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Abstract In this paper, we present a simple combinatorial proof of a Weyl type for-
mula for hook Schur polynomials, which was obtained previously by other people
using a Kostant type cohomology formula for glm|n. In general, we can obtain in
a combinatorial way a Weyl type character formula for various irreducible highest
weight representations of a Lie superalgebra, which together with a general linear
algebra forms a Howe dual pair.
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1 Introduction

The notion of hook Schur polynomial appears naturally as characters of complex
irreducible tensor representations of the general linear superalgebra glm|n [3, 31].
Recently, in [10] Cheng and Zhang proved a Kostant type cohomology formula for
glm|n associated to its irreducible tensor representations to compute the corresponding
generalized Kazhdan-Lusztig polynomials (cf. [30]), which also implies a Weyl type
character formula for irreducible tensor representations by Euler-Poincaré principle
(cf. [18]). This Weyl type character formula, which is given as an alternating sum of
characters of Kac modules, is closely related to a general approach to the study of the
complex irreducible finite dimensional representations of glm|n (cf. [5, 22, 30]).

In this paper, we introduce a new combinatorial proof of the Weyl type formula for
hook Schur polynomials obtained in [10]. Our proof, which was originally motivated
by [11], is simple and natural in the sense that we use only the classical Weyl formula
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and the Cauchy identity for Schur polynomials. In fact, we prove a Weyl type formula
for a more general class of functions which arise naturally as characters of quasi-
finite irreducible representations, not necessarily finite dimensional, of various Lie
(super)algebras [8, 15, 17, 23], and were also introduced in a combinatorial way in
[27].

A set S is called Z2-graded if there exists a function | · | : S → Z2. For s ∈ S, we
call |s| the degree of s. We put Sε = { s ∈ S | |s| = ε } for ε ∈ Z2. Suppose that A and
B are Z2-graded sets at most countable, and λ is a generalized partition of length d .
Let

S
A/B
λ =

∑

μ,ν

Sμ(xA)Sν(x
−1
B ),

where Sμ(xA) and Sν(x
−1
B ) are hook Schur functions (or super symmetric functions)

in the variables xA = {xa |a ∈ A } and x−1
B = {x−1

b |b ∈ B } corresponding to skew
shapes μ = (

λ + (pd)
)
/η and ν = (pd)/η for some p ≥ 0 and η (see Definition 2.1).

Then the main result (Theorem 3.10) is

S
A/B
λ =

∑
w∈W (−1)�(w)Sλw,+(xA)Sλw,−(x−1

B )

�A/B
,

where �A/B = ∏
|a|=|b|(1 − xax

−1
b )

∏
|a|�=|b|(1 + xax

−1
b )−1, W is a set of right coset

representatives of an affine Weyl group of type A∞ with respect to a maximal par-
abolic subgroup, and λw,± are defined under an action of w ∈ W on λ. We also give
alternative proofs of a Cauchy identity of S

A/B
λ paired with rational Schur polynomi-

als and a Jacobi-Trudi identity for S
A/B
λ (cf. [27]). Some of the arguments might be

stated or understood more easily in the context of representation theory, but we give
self-contained combinatorial proofs which do not depend on it.

Now a Weyl type character formula for hook Schur polynomials or irreducible
tensor representations of glm|n (Theorem 4.3) follows as a byproduct, up to a multi-
plication of a monomial, when A and B are finite sets (say |A| = n and |B| = m) of
even and odd degree, respectively. This recovers in a purely combinatorial way the
character formula given in [10].

In general, we can obtain Weyl type character formulas for other irreducible high-
est weight representations of a Lie (super)algebra, whenever it forms a Howe dual
pair with a general linear algebra (cf. [7, 8, 17, 19, 23, 28]), since the characters of
the associated representations are given by S

A/B
λ under suitable choices of A and B

[27]. We discuss in detail one more example in representation theory when both A
and B are finite sets of even degree (say |A| = n and |B| = m). We deduce from Howe
duality [19, 24] that the corresponding S

A/B
λ , up to a multiplication of a monomial, is

a character of an infinite dimensional representation of glm+n, which is of particular
importance in the study of unitary highest weight representations of the Lie group
U(m,n) (cf. [15]). In this case, we obtain a Weyl type character formula given as an
alternating sum of characters of generalized Verma modules (Theorem 4.10), which
recovers the Enright’s character formula [12, 14] with a different parametrization of
highest weights for generalized Verma modules, and also an analogue of the Jacobi-
Trudi formula for these infinite dimensional representations.
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Finally, we would like to mention that the similarity of character formulas for glm|n
in [10] and glm+n in [14] was already observed, and recently a more direct connec-
tion between the Grothendieck groups of module categories of glm|n and glm+n has
been established in [9], where the Weyl type character formula for irreducible tensor
representations of glm|n also appears as a corollary.

The paper is organized as follows. In Section 2, we recall some basic terminolo-
gies. In Section 3, we derive a Weyl type formula, a Cauchy type identity, and a
Jacobi-Trudi formula for S

A/B
λ . We also discuss a factorization property for S

A/B
λ

when A is a finite set of even degree, which provides another proof of the factoriza-
tion of hook Schur polynomials. In Section 4, we discuss applications to irreducible
tensor representations of glm|n, and infinite dimensional representations of glm+n.

2 Symmetric functions

Let us recall some terminologies (cf. [29]). A partition is a non-increasing sequence of
non-negative integers λ = (λk)k≥1 such that

∑
k≥1 λk < ∞. The number of non-zero

parts in λ is called the length of λ denoted by �(λ). We also write λ = (1m1,2m2, . . .),
where mi is the number of parts equal to i. We denote by P the set of all partitions.
A partition λ = (λk)k≥1 is identified with a Young diagram which is a collection
of nodes (or boxes) in left-justified rows with λk nodes in the kth row. We denote
by λ′ the conjugate of λ. For λ,μ ∈ P , let λ + μ = (λk + μk)k≥1, and if λ ⊃ μ

(that is, λk ≥ μk for all k), let λ/μ be the skew Young diagram obtained from λ by
removing μ.

For a set K which is at most countable, let �K be the ring of symmetric functions
in the variables xK = {xk |k ∈ K }, and sλ(xK) the Schur function corresponding to
λ ∈ P . When K is infinite, let ωK be the involution on �K , which sends sλ(xK) to
sλ′(xK).

Throughout the paper, we assume that A and B are Z2-graded sets, which
are at most countable. We put Z = {0,±1,±2, . . . }, Z>0 = {1,2, . . . }, Z<0 =
{−1,−2, . . . }, [n] = {1, . . . , n }, and [−n] = {−1, . . . ,−n } (n ≥ 1), where all the
elements are assumed to be of degree 0 (or even). Also, we define A′ = {a′ |a ∈ A }
to be the set with the opposite Z2-grading, that is, |a′| ≡ |a| + 1 (mod 2) for a ∈ A.

Let xA = {xa |a ∈ A } be the set of variables indexed by A and x−1
A = {x−1

a |
a ∈ A }. For a skew Young diagram λ/μ, a hook Schur function corresponding to
λ/μ is defined to be

Sλ/μ(xA) =
∑

ν∈P
μ⊂ν⊂λ

sν/μ(xA0)sλ′/ν′(xA1) (2.1)

(cf. [3, 29]). For simplicity, we shall often write SA
λ/μ = Sλ/μ(xA). When A is finite,

SA
λ is a hook Schur polynomial introduced by Berele and Regev [3]. Following our

notation, we may write SA
λ = ∑

μ∈P S
A0
μ S

A1
λ/μ for λ ∈ P , and hence SA

λ = sλ(xA) if

A = A0, and SA
λ = sλ′(xA) if A = A1.
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For a positive integer d , let Z
d+ = {λ = (λ1, · · · , λd) ∈ Z

d |λ1 ≥ · · · ≥ λd } be the
set of generalized partitions of length d . For λ ∈ Z

d+, put

λ+ = (max(λ1,0), . . . ,max(λd,0)) ∈ P ,

λ− = (max(−λd,0), . . . ,max(−λ1,0)) ∈ P ,

λ∗ = (−λd, . . . ,−λ1) ∈ Z
d+.

(2.2)

The addition on Z
d+ is defined in a usual way, and then λ = λ+ + (λ−)∗.

Definition 2.1 ([27]) For λ ∈ Z
d+, we define

Sλ(xA;xB) =
∑

μ,ν

Sμ(xA)Sν(x
−1
B ),

where μ and ν are skew Young diagrams of the form

μ =
(
λ + (pd)

)
/η, ν = (pd)/η

for some non-negative integer p and partition η such that λ+(pd) ∈ P , η ⊂ λ+(pd),
and η ⊂ (pd). Let us write S

A/B
λ = Sλ(xA;xB) for simplicity.

Remark 2.2 (1) If B is empty, then S
A/B
λ is non-zero only if λ is an ordinary parti-

tion, and in this case, we have S
A/B
λ = SA

λ .

(2) By definition, S
A/B
λ can be regarded as the character of certain bitableaux.

A combinatorics of these bitableaux, including analogues of the Schensted insertion,
the Littlewood-Richardson rule, and the Robinson-Schensted-Knuth correspondence,
are developed in [27].

For λ ∈ Z
d+, let sλ(x[d]) be the rational (or Laurent) Schur polynomial corre-

sponding to λ, that is, sλ(x[d]) = (x1 · · ·xd)−psλ+(pd )(x[d]) for p ≥ 0 such that
λ + (pd) ∈ P . For μ,ν ∈ Z

d+, we have

sμ(x[d])sν(x[d]) =
∑

λ∈Z
d+

cλ
μνsλ(x[d]), (2.3)

where cλ
μν is a Littlewood-Richardson coefficient. Note that cλ

μν = c
λ+((p+q)d )

μ+(pd) ν+(qd )
for

all p,q ≥ 0. Then we have another expression of S
A/B
λ as a linear combination of the

products Sμ(xA)Sν(x
−1
B ) for μ,ν ∈ P .

Proposition 2.3 ([27]) For λ ∈ Z
d+, we have

Sλ(xA;xB) =
∑

μ,ν∈P
�(μ),�(ν)≤d

cλ
μν∗Sμ(xA)Sν(x

−1
B ).
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3 Weyl type formula

3.1 Main result

Put Z
× = Z\{0}. Let P = ⊕

i∈Z× Zεi be the free Abelian group generated by { εi | i ∈
Z

× }. For i ∈ Z, let ri be the transposition on Z
× (hence on { εi | i ∈ Z

× }) given by

ri =

⎧
⎪⎨

⎪⎩

(i i + 1), if i > 0,

(i − 1 i), if i < 0,

(−1 1), if i = 0.

(3.1)

Let W be the Coxeter group generated by { ri | i ∈ Z }, and �(w) denote the length of
w ∈ W . For each subset I ⊂ Z, let WI be the subgroup of W generated by { ri | i ∈ I }.
Let

W = {w ∈ W |�(riw) > �(w) for i ∈ Z
× }, (3.2)

be the set of right coset representatives with respect to a maximal parabolic subgroup
WZ× (cf. [4]).

For λ ∈ Z
d+ and w ∈ W , choose sufficiently large p,q > 0 such that

(1) −p ≤ λd ≤ λ1 ≤ q ,
(2) w ∈ WI(p,q), where I (p, q) = { k ∈ Z | − p + 1 ≤ k ≤ q − 1 }.
Put μ = (λ + (pd))′ = (μ1, . . . ,μn), where n = p + q . We may identify μ with

μ = μ1ε−p + · · · + μpε−1 + μp+1ε1 + · · · + μp+qεq ∈ P.

Then, we define

w ◦ λ = w(μ + ρp,q) − ρp,q − d1p, (3.3)

where ρp,q = ∑
i∈[−p](q − i − 1)εi + ∑

j∈[q](q − j)εj , and 1p = ∑
i∈[−p] εi .

Lemma 3.1 Under the above hypothesis, there exist unique σ, τ ∈ P with �(σ ) ≤ p

and �(τ) ≤ q such that

w ◦ λ = −
∑

i∈Z<0

σ−iεi +
∑

j∈Z>0

τj εj .

Proof First, let w(ρp,q) − ρp,q = ∑
i∈Z× aiεi ∈ P , where ai = 0 for i �∈ [−p] ∪ [q].

It is not difficult to see that w(ρp′,q ′) − ρp′,q ′ = w(ρp,q) − ρp,q for all p′ > p and
q ′ > q . Since w is a right coset representative of WZ× in W , we also have ai ≥ ai+1
and a−i−1 ≥ a−i for all i > 0 (cf. [4]). This implies that

0 ≥ a−p ≥ a−p+1 ≥ . . . ≥ a−1,

a1 ≥ a2 ≥ . . . ≥ aq ≥ 0.
(3.4)

Next, if we put w(μ) = ∑
i∈[−p]∪[q] biεi , then we have

d ≥ b−p ≥ · · · ≥ b−1 ≥ 0, b1 ≥ · · · ≥ bq ≥ 0. (3.5)
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Note that w(μ) − d1p does not depend on the choice of p,q . Hence it follows that
w ◦ λ = ∑

i∈[−p]∪[q] ciεi , where

0 ≥ c−p ≥ c−p+1 ≥ . . . ≥ c−1,

c1 ≥ c2 ≥ . . . ≥ cq ≥ 0.
(3.6)

This completes the proof. �

Definition 3.2 For λ ∈ Z
d+ and w ∈ W , we define

λw,− = σ ′, λw,+ = τ ′, (3.7)

where σ, τ ∈ P are given in Lemma 3.1.

