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Abstract A new construction is given of cyclic semifields of orders q2n, n odd, with
kernel (left nucleus) Fqn and right and middle nuclei isomorphic to Fq2 , and the
isotopism classes are determined. Furthermore, this construction is generalized to
produce potentially new semifields of the same general type that are not isotopic to
cyclic semifields. In particular, a new semifield plane of order 45 and new semifield
planes of order 165 are constructed by this method.
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1 Introduction

Finite semifields are of fundamental importance in the study of finite affine and pro-
jective planes and seem to appear in various classification results and construction
procedures.

For example, in the classification of finite translation planes admitting non-
solvable doubly transitive groups on line size sets, due to Ganley, Jha and Johnson [9],
towards the end of the study, an unusual possibility arises: whether a semifield plane
could admit a non-solvable collineation group acting doubly transitive on a parabolic
oval. Ultimately, the semifield plane is shown to be a generalized twisted field plane.
It is only through the knowledge that the full collineation group of any generalized
twisted field plane is solvable (see Biliotti, Jha, Johnson [5]) that this case can be
completely ruled out.

There are intimate connections between commutative semifields and symplectic
semifield planes, as shown by Kantor [16]; the transpose+dual of a commutative
semifield plane produces a symplectic semifield plane. In the Suetake planes of or-
der qn, where q and n are both odd, admitting a collineation group with two long
orbits of length (qn − 1)/2 on the set of components, there is a class of associated
generalized twisted field planes. In fact, such generalized twisted field planes are
symplectic and by reversing the construction procedure, [2], Ball, Bamberg, Lavrauw,
Penttila have shown that the Suetake planes are also symplectic, the first such non-
semifield symplectic planes known of odd dimension and odd characteristic.

Another example of unlikely places for semifields to show up is in ‘generalized
Desarguesian’ planes of Jha-Johnson [12, 13]. Starting with a translation plane of
order q3 admitting a collineation group isomorphic to GL(2, q) acting canonically
as in an associated Desarguesian plane of order q3, it is possible to construct a type
of semifield plane called a cyclic semifield plane. Conversely, any cyclic semifield
plane of order q3 constructs a generalized Desarguesian plane.

A cyclic semifield plane of order qn is defined as follows: assume that T is an
element of �L(n,q), which is strictly semilinear and irreducible over Fq . Then, there
is a non-identity automorphism σ of Fq such that

αT = T ασ ,∀α ∈ Fq .

The following defines a spread set and a corresponding semifield plane, called a
“cyclic semifield plane”:

{
x = 0, y = x(α0 + α1T + α2T

2 + · · · + αn−1T
n−1);

αi ∈ Fq, i = 0,1,2, . . . , n − 1
}
.

This construction generalizes that of Sandler [21] and is due to Jha-Johnson
[11, 13].

If n = 3, there are connections with generalized Desarguesian spreads. If S3 is
a cyclic semifield plane of order q3, consider the group G isomorphic to GL(2, q)

acting canonically as a matrix group:
〈(

a b

c d

)
; ad − bc �= 0, a, b, c, d ∈ Fq

〉
.
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If T defines S3 as above, the following becomes a spread set:
{
x = 0, y = xα;α ∈ Fq

} ∪ {(y = xT )g; g ∈ G} .

Such a translation plane admits GL(2, q) as a collineation group and conversely any
such plane constructs a cyclic semifield plane.

In a related article, the authors [14] determine all the cyclic semifields of order q6

that are of dimension 6 over the associated centers and have right and middle nucleus
isomorphic to Fq2 and left nucleus isomorphic to Fq3 . In the same paper it has been
proven that any semifield of order q6 with left nucleus isomorphic to Fq3 , middle and
right nuclei both isomorphic to Fq2 and center Fq is isotopic to a cyclic semifield and
hence it belongs to the so called family F4 of semifields 2-dimensional over their left
nucleus and 6-dimensinal over their center, introduced in [20].

In this article, we determine all the cyclic semifields of order q2n, n odd, with
left nucleus isomorphic to Fqn , middle and right nuclei both isomorphic to Fq2 and
center isomorphic to Fq . Some of these were previously constructed by Jha–Johnson
in [11] (see Section 10). Moreover, we generalize this family constructing a family
of semifields with the same parameters. This wider family contains new classes of
semifields not cyclic but isotopic to cyclic semifields (semifields of degree 2) and,
for q = 2,4 and n = 5, examples of semifields not isotopic to any previously known
semifield.

Furthermore, we are able to give a lower bound for the number of isotopism classes
of cyclic semifields. In particular, for q = ph, denoting by θ the number of elements
of Fqn not belonging to any proper subfield of Fqn , there are at least

qn − θ

2nhq(q − 1)

mutually non-isotopic cyclic semifields.

