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Abstract Let p be an odd prime. We first get some non-existence and structural
results on (pn,p,pn,n) relative difference sets with gcd(p,n) = 1 through a group
ring approach. We then give a construction of (p(p + 1),p,p(p + 1),p + 1) relative
difference sets with p a Mersenne prime.
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1 Introduction

Let G be a finite (multiplicative) group of order mn, and let N be a subgroup of G of
order n. A k-subset R of G is called an (m,n, k,λ) relative difference set (RDS) in
G relative to N if every element g ∈ G \ N has exactly λ representations g = r1r

−1
2

with r1, r2 ∈ R, and no non-identity element of N has such a representation. The
subgroup N is usually called the forbidden subgroup. We say that R is a splitting
RDS if the forbidden subgroup N is a direct factor G. If the group G is Abelian (resp.
non-Abelian), then D is called an Abelian (resp. non-Abelian) relative difference set.
When n = 1, R is an (m, k,λ) difference set in the usual sense. If k = nλ, then R is
called semi-regular.

For a subset X of G, we set X(−1) = {x−1 |x ∈ X}; also we use the same X

to denote the group ring element
∑

x∈X x ∈ Z[G]. Then, a k-subset R of G is an
(m,n, k,λ) relative difference set in G relative to N if and only if it satisfies the
following equation in the group ring Z[G]:

RR(−1) = k + λ(G − N).
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A prime p is called self-conjugate modulo an integer n if there is some integer j

such that pj ≡ −1 mod n′ where n′ is the largest divisor of n coprime with p. For a
positive integer m, we denote by ξm a primitive m-th root of unity in C.

The following lemma is very useful in the study of semi-regular relative difference
sets.

Lemma 1 [13, Theorem 4.1.1] Let R be an Abelian (m,n,m,m/n) RDS in G rela-
tive to N . Then exp(G)|m or G = Z4, n = 2.

There has been extensive research on (pa,pb,pa,pa−b) RDSs with p a prime, see
[10, 13, 14] and the references there. In this present paper, we study Abelian relative
(pn, p, pn, n) difference sets with p an odd prime not dividing n through a group
ring approach. In [9], the authors showed that there is no Abelian (pq, q, pq, p)
RDS in Zp × Z

2
q with p, q being two distinct odd primes such that p > q , ex-

tending the result in [5]. In [7], the authors showed that there is no Abelian
(3pq, 3, 3pq, pq) RDS in Z

2
3 × Zp × Zq with p, q being two distinct primes larger

than 3. According to Lemma 1, they have shown that there is no Abelian relative dif-
ference set with the corresponding parameters. In both papers the authors investigated
the character values of the corresponding relative difference sets.

Now we assume p is an odd prime and n is a positive integer such that gcd(p,n)

= 1. Let G be an Abelian group containing a (pn, p, pn, n) RDS R relative to
a subgroup N of size p. Then in view of Lemma 1, we must have the Sylow p-
subgroup of G elementary Abelian. Hence G = Zp2 does not contain a (p, p, p, 1)

RDS. When G = Z
2
p , N = {0} × Zp , according to a result in [6], a (p, p, p, 1) RDS

in G relative to N must be of the form

Lu,v,w := {(i, ui2 + vi + w) : i ∈ Zp}, u, v,w ∈ Zp,u �= 0.

In the sequel, we will assume that n > 1. Throughout this paper, we will fix the
following notations: We write G = E × W , where |E| = n, and W = 〈a, b : ap =
bp = 1, ab = ba〉, N = 〈b〉 < W . Also write e := exp(E), L := 〈a〉, H := E × L,
and suppose R is a (pn, p, pn, n) RDS in G relative to N .

We will frequently view an integer m as an element of Zp in the natural way,
and will indicate which ring it is considered in if necessary. We make no distinction
between Zp and Fp , the finite field with p elements. Since we will take summations
over Zp most of the time, we abbreviate

∑
x for

∑
x∈Zp

. The Legendre symbol for

Zp is written as
( ·

p

)
. A constant we will use is defined by � = ∑p−1

i=1

(
i
p

)
ξ i
p , which

is a Gauss sum and satisfies �� = p, see [2, p. 11].
In Section 2, we give the basic facts about group rings and some lemmas we need.

In Section 3, we take a group ring approach and get some non-existence and struc-
tural results when p is self-conjugate modulo exp(E). In the last section, we give
a construction of (p(p + 1),p,p(p + 1),p + 1) RDSs with p a Mersenne prime.
A Mersenne prime is an odd prime p such that p + 1 = 2r for some integer r > 0.
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2 Preliminaries

In this section, we introduce the basic facts about the group ring Fp[G], see [12] or
[11]. First we list some basic equations which holds in Fp[G]. Let x be an element
of order p in G. Then

(x − 1)p−1 =
p−1∑

i=0

(
p − 1

i

)

(−1)p−1−ixi =
p−1∑

i=0

xi, (x − 1)p = xp − 1 = 0, (2.1)

(x−1 − 1)i = (1 − x)i(x − 1 + 1)p−i = (−1)i
p−i∑

k=0

(
p − i

k

)

(x − 1)k+i , (2.2)

for each 0 ≤ i ≤ p − 1. A standard Fp-basis for Fp[G] is given by {hbi : h ∈ H,

i ∈ Zp}, but the following basis will be more convenient for our purpose:

{h(b − 1)i : h ∈ H, i ∈ Zp}.

The fact that this is a basis follows from that hbi = h(b−1+1)i = ∑i
k=0

(
i
k

)
h(b−1)k

for each 0 ≤ i ≤ p − 1, h ∈ H . Therefore each element α ∈ Fp[G] can be written in

the form α = ∑p−1
i=0 αi(b − 1)i with αi ∈ Fp[H ]. The merit of this basis is that,

denoting by Ii the principal ideal generated by (b − 1)i in Fp[G] for each 0 ≤ i ≤ p,
we have

Fp[G] = I0 ⊃ I1 ⊃ · · · ⊃ Ip = 0,

which is a chain of descending ideals in Fp[G] such that IiIj ⊆ Ii+j , where we define
Ik := 0 when k > p. An Fp-basis for Fp[H ] can be obtained in the same fashion as
above with a, E in place of b, H .

The augmentation homomorphism ω : Fp[G] �→ Fp is defined by ω(
∑

g∈G agg)

= ∑
g∈G ag , with ag ∈ Fp . The kernel of ω is called the augmentation ideal, which

is generated by elements of the form g − 1, ∀g ∈ G. If β = ∑
g∈G bgg is annihilated

by the augmentation ideal, i.e.,

β(h − 1) =
∑

g∈G

bggh −
∑

g∈G

bgg = 0

for all h ∈ G, then b1 = bh for any h ∈ G by comparing the coefficients of h on both
sides, so β = b1G. The following lemmas will be the starting point for our study in
the next section.

Lemma 2 Let p be an odd prime and H = E×〈a : ap = 1〉 be an Abelian group with
|E| = n, (p,n) = 1. Write L := 〈a〉. Suppose T ∈ Fp[H ] satisfies T T (−1) = λXL for

some X ∈ Fp[E] and λ ∈ Fp . Write T = ∑p−1
i=0 Ai(a − 1)i , with Ai ∈ Fp[E]. Then

we have
(−1

p

)
λω(X) is a square in Fp and

AiA
(−1)
j = 0,∀ i + j < p − 1. (2.3)



94 J Algebr Comb (2009) 29: 91–106

Proof By direct computations using (2.2) with x = a, we have

T (−1) =
p−1∑

k=0

(
k∑

i=0

(−1)iA
(−1)
i

(
p − i

k − i

))

(a − 1)k.

Write T T (−1) = ∑
k Bk(a − 1)k with Bk ∈ Fp[E]. Then after expansion, we have

Bu =
u∑

k=0

Au−k

(
k∑

i=0

(−1)iA
(−1)
i

(
p − i

k − i

))

,∀0 ≤ u ≤ p − 1.

Here we have used the fact that 1, a−1, · · · , (a−1)p−1 are linearly independent over
Fp[E]. From T T (−1) = λX(a − 1)p−1, we have B0 = · · · = Bp−2 = 0, Bp−1 = λX.

We show that (2.3) holds by induction on i + j . When i = j = 0, B0 =
A0A

(−1)
0 = 0. When i + j = 1, B1 = −A0A

(−1)
1 + A1A

(−1)
0 = 0, multiplying

both sides with A0A
(−1)
1 , we have (A0A

(−1)
1 )2 = A0A

(−1)
1 A1A

(−1)
0 = 0. Since

(p, |E|) = 1, we know that Fp[E] is semisimple and hence contains no non-zero

nilpotent elements, so we must have A0A
(−1)
1 = 0; after taking conjugation, we

have A1A
(−1)
0 = 0. This proves the claim for i + j = 0,1. Now assume this is

true when i + j = k and k + 1 < p − 1. By Bk+1 = 0 and the induction, we have
∑k+1

l=0 (−1)lAk+1−lA
(−1)
l = 0. Notice that Ak+1−lA

(−1)
l Ak+1−rA

(−1)
r = 0 whenever

l �= r , since Ak+1−lA
(−1)
r = 0 or Ak+1−rA

(−1)
l = 0 by the induction. Multiplying

both sides with AiA
(−1)
k+1−i , 0 ≤ i ≤ k + 1, we have (AiA

(−1)
k+1−i )

2 = 0, and hence

AiA
(−1)
k+1−i = 0. This proves (2.3).

From (2.3) we have ω(AiA
(−1)
i ) = ω(Ai)

2 = 0, i.e., ω(Ai) = 0, ∀ i <
p−1

2 . Now

from Bp−1 = λX, we have
∑p−1

l=0 (−1)lAp−1−lA
(−1)
l = λX. By taking augmentation,

we have (−1)
p−1

2 ω(Ap−1
2

)2 = λω(X), i.e. ω(Ap−1
2

)2 = (−1
p

)
λω(X). This completes

the proof of the lemma. �

Lemma 3 Take the same notations as in Lemma 2. If we assume that X = E, then

AiA
(−1)
j = 0, ∀i + j ≤ p − 1, (i, j) �= (

p − 1

2
,
p − 1

2
); (2.4)

Ap−1
2

A
(−1)
p−1

2

=
(−1

p

)

λE. (2.5)

Further, if p is self-conjugate modulo exp(E), then Ai = 0 for i <
p−1

2 , and Ap−1
2

=
tE for some t ∈ Fp such that λ = (−1

p

)
t2n.

Proof Now we assume that X = E and continue the induction process in the proof of
Lemma 2 with k + 1 = p − 1. Multiplying both sides of

∑p−1
l=0 (−1)lAp−1−lA

(−1)
l =

λE with Ap−1−iA
(−1)
i , i �= p−1

2 , we have Ap−1−iA
(−1)
i E = ω(Ap−1−i )ω(Ai)E =

0 since ω(Ap−1−i ) = 0 or ω(Ai) = 0 depending on whether i >
p−1

2 or i <
p−1

2 .
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Hence (Ap−1−iA
(−1)
i )2 = 0, and it follows that Ap−1−iA

(−1)
i = 0 when i �= p−1

2 . It
follows that

(−1

p

)

Ap−1
2

A
(−1)
p−1

2

=
p−1∑

l=0

(−1)lAp−1−lA
(−1)
l = λE.

Now further assume that pj ≡ −1 mod e = exp(E) for some j . Then A
(−1)
i =

A
(pj )
i = A

pj

i . From AiA
(−1)
i = 0, ∀i <

p−1
2 , we have A

1+pj

i = 0. It follows that Ai

is a nilpotent element in Fp[E] which has got to be 0. From A
1+pj

p−1
2

= Ap−1
2

A
(−1)
p−1

2

=
(−1

p

)
λE, we have

(
(g − 1)Ap−1

2

)1+pj = (−1
p

)
λE(g − 1)1+pj = 0, so (g − 1)Ap−1

2
is

nilpotent and hence is 0 for any g ∈ E. It follows that Ap−1
2

= tE for some t ∈ Fp ,

and t2nE = (tE)(tE(−1)) = (−1
p

)
λE, that is, λ = (−1

p

)
t2n in Fp . This completes the

proof of the lemma. �

3 The group ring approach

In this section, we mainly use Lemmas 2 and 3 to get some non-existence and struc-
tural results, especially when p = 5, 7. We take the same notations as introduced in
Section 1, and assume that p > 3. Because R intersects each coset of N in a unique
element, we have R ∩ hN = {bf (h)h} for each h ∈ H , where f (h) is some element
in {0,1, · · · ,p − 1} depending on h. It follows that R = ∑

h∈H bf (h)h since a set of
coset representatives for N in G is H . In Fp[G], we have

R =
∑

h∈H

(b − 1 + 1)f (h)h =
∑

h∈H

f (h)∑

i=0

(
f (h)

i

)

(b − 1)ih =
p−1∑

i=0

∑

h∈H

(
f (h)

i

)

(b − 1)ih,

since
(
n
k

) = 0 when k > n. Write R = ∑p−1
i=0 Ri(b − 1)i with Ri ∈ Fp[H ]. Then we

have

Ri =
∑

h∈H

(
f (h)

i

)

h (3.1)

by comparing the coefficients of (b − 1)i, ∀0 ≤ i ≤ p − 1; especially, R0 = H , R1 =∑
h∈H f (h)h. We can recover R ∩ hN from the coefficient f (h) of h in R1, namely,

R ∩ hN = {bf (h)h}. Therefore R1 determines R completely, and this fact will be
utilized below.

Now let us check the group ring equation

RR(−1) = pn + n(G − N) = n(HN − N) = n(H − 1)(b − 1)p−1

in Fp[G], where we have used the fact N = (b − 1)p−1, see (2.1) . First,

R(−1) = H − R
(−1)
1 (b − 1) + (R1 + R2)

(−1)(b − 1)2 + X(b − 1)3
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for some X ∈ Fp[G] by direct computations using (2.2). Write RR(−1) =
∑p−1

i=0 Ci(b − 1)i . Then we have from the above:

C0 = H 2 = pnH = 0;
C1 = −HR

(−1)
1 + R1H = −ω(R

(−1)
1 )H + ω(R1)H = 0;

C2 = −R1R
(−1)
1 + λ1H = 0,

for some λ1 ∈ Fp . The first two equations are trivially true and the expressions of
Ck for k > 2 are complicated for a general p and we do not need them except when
p = 5, so we will mainly study the equation C2 = 0 at first, i.e.,

R1R
(−1)
1 = λ1H. (3.2)

If we can get some information about R1, then we get information about R by our
earlier observation. For this purpose, we need to determine λ1. We first define the
number ai := |f −1(i)|, the number of pre-images of i ∈ {0,1, · · · ,p − 1} under f ,
and we shall regard i as an element of Zp below. By computing the coefficients of
the group identity 1H on both sides of (3.2), we have

λ1 =
∑

i

ai i
2. (3.3)

To determine λ1, we need to shift to Z[G] for a moment. For the character χ of G

which is principal on H and maps b to ξp , we have χ(R)χ(R) = pn. By a standard
process of analyzing the prime ideal decompositions of both sides in Z[ξp], see [1]
for example, we have χ(R) = g(ξp)�, where g(x) ∈ Z[x] and |g(ξp)|2 = n. On the
other hand, χ(R) = ∑

i aiξ
i
p , so

∑
i aiξ

i
p = g(ξp)� . Multiplying both sides with

� = (−1
p

)
�, we get that p divides

∑

k

bkξ
k
p :=

(∑

i

aiξ
i
p

)(∑

j

(−j

p

)

ξ
j
p

)

,

where bk = ∑
i

(−k+i
p

)
ai . That is, p|∑p−1

k=1 (bk −b0)ξ
k
p . Since ξp, · · · , ξ

p−1
p forms an

integral basis of Z[ξp], we have p|(bk − b0), i.e., bk ≡ c mod p for some constant c.
Write bk = pdk + c. Then from the fact that

∑
k bkξ

k
p = p

∑
k dkξ

k
p has modulus

p
√

n, we have
∑

k dkξ
k
p has modulus

√
n, i.e.,

(∑

k

dkξ
k
p

)(∑

k

dkξ
−k
p

)

= n.

It follows that (
∑

k dk)
2 ≡ n mod (1 − ξp)Z[ξp] ∩ Z, i.e., (

∑
k dk)

2 ≡ n mod p.
Meanwhile,

∑

k

bk = p

(∑

k

dk + c

)

=
∑

k

∑

i

(−k + i

p

)

ai =
∑

i

∑

k

(−k + i

p

)

ai = 0,

so c = −∑
k dk . Therefore, we have c2 ≡ n mod p.
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Now we shift back to Fp[G] again. We have

bk =
∑

i

(−k + i

p

)

ai =
∑

i

(i − k)
p−1

2 ai.

Direct computations show that

(i
p−1

2 , (i + 1)
p−1

2 , · · · , (i + p − 1

2
)

p−1
2 ) = (i

p−1
2 , i

p−3
2 , · · · ,1)M1M2,

where M1 = diag(1,
( p−1

2
1

)
, · · · ,

( p−1
2

p−1
2

)
), and M2 is a Vandermonde matrix with

(k, t)-th entry tk−1. Both of M1,M2 are non-degenerate, so

(i
p−1

2 , i
p−3

2 , · · · ,1) = (i
p−1

2 , (i + 1)
p−1

2 , · · · , (i + p − 1

2
)

p−1
2 )M−1

2 M−1
1 ,

and hence we can write i2 as a Fp-linear combination of i
p−1

2 , (i + 1)
p−1

2 , · · · ,

(i + p−1
2 )

p−1
2 . It follows that we can find a set of αk ∈ Fp such that

∑
k αk(i − k)

p−1
2

= i2. Then we have
∑

k

αkbk =
∑

k

αk

∑

i

(i − k)
p−1

2 ai =
∑

i

ai

∑

k

αk(i − k)
p−1

2 =
∑

i

i2ai.

On the other hand, bk = c in Fp for each k ∈ Zp . Therefore, from (3.3), we have

λ1 = (
∑

k αk)c. Notice that
∑

k αk is the coefficient of i
p−1

2 in
∑

k αk(i − k)
p−1

2

= i2, so λ1 = c, λ2
1 = n when p = 5, and λ1 = 0 when p > 5. This completes the

determination of λ1. We record it below.

Proposition 4 Notations as above. Then λ2
1 = n in Fp when p = 5, and λ1 = 0 when

p > 5.

When p = 5, set T := R1, X := E, λ := λ1 and invoke Lemma 2, we have the
following result:

Proposition 5 Suppose there is an Abelian (5n,5,5n,n) RDS with 5 � n. Then n ≡ 1
mod 5.

Proof Assume that n > 1. We have λ1n = (−1
5 )λ1n is a non-zero square in F5 by

Lemma 2, so (λ1n)2 = 1. From the above arguments, we have λ2
1 = n in F5. There-

fore, (λ1n)2 = λ6
1 = λ2

1 = 1, and hence n ≡ 1 mod 5. �

Now, we consider the case p = 5 and 5 is self-conjugate mod exp(E).

Theorem 6 If there is an Abelian (5n,5,5n,n) RDS in G with (5, n) = 1, n > 1,
then there is no integer j such that 5j ≡ −1 mod exp(G)5′ , the largest divisor of
exp(G) which is coprime with 5.
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Proof Notations as before. By Lemma 3, we have that

R1 = tE(a − 1)2 + A3(a − 1)3 + A4(a − 1)4 (3.4)

for some A3,A4 ∈ F5[E], t �= 0. Expanding, we have

R1 = (tE − A3 + A4) + (−2tE + 3A3 + A4)a + (tE − 3A3 + A4)a
2

+ (A3 + A4)a
3 + A4a

4.

Write A3 = ∑
x∈E axx, A4 = ∑

x∈E bxx, with ax, bx ∈ Fp , and define

Br,s := {x ∈ E : ax = r, bx = s}
for each pair of r, s ∈ Zp . Then {Br,s : r, s ∈ Zp} forms a partition of E, and A3 =∑

r,s rBr,s , A4 = ∑
r,s sBr,s . We can rewrite R1 as

R1 =
∑

r,s

∑

i

(
(i + 1)(i + 2)

2
t − r(i + 1) + s

)

aiBr,s .

Correspondingly, in Z[G], we have

R =
∑

r,s

∑

i

b
(i+1)(i+2)

2 t−r(i+1)+saiBr,s . (3.5)

This gives a structural characterization of R. We note that letting the automorphism
of G which fixes H and maps bt to b act on R if necessary, we can assume that t = 1,
so the indeterminant t adds no complexity. From now on, we set t = 1.

We look at the expressions for C3, C4, and obtain by direct computations:

R1R
(−1)
2 =R2R

(−1)
1 ;

R2R
(−1)
2 −R1R

(−1)
2 − R1R

(−1)
3 − R3R

(−1)
1 = −1 + λ2H,

for some λ2 ∈ F5. Here we have used the fact that n = 1 in F5. We have seen that
R1 ∈ (a − 1)F5[H ] in (3.4). Take the homomorphism

π : F5[H ] �→ F5[E] ∼= F5[H ]/(a − 1)F5[H ].
Then π(R2)π(R2)

(−1) = −1 ∈ F5[E] from the second equation above. From (3.1)
and (3.5), we have

R2 = 1

2

∑

r,s

∑

i

(
(i + 1)(i + 2)

2
− r(i + 1) + s

)

×
(

(i + 1)(i + 2)

2
− r(i + 1) + s − 1

)

aiBr,s,

π(R2) = 1

2

∑

r,s

∑

i

(
(i + 1)(i + 2)

2
− r(i + 1) + s

)
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×
(

(i + 1)(i + 2)

2
− r(i + 1) + s − 1

)

Br,s

= −1

8

∑

r,s

Br,s = −2E ∈ F5[E].

Now we have π(R2)π(R2)
(−1) = (−2E)2 = −nE = −E = −1: a contradiction un-

less E = 1! This completes the proof of the theorem. �

Example Take the notations introduced in Section 1. Theorem 6 says that exp(E)

can not be a divisor of 5j + 1 for any j ≥ 0. For example, exp(E) can not divide
53 + 1 = 2 × 9 × 7. This rules out the existence of (5n, 5, 5n, n) RDS in G = Z

2
5 ×

Z
r
2 × Z

s
3 × Z

t
9 × Z

u
7 with n = 2r · 3s+2t · 7u > 1. When p is an odd prime such

that p ≡ 2,3 mod 5, we have by the quadratic reciprocity law, ( 5
p
) = (

p
5 ) = −1, so

5
p−1

2 ≡ −1 mod p, and we can not have exp(E)|2p.

For a general prime p > 5, write R = ∑
h∈E h

∑
i a

ibfh(i), with fh : Zp �→ Zp .
When p is self-conjugate mod exp(E), Lemma 3 applies again, and we get

R1 = Ap+1
2

(a − 1)
p+1

2 + · · · + Ap−1(a − 1)p−1,

with Ai ∈ Fp[E], p+1
2 ≤ i ≤ p − 1. We have

(a − 1)p−1−k =
p−1−k∑

i=0

(
p − 1 − k

i

)

(−1)p−1−k−iai

=
p−1−k∑

i=0

(p − 1 − k)(p − 2 − k) · · · (p − k − i)

i! (−1)k+iai

=(−1)k
p−1−k∑

i=0

(i + k) · · · (k + 1)

i! ai

=(−1)k
p−1−k∑

i=0

(
i + k

k

)

ai,

when 0 ≤ k <
p−1

2 . As a polynomial of i,
(
i+k
k

) = (i+k)···(i+1)
k! has degree k <

p−1
2 .

Now take a partition of E as in the case p = 5, we see that deg(fh) <
p−1

2 .
Especially when p = 7, we have R1 = A4(a − 1)4 + A5(a − 1)5 + A6(a − 1)6

with Ai ∈ F7[E], i = 4,5,6. Take the partition {Br,s,t : r, s, t ∈ Z7} of E such that

A4 =
∑

r,s,t

rBr,s,t , A5 =
∑

r,s,t

sBr,s,t , A6 =
∑

r,s,t

tBr,s,t .
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Then by the same process as in the case p = 5, we have

R =
∑

r,s,t

Br,s,t

∑

i

aibr
(i+2)(i+1)

2 −s(i+1)+t .

When r, s, t ranges over Z7 × Z7 × Z7,
∑

i a
ibr

(i+2)(i+1)
2 −s(i+1)+t ranges over the

set {Lu,v,w := ∑
i a

ibui2+vi+w|u,v,w ∈ Z7}. Relabeling Br,s,t , we have the result
below.

Theorem 7 Let n be a positive integer coprime with 7. Suppose R is a putative
(7n,7,7n,n) RDS in G = E ×〈a, b : a7 = b7 = 1, ab = ba〉 relative to N = 〈b〉, and
7 is self-conjugate mod exp(E). Then R is of the form

R =
∑

u,v,w

Bu,v,w

∑

i

aibui2+vi+w,

where {Bu,v,w : u,v,w ∈ Z7} forms a partition of E.

As a final application of Lemma 2, we have the following result which extends
Proposition 5.

Proposition 8 Let p be an odd prime and n > 1 be a positive integer coprime with p.
If there is a (pn,p,pn,n) RDS R in an Abelian group G, then n is a square in Fp .

Proof We take the notations introduced at the beginning of this section. Write R =
∑p−1

i=0 Di(a − 1)i with Di ∈ Fp[E × N ]. Then from RR(−1) = pn + n(G − N) we

have D0D
(−1)
0 = −nN in Fp[E × N ]. Now an application of Lemma 2 gives that

−(−1
p

)n is a square in Fp . When p ≡ 1 mod 4, −1 is a square in Fp , hence −(−1
p

)n

is a square if and only if n is a square. When p ≡ 3 mod 4, (−1
p

) = −1, and hence

n = −(−1
p

)n is a square. �

4 A family of RDSs with new parameters

Most known semi-regular RDSs have parameters (pa,pb,pa,pa−b) with p a prime.
As far as we know, there are only three constructions ([3, 4, 8]) of semi-regular RDSs
in groups of sizes not a prime power when the forbidden subgroup has size larger
than 2. The RDSs constructed in [3, 8] have parameters

(p2t (p + 1),p + 1,p2t (p + 1),p2n),

where t is a positive integer, and p = 2 or p a Mersenne prime. The RDSs constructed
in [4] have parameters

(4q, q, 4q, 4),
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where q is an odd prime power greater than 9, q ≡ 1 (mod 4). In this section, we give
a construction of (p(p + 1),p,p(p + 1),p + 1) RDSs in the elementary Abelian
group G = Fp × Fp × Fp+1, where p is a Mersenne prime.

For an odd prime power q = pn, n ≥ 1, p prime, let K := Fq be the finite field
with q elements, K∗ = K \ {0}, and tr: Fq �→ Fp be the absolute trace function. The
quadratic character 
 on K is defined by


(x) =
⎧
⎨

⎩

−1, if x is a non-square in K,

1, if x is a non-zero square in K,

0, if x = 0.

For each u ∈ K∗, define

S(u) :=
∑

x∈K

ξ tr(ux2)
p ,

and write S := S(1). Then S + S(u) = 2
∑

x∈K ξ
tr(x)
p = 0 if u is a non-square in K

and S = S(u) if u is a square in K∗. It follows that S(u) = 
(u)S for each u ∈ K∗.
Besides, it is easy to see that S = ∑

x∈K 
(x)ξ
tr(x)
p which is a Gauss sum, so it has

modulus
√

q , see [2, p. 11].
In K × K , each K-subspace is given by one of the following:

Lu := {(x, ux) : x ∈ K}, L∞ = {(0, x) : x ∈ K}.
It is standard fact that

∑

u∈K

Lu + L∞ = q + K × K,

LiLj = K × K,∀i, j ∈ K ∪ {∞}, i �= j.

By [13, Theorem 2.2.9], the set R0 := {(x, x2) : x ∈ K} is a (q, q, q,1) RDS in
K ×K relative to 0×K . For each non-principal character χ of K ×K , it is principal
on exactly one of the above K-subspaces. Suppose χ is non-principal on {0} × K ,

and is defined by χ(u′, v′) = ξ
tr(uu′+vv′)
p ,∀(u′, v′) ∈ K . Then v �= 0, and

χ(R0) =
∑

x∈K

ξ tr(ux+vx2)
p =

∑

x∈K

ξ
tr(v(x+ u

2v
)2− u2

4v
)

p = 
(v)Sξ
−tr( u2

4v
)

p . (4.1)

Theorem 9 Suppose p is a Mersenne prime. Let H = Fp × Fp , N = {0} × Fp < H ,
E = Fp+1 be regarded as subgroups of G = H × E in the natural way. Take any
bijection τ : F

∗
p+1 �→ Fp , and define

Ha := {(z, τ (a)z) : z ∈ Fp} ⊂ H

for each a ∈ F
∗
p+1. Also define

H0 := {(z, z2) : z ∈ Fp}.
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Then

R :=
∑

a∈E

Hazaa

is a (p(p + 1)),p,p(p + 1),p + 1) RDS in G relative to N , where

z0 = 0, za = (xa, τ (a)xa − 1

4
τ(a)2) ∈ H,

with xa ∈ Fp for each a ∈ F
∗
p+1.

Proof By definition, we need to show

RR(−1) =
∑

b∈E

( ∑

a∈E

HaH
(−1)
a+b zaz

−1
a+b

)
b = p(p + 1) + (p + 1)(G − N).

Because the elements of E are linearly independent over Z[H ], by comparing the
terms involving each b ∈ E, we need to check the following group ring equations.

(1)
∑

a∈E HaH
(−1)
a = p(p + 1) + (p + 1)(H − N).

This is true since Ha = H
(−1)
a , HaHa = pHa for a ∈ E∗, and

∑
a∈E∗ Ha = p +

H − N , H0H
(−1)
0 = p + H − N as we have exhibited above.

(2)
∑

a∈E HaH
(−1)
a+b zaz

−1
a+b = (p + 1)H for each b ∈ E∗.

Since HaHa′ = H for distinct elements a, a′ ∈ E∗, we see that this is equivalent to
the following equation

H0Hbz
−1
b + HbH

(−1)
0 zb = 2H (4.2)

for each b ∈ E∗. We check this by showing that both sides have the same character
value under the action of each character of H .

Fix an element b ∈ E∗. Let χ be a character of H . The case χ is principal is
trivial, so we assume that χ is non-principal, and suppose χ is defined by χ(u′, v′) =
ξuu′+vv′
p ,∀(u′, v′) ∈ H , with (u, v) �= 0. The case v = 0 is easy. We have χ(H0) =∑

x∈Fq
ξux
p = 0 because u �= 0, so both sides are equal to 0.

Now suppose v �= 0. If χ is principal on Ha , a ∈ E∗, then

χ(Ha) =
∑

x∈Fp

ξ (u+vτ(a))x
p = p,

so we must have u + τ(a)v = 0. When b �= a, we have χ(Hb) = 0, so both sides of
(4.2) are again both 0. When b = a, we have

χ(H0) = S
(v)ξ
− u2

4v
p = S
(v)ξ

− τ (a)2v
4

p

from (4.1). We compute

χ(H0Haz
−1
a ) = χ(H0)χ(Ha)χ(z−1

a )

= pS
(v)ξ
− τ (a)2v

4 −(uxa+vτ(a)xa−v
τ(a)2

4 )
p = pl(v)S,
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and similarly, χ(HaH
(−1)
0 za) = pl(−v)S. Since p ≡ −1 mod 4, we have 
(−1) =

−1. Therefore, χ(H0Haz
−1
a + HaH

(−1)
0 za) = 0 = χ(2H). This proves (4.2) and

hence the whole theorem. �

Remark When p = 7, we have 7 ≡ −1 mod 2, and the above construction are in
accordance with our conclusion in Theorem 7.

This construction allows the following slight variation. Let p,H,N be as in The-
orem 9 and E be a multiplicative group of order p + 1, and the semidirect product
G := H � E is defined by

(u, v)e = e−1(u, v)e = (a(e)u, v), ∀ (u, v) ∈ H,e ∈ E

for some homomorphism a : E �→ F
∗
p . Suppose we can find a bijection τ : E\{1E} �→

Fp , such that

τ(e)a(e′) �= τ(e′e) ∀e, e′ ∈ E \ {1E}, e′e �= 1E; (C1)

τ(e−1) = τ(e)a(e−1),∀e �= 1E. (C2)

Now define

He := {(z, τ (e)z) : z ∈ Fp}, ∀ e �= 1E, H1 := {(z, z2) : z ∈ Fp}.
Then the set

R :=
∑

e∈E

Hezee

is a (p(p + 1)),p,p(p + 1),p + 1) RDS in G relative to N , where

z1 = 0, ze = (xe, τ (e)xe − 1

4
τ(e−1)2) ∈ H,

with xe ∈ Fp for each e �= 1E . The proof is essentially the same as that of the above
theorem. The equations to check are the following:

(1)
∑

a∈E HaH
(−1)
a = p(p + 1) + (p + 1)(H − N).

(2)
∑

e∈E HeH
(−e′)
e′e zez

−e′
e′e = (p + 1)H, ∀e′ �= 1E.

The analogy of (4.2) is

H1H
(−e)
e z−e

e + He−1H
(−e)
1 ze−1 = 2H. (4.3)

We observe that condition (C1) is to make sure that H
(e′)
e′e �= He when e, e′, e′e �= 1E ,

and condition (C2) is to make sure that H
(e)
e = He−1 when e �= 1E , and the choice of

ze is to make (4.3) hold.

Theorem 10 Let p,H,N be as in Theorem 9. Let E be a finite group of order
p + 1 such that E2 := {e ∈ E : e2 = 1} is a normal subgroup of index 2 in E and
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exp(E) = 4. Take the homomorphism a : E �→ {±1} ⊂ F
∗
p with ker(a) = E2. The

semidirect product G := H � E, defined by

(u, v)e = e−1(u, v)e = (a(e)u, v), ∀(u, v) ∈ H,e ∈ E,

contains a (p(p + 1)),p,p(p + 1),p + 1) RDS relative to N .

This follows from the lemma below.

Lemma 11 There are exactly two types of groups E such that there is a bijection
τ : E \ {1E} �→ Fp and a homomorphism a : E �→ F

∗
p satisfying the conditions (C1),

(C2):

(1) E is elementary Abelian.
(2) E2 := {e ∈ E : e2 = 1} is a normal subgroup of index 2 in E, and exp(E) = 4.

Obviously, E2 is elementary Abelian in this case.

Proof Let E be a group of order p+1. Suppose there is a bijection τ : E \{1E} �→ Fp

and a homomorphism a : E �→ F
∗
p satisfying the two conditions (C1), (C2). Because

(p+1,p−1) = 2, from a(e)p+1 = a(ep+1) = 1 and a(e)p−1 = 1, we have a(e)2 = 1
for each e ∈ E, so Im(a) ≤ {±1}, and correspondingly ker(a) has size p+1

2 or p +1.
(1) First, we assume |ker(a)| = p + 1. Then ker(a) = E, and we must have

τ(e−1) = τ(e),∀e ∈ E,e �= 1E by (C2). It follows that e−1 = e for any e ∈ E, which
means E = E2 := {e ∈ E : e2 = 1} and hence is elementary Abelian. In this case, just
take a to be the trivial homomorphism and τ any bijection from E \ {1E} to Fp .

(2) Second, we assume |ker(a)| = p+1
2 . Then ker(a) is a subgroup of index 2

in E. We first show that ker(a) = E2. If e ∈ ker(a), e �= 1E , then τ(e) = τ(e−1)

by (C2) and we must have e = e−1, i.e., e ∈ E2. Hence ker(a) is a subgroup of E2
which is either ker(a) or E. If e ∈ E2, e �= 1E , then τ(e) = τ(e)a(e) by (C2), so
either τ(e) = 0 or a(e) = 1, i.e., e ∈ ker(a). Therefore at most one element of E2
is not contained in ker(a) since τ is a bijection. It follows that ker(a) = E2 since
p+1

2 > 1, and hence E2 is a subgroup of index 2 which has got to be normal in E.
For any e ∈ E, we have a(e2) = a(e)2 = 1, so e2 ∈ ker(a),and hence exp(E)|4.

Because E �= E2, we must have exp(E) = 4, and if e ∈ E \ E2, then o(e) = 4.
In this case, let a : E �→ {±1} ⊂ F

∗
p be defined by: a(e) = 1 if e ∈ E2 and a(e) =

−1 otherwise. This is a well defined homomorphism, and maps all elements of order
4 to −1 and all elements of order 2 to 1. It is easily checked that the condition (C2)
becomes

τ(e3) = −τ(e), ∀ e with o(e) = 4, (4.4)

and condition (C1) becomes

τ(e′e) �= −τ(e), (4.5)

for any pair of (e′, e) with o(e′) = 4, e �= 1E , e′e �= 1E .
Suppose (4.4) holds, and we show that (4.5) always holds. When e has order 4,

from (4.4), we have that (4.5) is equivalent to

τ(e′e) �= τ(e−1), ∀ e′ with o(e′) = 4, e′e �= 1E, (4.6)
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that is, e′e �= e−1 which is always true since otherwise e′ = e−2 has order 2, contra-
dicting o(e′) = 4. When e has order 2, we have e′e is not in E2 and hence has order
4 when o(e′) = 4, and from (4.4), we have that (4.5) is equivalent to

τ((e′e)−1) �= τ(e), ∀ e′ with o(e′) = 4, (4.7)

that is, e′e �= e−1 which is always true since otherwise e′ = e−2 = 1, again contra-
dicting o(e′) = 4. Therefore, (4.5) always holds provided (4.4) holds.

Therefore, the two conditions (C1), (C2) reduce to (4.4). It is clear that such bijec-
tion exists. This completes the proof of the lemma. �

Example 1 Take E = 〈α : α4 = 1〉. Then G = 〈x,α : x3 = α4 = 1, xα = x−1〉 × 〈y :
y3 = 1〉, N = 〈y〉 < G. Take τ : E \ {1} �→ F3 by τ(α) = 1, τ(α2) = 0, τ(α3) = 2.
Then we see that the two conditions are satisfied, and we thus get a (12,3,12,4) RDS
in G relative to N . This is the only case that our parameter family overlaps with the
three parameter families mentioned at the beginning of this section.

Example 2 Let p + 1 = 22m+1 with m ≥ 1. It is easy to see that E = Z4 × Z
2m−1
2 is

of type (2) in Lemma 11. Now we exhibit some non-Abelian groups E of type (2).
We fix an integer i between 1 and m. Let H = Z

2m
2 ,

Ai = diag

((
1 1
0 1

)

, · · · ,

(
1 0
0 1

))

∈ GL(2m,Z2),

with the first i blocks being

(
1 1
0 1

)

, and the remaining blocks being

(
1 0
0 1

)

. We regard

H as a vector space over Z2 with GL(2m,Z2) acting on the right. Now for a given
v0 ∈ H which is not in the image of Ai + I2m, define the following group

Gi := 〈α, H : α2 = v0 ∈ H,vα = α−1vα = vAi, ∀v ∈ H 〉,
where we regard H as a multiplicative subgroup of Gi . It is easy to see that Gi is
of type (2) with Gi,2 := {g ∈ Gi : g2 = 1} = H . We compute the size of the center
Z(Gi) which turns out to be different for different i, so each Gi, 1 ≤ i ≤ m, are not
isomorphic.

First we show Z(Gi) ≤ H . If h0α ∈ Z(Gi) for some h0 ∈ H , then α−1hh0α =
h0αα−1h, i.e., (hh0)

α = hh0 for all h ∈ H . In the vector form, (h + h0)Ai = h + h0

for all h ∈ H , leading to the contradiction Ai = I2m. Because Gi = H ∪ Hα, we see
that Z(Gi) ≤ H .

Next we show that |Z(Gi)| = 22m−i . For any h ∈ H to be in Z(Gi), it is necessary
and sufficient to have hα = α−1hα = hα−1α = h, that is, h(Ai + I2m) = 0. We thus
have Z(Gi) = ker(Ai + I2m). It follows that dimZ2Z(Gi) = 2m− rank(Ai + I2m) =
2m − i.
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