Remark 3.3 (1) Given w ∈ W , suppose that w ∈ WI(p,q) for some p,q > 0. If
w(ρp,q) − ρp,q = ∑

i∈Z× μiεi ∈ P , then we can check that the partition (−μ−k)k≥1

is the conjugate of (μk)k≥1 (see 2.4 in [4]). Moreover, the map sending w to (μk)k≥1

is a one-to-one correspondence between W , the set of the minimal length right coset
representatives and P , where �(w) = |μ| = ∑

k≥1 μk .

(2) One can also check that for λ ∈ Z
d+, (λw,−, λw,+) = (λw′,−, λw′,+) if and only

if w = w′ ∈ W .

Next, consider the Schur polynomials in n variables. Fix p,q > 0 such that p +
q = n. Instead of [n], let us use [−p,q] = [−p]∪[q] as an index set for the variables.
For a partition μ with �(μ) ≤ n, we may identify μ with

μ1ε−p + · · · + μpε−1 + μp+1ε1 + · · · + μp+qεq ∈ P.

Then WI(p,q), which is isomorphic to the symmetric group on n letters, naturally
acts on μ. Given α = ∑

i∈[−p,q] ciεi ∈ P , put xα[−p,q] = ∏
i∈[−p,q] x

ci

i . Recall that
the Weyl formula for the Schur polynomial corresponding to μ is given by

sμ(x[−p,q]) =
∑

w∈WI(p,q)
(−1)�(w)x

w(μ+ρp,q )−ρp,q

[−p,q]
∏

i,j∈[−p,q],i<j (1 − x−1
i xj )

. (3.8)

Then we have a parabolic analogue as follows.

Lemma 3.4 Suppose that μ ⊂ (dn) for some d > 0, and p + q = n. Following the
above notations, we have

x
−d1p

[−p,q]sμ(x[−p,q]) =
∑

w∈W ∩WI(p,q)
(−1)�(w)s(λw,+)′(x[q])s(λw,−)′(x

−1
[−p])

∏
i∈[−p]

∏
j∈[q](1 − x−1

i xj )
,

where λ = μ′ − (pd) ∈ Z
d+ and λw,± are defined in (3.7).



J Algebr Comb (2008) 28: 439–459 445

Proof By Lemma 3.1, we have for w ∈ W ∩ WI(p,q),

w(μ + ρp,q) − ρp,q − d1p = −
∑

i∈[−p]
σ−iεi +

∑

j∈[q]
τj εj ,

for some σ, τ ∈ P with �(σ ) ≤ p and �(τ) ≤ q . Now, for w′ ∈ WI(p,q)\{0}, we have

w′w(μ + ρp,q) − ρp,q − d1p

= w′ (w(μ + ρp,q) − ρp,q − d1p + ρp,q

) − ρp,q

= w′
⎛

⎝−
∑

i∈[−p]
σ−iεi +

∑

j∈[q]
τj εj + q1p + ρ−

p + ρ+
q

⎞

⎠ − q1p − ρ−
p − ρ+

q

= w′
⎛

⎝−
∑

i∈[−p]
σ−iεi +

∑

j∈[q]
τj εj + ρ−

p + ρ+
q

⎞

⎠ − ρ−
p − ρ+

q , (3.9)

where ρ−
p = ∑

i∈[−p](−i −1)εi , ρ+
q = ∑

j∈[q](q − j)εj and ρp,q = q1p +ρ−
p +ρ+

q .

Since sν(x[−p]) = sν∗(x−1
[−p]) for ν ∈ Z

p
+, we obtain the result from (3.8). �

In terms of S
A/B
λ , Lemma 3.4 can be written as follows.

Lemma 3.5 For λ ∈ Z
d+, choose p,q > 0 such that −p ≤ λd ≤ λ1 ≤ q . Then we

have

S
[q]′/[−p]′
λ =

∑
w∈W ∩WI(p,q)

(−1)�(w)Sλw,+(x[q]′)Sλw,−(x−1
[−p]′)

∏
i∈[−p]′

∏
j∈[q]′(1 − x−1

i xj )
.

Proof Put μ = (λ + (pd))′. Note that Sη(x[q]′) = sη′(x[q]′) and Sη(x
−1
[−p]′) =

sη′(x−1
[−p]′) for η ∈ P . Then, we have

x
−d1p

[−p,q]′sμ(x[−p,q]′) =
∑

ν

x
−d1p

[−p,q]′sν(x[−p]′)sμ/ν(x[q]′)

=
∑

ν

sν−(dp)(x[−p]′)sμ/ν(x[q]′)

=
∑

ν

s(dp)/ν(x
−1
[−p]′)sμ/ν(x[q]′)

=
∑

η

S(pd)/η(x
−1
[−p]′)S(λ+(pd ))/η(x[q]′)

= Sλ(x[q]′ ;x[−p]′). (3.10)

The result follows from Lemma 3.4 by replacing x[−p,q] with x[−p,q]′ . �
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Proposition 3.6 For λ ∈ Z
d+, we have

S
Z

′
>0/Z

′
<0

λ =
∑

w∈W (−1)�(w)Sλw,+(xZ
′
>0

)Sλw,−(x−1
Z

′
<0

)

∏
i,j (1 − x−1

i xj )
,

and a Cauchy type identity

∏

i,j,k

(1 + x−1
i z−1

k )(1 + xj zk) =
∑

λ∈Z
d+

S
Z

′
>0/Z

′
<0

λ sλ(z[d]),

where i ∈ Z
′
<0, j ∈ Z

′
>0, k ∈ [d], and z[d] = { zk |k ∈ [d] }.

Proof First, it is easy to see that for p,q > 0 S
[q+1]′/[−p−1]′
λ reduces to S

[q]′/[−p]′
λ

when we put xq+1 = 0 and x−1
−p−1 = 0. Hence, S

[q]′/[−p]′
λ has the well-defined limit

with respect to both x[q] and x−1
[−p] when we let p,q → ∞, which is equal to

S
Z

′
>0/Z

′
<0

λ . The first identity follows from Lemma 3.5.
Next, consider the following dual Cauchy identity (cf. [29]).

