ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Necessary conditions for Schur-positivity

Peter R.W. McNamara
Bucknell University Department of Mathematics Lewisburg PA 17837 USA

DOI: 10.1007/s10801-007-0114-z

Abstract

In recent years, there has been considerable interest in showing that certain conditions on skew shapes A and B are sufficient for the difference s A  -  s B of their skew Schur functions to be Schur-positive. We determine necessary conditions for the difference to be Schur-positive. Specifically, we prove that if s A  -  s B is Schur-positive, then certain row overlap partitions for A are dominated by those for B. In fact, our necessary conditions require a weaker condition than the Schur-positivity of s A  -  s B ; we require only that, when expanded in terms of Schur functions, the support of s A contains that of s B . In addition, we show that the row overlap condition is equivalent to a column overlap condition and to a condition on counts of rectangles fitting inside A and B. Our necessary conditions are motivated by those of Reiner, Shaw and van Willigenburg that are necessary for s A = s B , and we deduce a strengthening of their result as a special case.

Pages: 495–507

Keywords: keywords Schur function; skew Schur function; Schur-positivity; dominance order

Full Text: PDF

References

1. Bergerson, F., Biagioli, R., Rosas, M.H.: Inequalities between Littlewood-Richardson coefficients. J. Comb. Theory Ser. A 113(4), 567-590 (2006)
2. Brylawski, T.: The lattice of integer partitions. Discrete Math. 6, 201-219 (1973)
3. Buch, A.S.: Littlewood-Richardson calculator (1999). Available from
4. Fomin, S., Fulton, W., Li, C.-K., Poon, Y.-T.: Eigenvalues, singular values, and Littlewood- Richardson coefficients. Am. J. Math. 127(1), 101-127 (2005)
5. Kirillov, A.N.: An invitation to the generalized saturation conjecture. Publ. Res. Inst. Math. Sci. 40(4), 1147-1239 (2004)
6. Lam, T., Postnikov, A., Pylyavskyy, P.: Schur positivity and Schur log-concavity. Am. J. Math. 129(6), 1611-1622 (2007)
7. Lascoux, A., Leclerc, B., Thibon, J.-Y.: Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties. J. Math. Phys. 38(2), 1041-1068 (1997)
8. Littlewood, D.E., Richardson, A.R.: Group characters and algebra. Philos. Trans. R. Soc. London, Ser. A 233, 99-141 (1934)
9. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs, 2nd edn. Clarendon/Oxford University Press, New York (1995). With contributions by A. Zelevinsky, Oxford Science Publications
10. Okounkov, A.: Log-concavity of multiplicities with application to characters of U(\infty ). Adv. Math. 127(2), 258-282 (1997)
11. Reiner, V., Shaw, K.M., van Willigenburg, S.: Coincidences among skew Schur functions. Adv. Math. 216(1), 118-152 (2007)
12. Schützenberger, M.-P.: La correspondance de Robinson. In: Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976). Lecture Notes in Math., vol. 579, pp. 59-113. Springer, Berlin (1977)
13. Stanley, R.P.: Enumerative Combinatorics, vol.
2. Cambridge Studies in Advanced Mathematics, vol.
62. Cambridge University Press, Cambridge (1999)
14. Stembridge, J.R.: SF, posets and coxeter/weyl. Available from
15. Thomas, G.P.: Baxter algebras and Schur functions. PhD thesis, University College of Swansea (1974)
16. Thomas, G.P.: On Schensted's construction and the multiplication of Schur functions. Adv. Math.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition