(x, y) and
Ds

s (x, y), we need at least s steps to get from D1
1(x, y) to Ds

s (x, y) and thus As−1w

lies in the Span{A0w,A1w, . . . ,As−2w}+ Mx̂ + Mŷ. Hence the dimension of MH

is at most 2d + s ≤ 3d − 1. This contradicts (3) with t < 2.
Now αss = 0, since otherwise (A − θI)E� has a nonzero contribution from

ws−1,s−1 contradicting (56). We now have αs−1,s = αs,s = αs,s−1 = 0 for all s ∈
{1, . . . , d − 1}. Let us finally show αd−1,d = αd,d−1 = 0. Now αd−1,d = 0, since oth-
erwise (A−θI)E� has a nonzero contribution from wd−2,d−1. Similarly αd,d−1 = 0.
Therefore, we have E� ∈ E∗

ddV .
Since D1

1(x, y) does not induce a clique, we have f > 0, and, by Lemma 5.3, there
are two distinct roots of the polynomial defined in (28). We can assume that θ �= k,
and so the edge xy is tight with respect to θ . It remains to prove that the other root τ ,
say, is also not equal to k. By Corollary 5.2, a1θ/(k + θ) is an algebraic integer. An
easy calculation shows that this number equals −1 − b1/(τ + 1). If τ = k then this is
a rational algebraic integer and hence integer, so τ + 1 = k + 1 must divide b1. But
τ + 1 = k + 1 > b1, so τ �= k.

Therefore, the edge xy is tight with respect to two distinct real numbers.

(ii) =⇒ (i): This follows directly from Theorem 8.2 and Corollary 5.4(ii). �

Theorem 9.3 Let � be a distance-regular graph with diameter d ≥ 2, and let x be
a vertex of �, such that the local graph �(x) is connected. Then the following are
equivalent.

(i) For all y ∈ �(x), the graph � is pseudo 1-homogeneous with respect to the edge
xy.

(ii) There exist real numbers σ0, . . . , σd, ε,h such that σ0 = 1, ε �= −1,

k = h
σ − ε

σ − 1
,

bi = h
(σi−1 − σσi)(σi+1 − εσi)

(σi−1 − σi+1)(σi+1 − σi)
(1 ≤ i ≤ d − 1),

ci = h
(σi+1 − σσi)(σi−1 − εσi)

(σi+1 − σi−1)(σi−1 − σi)
(1 ≤ i ≤ d − 1),

and the local graph of x is strongly regular with nontrivial eigenvalues a1σ/(1 +
σ) and (σ2 − 1)/(σ − σ2).

Moreover, suppose (i) and (ii) hold. Then σ0, . . . , σd is a pseudo cosine sequence
for kσ . For all y ∈ �(x) the edge xy is tight with respect to kσ and kρ, where ρ =
(1 − εσ )/(σ − ε), the scalar ε is the auxiliary parameter for kσ and kρ, and h =
(1 − σ)(1 − σ2)/((σ

2 − σ2)(1 − εσ )).

Proof (i) =⇒ (ii): For a neighbour y of x we denote by fy the valency of the comple-
ment of the subgraph induced on D1

1(x, y). Since the local graph �(x) is connected,
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D1
1(x, y) does not induce a clique. By Theorem 9.2, every edge xy, y ∈ �(x), is tight

with respect to two distinct real numbers that are solutions of the quadratic polyno-
mial

(k + λ)(λ + 1)fy − b1(k + λ(a1 + 1)).

Then for every y ∈ �(x) the distance partition of the local graph �(x), i.e.,{{y},D1
1(x, y),D2

1(x, y)
}
, is equitable by Corollary 5.2. Therefore, �(x) is strongly

regular by [6, Prop. 2.1] and f = fy is independent of y. Let θ and τ be the solutions
of the above quadratic, so that θ > τ . Let σ0, . . . , σd be a pseudo cosine sequence
for θ . Then, by Theorem 9.2 and Theorem 7.2, we obtain the desired parameteriza-
tion of entries of intersection array {b0, . . . , bd−1; c1, . . . , cd} and the corresponding
denominators are nonzero.

Let (v′, k′, λ′,μ′) be the parameters of the local graph �(x). Then v′ = k, k′ = a1,
λ′ = a1 −1−f , μ′ = a1f/(k−1−a1). Furthermore, a1σ/(1+σ) and (σ2 −1)/(σ −
σ2) are its eigenvalues by Corollary 5.2.

(ii) =⇒ (i): First we get from c1 = 1 that h = (1 − σ)(1 − σ2)/((σ
2 − σ2)(1 − εσ )).

Then we verify that for the given bi ’s and ci ’s the identity (7) is satisfied. Therefore,
σ0, . . . , σd is a nontrivial pseudo cosine sequence for kσ . Let us denote this number
by θ . Let ρ0, . . . , ρd be defined by ρ0 = 1 and (31). Then ε = (1 − σρ)/(σ − ρ) and
the identity (7) is satisfied by ρi ’s in place of σi ’s. Therefore, by ε �= −1, a pseudo
cosine sequence ρ0, . . . , ρd for kρ is nontrivial. Let us denote kρ by τ .

Let r and s denote the nontrivial eigenvalues of the local graph �(x) and let
mr and ms be respectively their multiplicities. Thus r = a1σ/(1 + σ), s = −(1 −
σ2)/(σ − σ2) and, by [2, Thm. 1.3.1], also

mr = (1 + σ)(σ − ε)

σ2 − σ 2
, ms = − (1 − ε)(1 + σ)(σ2 − εσ )

(σ2 − σ 2)(1 − εσ )
. (57)

Then the following inequality holds with equality for i = d − 1:

1 + pi−1(r̃)

pi(r̃)(1 + r̃)
mr + pi−1(s̃)

pi(s̃)(1 + s̃)
ms ≤ k

bi

(1 ≤ i ≤ d − 1),

where r̃ = −1 − b1/(1 + r) = τ and s̃ = −1 − b1/(1 + s) = θ . To verify this claim
use the identity for pi(θ) in (8), the above formulas for numbers of the intersection
array of �, and the formulas for the pseudo cosine sequences ρ0, . . . , ρd in term of
the pseudo cosine sequence σ0, . . . , σd and ε that we used here to define ρi ’s.

Finally, every irreducible T -module with endpoint 1 is thin by [10, Thm. 13.6],
and � is pseudo 1-homogeneous by Curtin and Nomura [3, Thm. 1.6]. Therefore, by
Theorem 9.2, the edge xy is tight with respect to two real numbers. But then these
two numbers have to be θ and τ , so ε is the auxiliary parameter for θ and τ . �

10 Conclusion

Let � be a distance-regular graph with diameter d ≥ 2, a1 �= 0 and ad �= 0. Suppose
� is 1-homogeneous with respect to an edge xy. By ad �= 0, the graph � is not tight,
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hence t = 1 (by MH = W and (2)). Then we have, by Corollary 5.2,

f (x, y) = b1
k + θ(a1 + 1)

(k + θ)(1 + θ)
, for θ ∈ {θ1, θd},

where f = f (x, y) was defined in Section 4. There are examples with θ = θ1, namely
the halved cubes of the cubes of odd diameter and the complement of the Higman-
Sims graph, and there are also examples with θ = θd , namely regular near polygons.
We conclude our paper with the following open question.

Question When is a pseudo 1-homogeneous property (corresponding to one or more
edges) implying the 1-homogeneous property?

We will most probably not get away with an algebraic condition, but we will need
a combinatorial one.
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