∏

i∈[n]

∏

j∈[d]
(1 + xizj ) =

∑

μ⊂(dn)

sμ(x[n])sμ′(z[d]). (3.11)

Choose p,q > 0 such that p + q = n. Replacing [n] with [−p,q]′ and multiplying
(x−p′ · · ·x−1′)−d(z1 · · · zd)−p on both sides, we have

∏

i∈[−p]′

∏

j∈[q]′

∏

k∈[d]
(1 + x−1

i z−1
k )(1 + xj zk)

=
∑

λ∈Z
d+

x
−d1p

[−p]′ s(λ+(pd ))
′(x[−p,q]′)sλ(z[d])

=
∑

λ∈Z
d+

S
[q]′/[−p]′
λ sλ(z[d]). (see (3.10)) (3.12)

Hence, by letting p,q → ∞, we obtain the second identity. �

Proposition 3.7 For λ ∈ Z
d+, we have

S
Z>0/Z<0
λ =

∑
w∈W (−1)�(w)Sλw,+(xZ>0)Sλw,−(x−1

Z<0
)

∏
i,j (1 − x−1

i xj )
,

and a Cauchy type identity

1
∏

i,j,k(1 − x−1
i z−1

k )(1 − xj zk)
=

∑

λ∈Z
d+

S
Z>0/Z<0
λ sλ(z[d]),

where i ∈ Z<0, j ∈ Z>0, and k ∈ [d].
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Proof Applying both ωZ
′
<0

and ωZ
′
>0

in Proposition 3.6 and then replacing xZ
′
>0

(resp.
xZ

′
<0

) by xZ>0 (resp. xZ<0 ), we obtain the identities. �
As a special case of Proposition 3.7, we obtain the following Cauchy type identity

with a restriction on the length of partitions.

Corollary 3.8 For d ≥ 1, we have

∑

λ∈P
�(λ)≤d

sλ(x)sλ(y) =
∑

w∈W (−1)�(w)s0w,+
d

(x)s0w,−
d

(y)
∏

i,j≥1(1 − xiyj )
,

where x = xZ>0 , y = yZ>0 , and 0d = (0, . . . ,0) ∈ Z
d+.

Proof Consider S
Z>0/Z<0
0d

. Replacing x−1
Z<0

by yZ>0 (that is, x−1
−k = yk for k ≥ 1), we

have

S
Z>0/Z<0
0d

=
∑

ν=(kd )/η

k≥0, η⊂(kd )

sν(x)sν(y) =
∑

�(λ)≤d

sλ(x)sλ(y) (3.13)

since s(kd )/η(x) = sλ(x), where λ = (kd)+η∗ ∈ P (we regard η as an element in Z
d+)

by the Littlewood-Richardson rule. Combining with Proposition 3.7, we obtain the
identity. �

Remark 3.9 Corollary 3.8 can be stated more explicitly. Given w ∈ W , let μ =
(α|β) be the corresponding partition (see Remark 3.3) given in Frobenius notation
with δ(μ) the length of α or β . Then it is not difficult to see that

0w,+
d = μ + (dδ(μ)), 0w,−

d = μ′ + (dδ(μ)).

Hence, we obtain an alternative expression

∑

λ∈P
�(λ)≤d

sλ(x)sλ(y) =
∑

μ∈P (−1)|μ|sμ+(dδ(μ))(x)sμ′+(dδ(μ))(y)
∏

i,j≥1(1 − xiyj )
. (3.14)

Theorem 3.10 For λ ∈ Z
d+, we have

S
A/B
λ =

∑
w∈W (−1)�(w)Sλw,+(xA)Sλw,−(x−1

B )

�A/B
,

where

�A/B =
∏

|a|=|b|(1 − xax
−1
b )

∏
|a|�=|b|(1 + xax

−1
b )

.
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We also have the following Cauchy type identity

∏

k∈[d]

∏
a∈A1

(1 + xazk)
∏

b∈B1
(1 + x−1

b z−1
k )

∏
a∈A0

(1 − xazk)
∏

b∈B0
(1 − x−1

b z−1
k )

=
∑

λ∈Z
d+

S
A/B
λ sλ(z[d]).

Proof For convenience, let us assume that A ⊂ Z>0 and B ⊂ Z<0 with arbitrary Z2-
gradings. Let A◦ (resp. B◦) be the set of all positive (resp. negative) integers with a
Z2-grading such that A◦

i (resp. B◦
i ) is infinite and Ai ⊂ A◦

i (resp. Bi ⊂ B◦
i ) for i ∈ Z2.

We may view �Z>0 (resp. �Z<0 ) as a subring of �A◦
0
⊗ �A◦

1
(resp. �B◦

0
⊗ �B◦

1
).

Applying ωA◦
1

and ωB◦
1

to S
Z>0/Z<0
λ and the Cauchy type identity in Proposition 3.7

(we assume that the set of variables in �Z<0 is x−1
Z<0

), we obtain

S
A◦/B◦
λ =

∑
w∈W (−1)�(w)Sλw,+(xA◦)Sλw,−(x−1

B◦ )

�A◦/B◦
,

∏

k∈[d]

∏
a∈A◦

1
(1 + xazk)

∏
b∈B◦

1
(1 + x−1

b z−1
k )

∏
a∈A◦

0
(1 − xazk)

∏
b∈B◦

0
(1 − x−1

b z−1
k )

=
∑

λ∈Z
d+

S
A◦/B◦
λ sλ(z[n]).

(3.15)

Finally, by letting xa = x−1
b = 0 for a ∈ A◦ \ A and b ∈ B◦ \ B in (3.15), we obtain

the results. �

Remark 3.11 The Cauchy type identity in Theorem 3.10 was also proved in a bi-
jective way in terms of tableaux [27], which can be viewed as an analogue of the
Robinson-Schensted-Knuth correspondence [26].

3.2 Factorization property

Let us consider a particular case, where we have a factorization property of S
A/B
λ .

Recall the following Cauchy type identity for skew Schur functions.

Lemma 3.12 (cf. [29]) For λ,μ ∈ P , we have

∑

ρ∈P

sρ/λ(x)sρ/μ(y) = 1∏
i,j≥1(1 − xiyj )

∑

τ∈P

sμ/τ (x)sλ/τ (y),

By similar arguments as in Theorem 3.10, it is straightforward to rewrite the above
identities as follows.

Corollary 3.13 For λ,μ ∈ P , we have

∑

ρ∈P

SA
ρ/λS

B
ρ/μ =

∏
|a|�=|b|(1 + xaxb)∏
|a|=|b|(1 − xaxb)

∑

τ∈P

SA
μ/τ S

B
λ/τ .
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Lemma 3.14 Given λ ∈ Z
d+ and m ∈ N, assume that d ≥ m and λm ≥ 0. Let p ≥ 0

and μ ∈ P be such that λ + (pd) ∈ P , μ ⊂ λ + (pd), and μ ⊂ (pd). Then

s(λ+(pd ))/μ(x[m]) = sλ+(x[m])sν/μ(x[m]),

where ν = (pd) + (λ−)∗.

Proof Note that sρ/τ (x[m]) corresponding to a skew Young diagram ρ/τ is the weight
generating function of SST[m](ρ/τ), the set of all semistandard tableaux of shape ρ/τ

with entries in [m] (cf. [16, 29]).
Suppose that SST[m]

((
λ + (pd)

)
/μ

)
is not empty. As usual, we enumerate the

rows (resp. columns) in λ + (pd) from top to bottom (resp. left to right). Also, we
may assume that ν/μ is not empty, where ν = (pd) + (λ−)∗.

For T ∈ SST[m]
((

λ + (pd)
)
/μ

)
, let T1 (resp. T2) be the subtableau obtained from

the columns of T with indices greater than p (resp. less than or equal to p). The
shapes of T1 and T2 are λ+ and ν/μ, respectively. So, this defines a map

SST[m]
((

λ + (pd)
)

/μ
)

−→ SST[m](λ+) × SST[m] (ν/μ) , (3.16)

by sending T to (T1, T2).
We claim that this is a one-to-one correspondence, which establishes the corre-

sponding identity of Schur polynomials. Let us construct an inverse of the above
map. Given a pair (T1, T2) ∈ SST[m](λ+)×SST[m] (ν/μ), we obtain a tableau T (not
necessarily semistandard) of shape

(
λ + (pd)

)
/μ, where the first p columns form

T2, and the other columns form T1. Note that the row and column numbers are those
in λ + (pd).

For 1 ≤ i ≤ d , let ai (resp. bi ) be the entry placed in the ith row and the pth (resp.
(p + 1)th) column of T . We assume that either ai or bi is empty if there is no entry.
Then b1, . . . , bd are the entries in the first column of T1, and a1, . . . , ad are the entries
in the last column of T2.

Since m ≤ d , bm+1, . . . , bd are empty, and for 1 ≤ k ≤ m, bk ≥ k if it is not empty.
If all ai are empty, then it is clear that T is semistandard. We assume that there
exist non-empty entries as, . . . , at with 1 ≤ s ≤ t ≤ d . Since λm ≥ 0, it follows that
the pth column of λ + (pd) has at least m boxes, and hence

(
λ + (pd)

)
/μ has at

least one box in rows lower than or equal to the mth row. This implies that t ≥ m, and
ak ≤ m+k− t ≤ k ≤ bk for s ≤ k ≤ t . Therefore, T is a semistandard tableau of shape(
λ + (pd)

)
/μ, and the map (T1, T2) �→ T is the inverse of (3.16). This completes the

proof. �

Theorem 3.15 Suppose that A = [m] for m > 0. For λ ∈ Z
d+, we have

S
[m]/B
λ = Sλ+(x[m])Sλ−(x−1

B )�−1
[m]/B

if and only if d ≥ m and λm ≥ 0.
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Proof First, note that by the Littlewood-Richardson rule, we have SA
μ = SA

μπ for any
A and μ ∈ P , where μπ is the skew Young diagram obtained from μ by 180◦-
rotation (cf. [29]). Now, suppose that d ≥ m and λm ≥ 0. Then we have

S
[m]/B
λ =

∑

μ=(
λ+(pd )

)
/η,

ν=(pd )/η

sμ(x[m])Sν(x
−1
B )

=
∑

μ=(
λ+(pd )

)
/η,

ν=(pd )/η

sλ+(x[m])s((pd)+(λ−)∗)/η(x[m])Sν(x
−1
B ) (by Lemma 3.14)

= sλ+(x[m])
∑

ν=(pd )/η

λ−⊂νπ

sνπ /λ−(x[m])Sνπ (x−1
B ) (by 180◦-rotation)

= sλ+(x[m])
∑

λ−⊂τ

sτ/λ−(x[m])Sτ (x
−1
B )

= Sλ+(x[m])Sλ−(x−1
B )�−1

[m]/B (by Corollary 3.13). (3.17)

Conversely, suppose that either d < m or λm < 0. Let p ≥ 0 and η ∈ P be such
that λ + (pd) ∈ P and η ⊂ λ + (pd), η ⊂ (pd). Then it is not difficult to see that the
difference

sλ+(x[m])s((pd )+(λ−)∗)/η(x[m]) − s(λ+(pd ))/η(x[m]). (3.18)

is non-zero, in fact, an integral linear combination of monomials in x[m] with non-

negative coefficients. It implies that the difference of S
[m]/B
λ and the last term in (3.17)

is non-zero. This completes the proof. �

Remark 3.16 We can also prove Theorem 3.15 using Theorem 3.10. Suppose that
λ ∈ Z

d+ is given. If d ≥ m and λm ≥ 0, then it is not difficult to see that �(λw,+) ≤ m

if and only if w = 1 ∈ W , which implies that S
[m]/B
λ = Sλ+(x[m])Sλ−(x−1

B )�−1
[m]/B .

Conversely, if d < m or λm < 0, then we can check that there exists at least one non-
trivial element w ∈ W such that �(λw,+) ≤ m, which implies that S

[m]/B
λ �[m]/B −

Sλ+(x[m])Sλ−(x−1
B ) is non-zero by Remark 3.3 (2).

3.3 Jacobi-Trudi formula

Finally, let us present another proof of the Jacobi-Trudi formula for S
A/B
λ [27] using

the arguments given in 3.1.
Given A and B, consider

H A/B(t) =
∏

a∈A1
(1 + xat)

∏
b∈B1

(1 + x−1
b t−1)

∏
a∈A0

(1 − xat)
∏

b∈B0
(1 − x−1

b t−1)
=

∑

k∈Z

h
A/B
k tk, (3.19)

where h
A/B
k = S

A/B
k = ∑

m−n=k Sm(xA)Sn(x
−1
B ) for k ∈ Z.
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Proposition 3.17 cf. [27] For λ ∈ Z
d+, we have

S
A/B
λ = det(hA/B

λi−i+j )1≤i,j≤d .

Proof Choose p,q > 0. Let ek(x[−p,q]′) be the kth elementary symmetric polynomial
in variables x[−p,q]′ for k ≥ 0, and ẽk(x[−p,q]′) the coefficient of tk for −p ≤ k ≤ q

in
∏

i∈[−p]′

∏

j∈[q]′
(1 + x−1

i t−1)(1 + xj t).

Then, from the classical Jacobi-Trudi formula, we have

S
[q]′/[−p]′
λ = (x−p′ · · ·x−1′)−ds(λ+(pd ))

′(x[−p,q]′)

= (x−p′ · · ·x−1′)−ddet(eλi+p−i+j (x[−p,q]′))1≤i,j≤d

= det(̃eλi−i+j (x[−p,q]′))1≤i,j≤d . (3.20)

If we follow the same arguments as in Theorem 3.10, then S
[q]′/[−p]′
λ and ẽk(x[−p,q]′)

are replaced by S
A/B
λ and h

A/B
k , respectively. This completes the proof. �

4 Applications

In this section, we discuss applications of our Weyl type formula for S
A/B
λ in repre-

sentation theory. We assume that the ground field is C.

4.1 Representations of glm|n

First, let us derive a Weyl type formula for hook Schur polynomials. Though its proof
is purely combinatorial, we will translate the result in the language of representation
theory to see its relation with finite dimensional irreducible representations of glm|n.
So, let us give a brief review on representations of the Lie superalgebra glm|n (cf.
[20]).

For non-negative integers m and n, not both zero, let C
m|n = C

m|0 ⊕ C
0|n be the

(m+n)-dimensional superspace with the even subspace C
m|0 = C

m and the odd sub-
space C

0|n = C
n. We denote by { εi | i ∈ [−m] } and { εj | j ∈ [n]′ } the homogeneous

bases of C
m|0 and C

0|n respectively, which form a standard basis of C
m|n. Then the

space of C-linear endomorphisms of C
m|n is naturally equipped with a Z2-grading,

and becomes a Lie superalgebra with respect to a super bracket, which is called a
general linear superalgebra glm|n. Put [−m,n′] = [−m] ∪ [n]′.

We may identify g = glm|n with the set of (m+n)× (m+n) matrices with respect
to the standard basis of C

m|n. Then the subspace h of diagonal matrices forms a
Cartan subalgebra, and under the adjoint action of h on g, we have a root space
decomposition, g = h ⊕ (⊕

α∈� gα

)
, where � is the set of all roots of g. Let �+ be
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the set of positive roots, and �+
0 (resp. �+

1 ) the set of positive even (resp. odd) roots.
Since h∗ = C

m|n, we have

�+
0 = { εi − εj | i, j ∈ [−m,n′], |i| = |j |, i < j },

�+
1 = { εi − εj | i ∈ [−m], j ∈ [n]′ },

(4.1)

where we assume that −m < −m + 1 < · · · < −1 < 1′ < 2′ < · · · < n′. We consider
a Z-grading g = g−1 ⊕ g0 ⊕ g1 consistent with its parity, where g0 = glm ⊕ gln, and
a triangular decomposition, g = n− ⊕ h ⊕ n+ such that g±1 ⊂ n±.

Let Pm|n be the Z-lattice of h∗ generated by { εi | i ∈ [−m,n′] }, which is called the
set of integral weights, and let P +

m|n be the set of weights � = ∑
i∈[−m,n′] �iεi ∈ Pm|n

such that �−m ≥ . . . ≥ �−1 and �1′ ≥ . . . ≥ �n′ . An element in P +
m|n is called a

dominant integral weight.
Suppose that M is a finite-dimensional glm|n-module, which is h-diagonalizable.

Then, we have a weight space decomposition M = ⊕
λ∈h∗ Mλ. When dimMλ �= 0,

we call λ weights of M . For convenience, we assume that all the weight are integral.
We define the character of M by chM = ∑

λ∈Pm|n dimMλe
λ, where { eλ |λ ∈ Pm|n } is

the set of formal variables.
Given � ∈ P +

m|n, let L0(�) be the finite dimensional irreducible highest weight

g0-module with highest weight �. We may view L0(�) as a g0 ⊕ g1-module, where
g1 acts trivially on L0(�). The Kac module Km|n(�) is defined to be the induced
representation Km|n(�) = U(g) ⊗U(g0⊕g1) L0(�) where U(g) and U(g0 ⊕ g1) are
the enveloping algebras, and it has a unique maximal irreducible quotient Lm|n(�).
Then {Lm|n(�) |� ∈ P +

m|n } forms a complete set of pairwise non-isomorphic finite
dimensional irreducible representations of glm|n with integral weights.

For � ∈ P +
m|n such that Km|n(�) is not irreducible (cf. [21, 22]), Lm|n(�) has a

resolution, where each term has a filtration with quotients isomorphic to Kac modules
(see [30]), and its character is given by

chLm|n(�) =
∑

�′∈P+
m|n

a��′chKm|n(�′), (4.2)

for some a��′ ∈ Z. In [30], Serganova gave an algorithm for computing these coef-
ficients using the geometry of the associated supergroups. Recently, in [5], Brundan
gave another algorithm using a remarkable connection with canonical bases of quan-
tum group Uq(gl∞).

Now, let us give an explicit expression of (4.2) for irreducible tensor representa-
tions. For � = ∑

i∈[−m,n′] �iεi ∈ P +
m|n, we may identify � with a pair of generalized

partitions given by

�<0 = (�−m, . . . ,�−1) ∈ Z
m+, �>0 = (�1′ , . . . ,�n′) ∈ Z

n+. (4.3)
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If we put x[−m] = {xi = eεi | i ∈ [−m] }, and y[n] = {yj = e
εj ′ | j ∈ [n] }, then the

character of Km|n(�) is given by

chKm|n(�) = s�<0(x[−m])s�>0(y[n])
∏

i∈[−m],
j∈[n]

(1 + x−1
i yj ). (4.4)

Let P̂ +
m|n be the set of dominant integral weights � such that �k ≥ 0 for all k ∈

[−m,n′] and �((�>0)′) ≤ �−1. For � ∈ P̂ +
m|n, we define a partition

λ(�) = (�−m, . . . ,�−1,�
′
1, . . . ,�

′
�), (4.5)

where (�>0)′ = (�′
1, . . . ,�

′
�) and � = �((�>0)′). Then the map � �→ λ(�) gives a

one-to-one correspondence between P̂ +
m|n and Pm|n = {λ ∈ P |λm+1 ≤ n }, the set of

all (m,n)-hook partitions.
In [3, 31], it was shown that the tensor algebra T (Cm|n) generated by the natural

representation C
m|n is completely reducible, and for � ∈ P +

m|n, Lm|n(�) occurs in

T (Cm|n) if and only if � ∈ P̂ +
m|n. Moreover, we have

chLm|n(�) =
∑

μ⊂λ

sμ(x[−m])sλ′/μ′(y[n]) (4.6)

with λ = λ(�) ∈ Pm|n, which is called the hook Schur polynomial corresponding

to λ. Following our notation, chLm|n(�) = S
[−m,n′]
λ = Sλ(x[−m,n′]), where we iden-

tify x[n]′ ⊂ x[−m,n′] with y[n].

Lemma 4.1 For � ∈ P̂ +
m|n, let λ = λ(�) ∈ Pm|n and ν = λ′ − (md) for d ≥ λ1. Then

ν ∈ Z
d+, and

(x−m · · ·x−1)
−dchLm|n(�) = Sν(x[n];x[−m]′),

where we identify x[−m] with x[−m]′ , and y[n] with x[n].

Proof By similar arguments as in Lemma 3.5 (3.10), we have

(x−m · · ·x−1)
−dchLm|n(�)

= (x−m · · ·x−1)
−d

⎛

⎝
∑

μ⊂λ

sμ(x[−m])sλ′/μ′(y[n])

⎞

⎠

=
∑

μ⊂λ

sμ−(dm)(x[−m])sλ′/μ′(y[n])

=
∑

μ⊂λ

s(dm)/μ(x−1
[−m])sλ′/μ′(y[n])
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=
∑

η

S(md)/η(x
−1
[−m]′)S(ν+(md))/η(y[n]) by replacing x[−m] with x[−m]′

= Sν(x[n];x[−m]′) = S[n]/[−m]′
ν by replacing y[n] with x[n]. �

Remark 4.2 It is well-known that for � ∈ P̂ +
m|n, Lm|n(�) = Km|n(�) if and only if

�−1 ≥ n (see also Theorem 3.15).

For � ∈ P̂ +
m|n with λ = λ(�), set

Wm|n(�) = {w ∈ W |�((νw,−)′) ≤ m, �(νw,+) ≤ n }, (4.7)

where ν = λ′ − (md) ∈ Z
d+ with d ≥ λ1. For w ∈ Wm|n(�), we define

w ∗ � = (
(
(νw,−)′ − (dm)

)∗
, νw,+) ∈ P +

m|n, (4.8)

where we identify P +
m|n with Z

m+ × Z
n+ (cf.(4.3)). We can check that given w ∈

Wm|n(�), w ∈ WI(m,q) for some q , and w ∗ � does not depend on the choice of
d . Now, we obtain a Weyl type formula for hook Schur polynomials, which recovers
the Cheng and Zhang’s formula [10] in a new combinatorial way.

Theorem 4.3 ([10]) For � ∈ P̂ +
m|n, we have

chLm|n(�) =
∑

w∈Wm|n(�)

(−1)�(w)chKm|n(w ∗ �).

Proof By Lemma 4.1 and Theorem 3.10, we have

chLm|n(�)

= (x−m · · ·x−1)
d

(
∑

w∈W
(−1)�(w)sνw,+(y[n])s(νw,−)′(x

−1
[−m])

)
∏

i∈[−m]
j∈[n]

(1 + x−1
i yj )

=
(

∑

w∈W
(−1)�(w)sνw,+(y[n])s(νw,−)′−(dm)(x

−1
[−m])

)
∏

i∈[−m]
j∈[n]

(1 + x−1
i yj )

=
(

∑

w∈W
(−1)�(w)sνw,+(y[n])s((νw,−)′−(dm))

∗(x[−m])
)

∏

i∈[−m]
j∈[n]

(1 + x−1
i yj )

=
∑

w∈Wm|n(�)

(−1)�(w)chK(w ∗ �).

�

Remark 4.4 Lemma 4.1 and hence Theorem 4.3 can be also derived from a Howe
duality of (glm|n,gld) acting on the supersymmetric algebra generated by C

m|n ⊗ C
d
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(cf. [7]) without using the combinatorial formula for chLm|n(�) due to Berele and
Regev.

The denominator identity for glm|n is given as follows.

Corollary 4.5 For w ∈ Wm|n(0), let w ∗ 0 = (θw
m , θw

n ) ∈ P +
m|n. Then

∏

i,j

(xi + yj )
−1

∏

i<k

(xi − xk)
∏

j<l

(yj − yl)

=
∑

w∈Wm|n(0)

∑

w1∈Sm
w2∈Sn

(−1)�(w1)+�(w2)+�(w)x
w1(θ

w
m +ρ−

m)−n1m

[−m] y
w2(θ

w
n +ρ+

n )

[n] ,

where i, k ∈ [−m], j, l ∈ [n], ρ−
m = ∑

i∈[−m](−i − 1)εi , ρ+
n = ∑

j∈[n](n− j)εj ′ , and
Sm (resp. Sn) is the symmetric group on the letters [−m] (resp. [n]).

Proof Since the hook Schur polynomial corresponding to empty partition (that is,
� = 0) is 1, the identity follows from Theorem 4.3. �

Remark 4.6 For w ∈ Wm|n(0), let μ be the corresponding partition (see Re-
mark 3.3). Then w ∗ 0 ∈ P +

m|n if and only if �(μ) ≤ m,n. Moreover, in this case,
we have

w ∗ 0 = (θw
m , θw

n ) = (−μm, . . . ,−μ1,μ1, . . . ,μn) ∈ P +
m|n.

Since |μ| = �(w), we may write by abuse of notation
∏

i,j

(xi + yj )
−1

∏

i<k

(xi − xk)
∏

j<l

(yj − yl)

=
∑

�(μ)≤m,n

(−1)|μ| ∑

w1∈Sm
w2∈Sn

(−1)�(w1)+�(w2)x
w1(μ

∗+ρ−
m)−n1m

[−m] y
w2(μ+ρ+

n )

[n] .

4.2 Representations of glm+n

Let us consider a character formula for a certain class of infinite dimensional ir-
reducible highest weight representations of the Lie algebra glm+n, which comes
from the study of unitary highest weight representations of its associated Lie group
U(m,n) (cf. [15, 19, 24]) or from a parabolic analogue of Kazhdan-Lusztig theory
(cf. [6, 13]).

For non-negative integers m and n, not both zero, let C
m+n = C

m ⊕ C
n be the

(m + n)-dimensional space, where { εi | i ∈ [−m] } (resp. { εj | j ∈ [n] }) is the basis
of C

m (resp. C
n). We may identify the general linear algebra g = glm+n with the set

of (m + n) × (m + n) matrices whose row and column indices are from [−m] ∪ [n]
(or simply [−m,n]).

We denote by h and b the Cartan subalgebra of the diagonal matrices and the Borel
subalgebra of the upper triangular matrices respectively. We put t = glm ⊕ gln, which
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is naturally embedded in g. Let Pm+n be the Z-lattice of h∗ generated by { εi | i ∈
[−m,n] }, and P +

m+n the set of t-dominant integral weights, that is, the set of weights
� = ∑

i∈[−m,n] �iεi ∈ Pm+n such that �−m ≥ . . . ≥ �−1 and �1 ≥ . . . ≥ �n.
Given � ∈ P +

m+n, let L0(�) be the finite dimensional irreducible highest weight
t-module with highest weight �. We may view L0(�) as a representation of the
parabolic subalgebra q = t + b, where the nilpotent radical of q acts trivially. Now
we define the generalized Verma module Vm+n(�) to be the induced representation
Vm+n(�) = U(g) ⊗U(q) L0(�). Then Vm+n(�) has a unique maximal irreducible
quotient Lm+n(�). Similarly, we define the characters of Lm+n(�) and Vm+n(�) in
terms of the formal variables eλ (λ ∈ Pm+n). Put xi = eεi for i ∈ [−m,n]. Then

chVm+n(�) = s�<0(x[−m])s�>0(x[n])∏
i,j (1 − x−1

i xj )
,

where i ∈ [−m], j ∈ [n], �<0 = (�−m, . . . ,�−1) and �>0 = (�1, . . . ,�n).
From the Kazhdan-Lusztig conjecture [25] proved in [1, 2] and its parabolic ana-

logue [6, 13], we have

chLm+n(�) =
∑

�′∈P+
m+n

b��′chVm+n(�
′), (4.9)

where the integers b��′ are determined explicitly in terms of (parabolic) Kazhdan-
Lusztig polynomials evaluated at 1.

Now, using Howe duality let us derive an explicit expression of chLm+n(�) for
particular highest weights in P +

m+n, which is equivalent to the Enright’s formula given
in [12, 14]. For d ≥ 1, let Pd = ⊕

k∈[d] Zεk be the weight lattice of gld . Consider the

symmetric algebra Sd generated by (Cm∗ ⊗ C
d∗

) ⊕ (Cn ⊗ C
d), where C

m∗
and C

d∗

are the duals of the natural representations of glm and gld respectively. Then there is
a semi-simple (glm+n,gld)-action on Sd , which gives the following multiplicity free
decomposition [19, 24]

Sd =
⊕

λ

Lm+n(�(λ)) ⊗ Ld(λ), (4.10)

where the sum ranges over λ ∈ Z
d+ with �(λ−) ≤ m and �(λ+) ≤ n, Ld(λ) is the

irreducible highest weight gld -module with highest weight λ = (λ1, . . . , λd) ∈ Z
d+

(or λ = ∑
k∈[d] λkεk ∈ Pd ), and �(λ) is a highest weight in P +

m+n. In fact, if

λ = λ+ + (λ−)∗ = (λ+
1 , . . . , λ+

p ,0, . . . ,0,−λ−
q , . . . ,−λ−

1 ), (4.11)

with q ≤ m and p ≤ n, then

�(λ) = (−d, . . . ,−d,−λ−
q − d, . . . ,−λ−

1 − d
︸ ︷︷ ︸

m

,λ+
1 , . . . , λ+

p ,0, . . . ,0
︸ ︷︷ ︸

n

), (4.12)

where we identify Pm+n with Z
m+n.
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Proposition 4.7 For λ ∈ Z
d+ with �(λ−) ≤ m and �(λ+) ≤ n, we have

(x−m · · ·x−1)
dchLm+n(�(λ)) = Sλ(x[n];x[−m]).

Proof The decomposition in (4.10) gives the following identity

(x−m · · ·x−1)
−d

∏
i,j,k(1 − xizk)(1 − x−1

j z−1
k )

=
∑

λ∈Z
d+

chLm+n(�(λ))sλ(z[d]), (4.13)

where i ∈ [n], j ∈ [−m], k ∈ [d], and z[d] = {zk = eεk |k ∈ [d] }. Comparing with
the Cauchy type identity in Theorem 3.10, it follows from the linear independence of
rational Schur polynomials that (x−m · · ·x−1)

dchLm+n(�(λ)) = S
[n]/[−m]
λ . �

Corollary 4.8 For λ ∈ Z
d+ with �(λ−) ≤ m and �(λ+) ≤ n, we have Lm+n(�(λ)) =

Vm+n(�(λ)) if and only if d ≥ n and λn ≥ 0.

Proof It follows from Theorem 3.15. �

We also have an interesting analogue of the Jacobi-Trudi formula from Proposi-
tion 3.17.

Corollary 4.9 For λ ∈ Z
d+ with �(λ−) ≤ m and �(λ+) ≤ n, we have

chLm+n(�(λ)) = det(chLm+n(�(λi − i + j)))1≤i,j≤d .

Suppose that � ∈ P +
m+n is given and � = �(λ) for some λ ∈ Z

d+. Set

Wm+n(�) = {w ∈ W |�(λw,−) ≤ m, �(λw,+) ≤ n }. (4.14)

For w ∈ Wm+n(�), we define

w ∗ � = (
(λw,− + (dm))∗, λw,+) ∈ P +

m+n, (4.15)

where we identify P +
m+n with Z

m+ × Z
n+. Now, we can state a Weyl type formula for

chLm+n(�(λ)).

Theorem 4.10 (cf. [12, 14]) Given � ∈ P +
m+n with � = �(λ) for some λ ∈ Z

d+, we
have

chLm+n(�) =
∑

w∈Wm+n(�)

(−1)�(w)chVm+n(w ∗ �).

Proof It follows from Proposition 4.7 with Theorem 3.10. The proof is similar to that
of Theorem 4.3. �

Remark 4.11 The parametrization of highest weights for generalized Verma mod-
ules in Theorem 4.10 is different from the one in [12, 14], where the sum is given over



458 J Algebr Comb (2008) 28: 439–459

the Weyl group of glm+n with its shifted action on the highest weight �, which is not
equal to w ∗ � for w ∈ Wm+n(�) by definition. It would be interesting to compare
these two formulas.

Example 4.12 Suppose that λ = 0d . Then �(0d) = (−(dm),0n) and each w ∈
Wm+n(−(dm),0n) of minimal length corresponds to a unique partition μ ⊂ (mn)

with �(w) = |μ| (see Remark 3.3 (1)). Hence, we have w ∗ (−(dm),0n) = (−(dm) −
(dδ(μ)) − μ′∗,μ + (dδ(μ))), and

chLm+n(�(0d)) =
∑

μ⊂(mn)

(−1)|μ| sμ′+(dm)+(dδ(μ))(x
−1
[−m])sμ+(dδ(μ))(x[n])

∏
i,j (1 − x−1

i xj )
,

where i ∈ [−m] and j ∈ [n].

Remark 4.13 We may apply Theorem 3.10 to other irreducible highest weight rep-
resentations of a Lie (super)algebra g, whenever we have a Howe duality of (g,gld).
In fact, the associated irreducible characters for g satisfy a Cauchy type identity of
the form given in Theorem 3.10 and hence they are equal to S

A/B
λ under suitable

choices of A and B (see [27] for more examples).
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