2 Semifields, semifield spreads and spread sets

A finite semifield S is a finite algebraic structure satisfying all the axioms for a skew-
field except (possibly) associativity. The subsets

Nl = {a ∈ S | (ab)c = a(bc), ∀b, c ∈ S},

Nm = {b ∈ S | (ab)c = a(bc), ∀a, c ∈ S},

Nr = {c ∈ S | (ab)c = a(bc), ∀a, b ∈ S}
and

K = {a ∈ Nl ∩ Nm ∩ Nr |ab = ba, ∀b ∈ S}
are fields and are known, respectively, as the left nucleus, middle nucleus, right nu-
cleus and center of the semifield. A finite semifield is a vector space over its nuclei
and its center (for more details on semifields see [6] and [8]).
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To any semifield spread S of PG(3, q) it is possible to associate a translation
plane π(S) of order q2, called a semifield plane, via the well known André–Bruck
and Bose construction; i.e. a projective plane coordinatized by a semifield, of order
q2, say S, which is at least two dimensional over its left nucleus.

Let S be a semifield spread and choose homogeneous projective coordinates in
PG(3, q) in such a way that the lines

�∞ = {(0,0, c, d) : c, d ∈ Fq}
and

�0 = {(a, b,0,0) : a, b ∈ Fq}
belong to S. For each line � of S different from �∞ and �0, there is a unique non-
singular 2 × 2 matrix X over Fq such that

� = �X = {(a, b, c, d) | (c, d) = (a, b)X : a, b ∈ Fq}.
In this setting, for any 2 × 2 non-zero matrix X over Fq , the set

RX = {lλX : λ ∈ Fq} ∪ {�∞}
is a regulus containing the lines �∞ and �0 and any regulus through �∞ and �0 can
be written in this way. The set

CS = {X | �X ∈ S}
has the following properties:

(i) CS has q2 elements,
(ii) the zero matrix belongs to CS ,

(iii) X − Y is non-singular for all X,Y ∈ CS , X �= Y,

(iv) CS is closed under addition.
Such a set CS is called the spread set (of matrices) associated with S with respect

to �0 and �∞ (see e.g. [6]). Conversely, starting from a set C of 2 × 2 matrices over
Fq satisfying (i), (ii) and (iii), and closed under addition, the set of lines

S = {�X : X ∈ C} ∪ {�∞}
is a semifield spread of PG(3, q) and CS = C.

Let π(S) be the semifield plane defined by the semifield spread S of PG(3, q),
let CS be the spread set associated with S containing �0 and �∞, and let V = V (4, q)

denote the vector space of all 2 × 2 matrices over Fq . Since CS is closed under
addition and contains the zero matrix, CS defines a vector subspace of V over some
subfield of Fq . Denote by K the maximal subfield of Fq with respect to which CS is
a K-vector subspace of V, i.e. K is the maximal subfield of Fq such that λX ∈ CS for
any λ ∈ K and for any X ∈ CS . If π(S) is a non-Desarguesian semifield plane, then K

is a proper subfield of Fq called the center of the semifield plane π(S); equivalently,
K is called the center of the semifield spread S. It can be shown that K is isomorphic
to the center K of the semifield S which coordinates π(S).
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Starting from a semifield spread S of a 3-dimensional projective space, another
semifield spread, say Ŝ , can be constructed by applying any correlation of the space.
The semifield spread Ŝ does not depend, up to isomorphism, on the chosen correla-
tion and it is called the transpose of S (see e.g. [6] and [3]).

Two semifield spreads S and S ′ are isomorphic if and only if the associated trans-
lation planes π(S) and π(S ′) are isomorphic; this happens if and only if the associ-
ated semifields S and S

′ are isotopic (for more details on isotopy see [6]). The center
of a semifield spread is invariant under isomorphisms.

In terms of the associated spread sets of matrices, we have that S and S ′ are
isomorphic if and only if there exist two matrices A, B ∈ GL(2,Fq) and an automor-
phism σ ∈ Aut(Fq) such that

CS ′ = {AMσ B : M ∈ CS } ([6]).

A very successful tool towards the proof of many of the results contained in this
article was looking at the spread set of a semifield spread S of PG(3, q) as a set of
Fq -linear maps of Fq2 ; denote this set by S. Then, the set S is closed under addition
between linear maps and it has the following properties: (i) the zero map belongs
to S; (ii) |S| = q2; (iii) any non-zero element of S is a non-singular map. In what
follows we will refer to S as a spread set of linear maps of S . In these terms we
have that the spreads S and S ′ are isomorphic if and only if there exist two bijective
Fq -linear maps φ and ψ of Fq2 and τ ∈ Aut(Fq2) such that

S′ = {φ ◦ ϕτ ◦ ψ : ϕ ∈ S},
where

ϕτ : x ∈ Fq2 → (aτ x + bτ xq) ∈ Fq2 ,

for

ϕ : x ∈ Fq2 → (ax + bxq) ∈ Fq2

and S and S′ are spread sets of linear maps of S and S ′ respectively. Also, if S is a
spread set of linear maps of Fq2 of a semifield spread S , then

Ŝ = {ϕ̂ : ϕ ∈ S}
where

ϕ̂ : x ∈ Fq2 → ax + bqxq ∈ Fq2

for

ϕ : x ∈ Fq2 → ax + bxq ∈ Fq2 ,

is a spread set of linear maps of the transpose spread Ŝ of S .
Finally, if S is a spread set of linear maps of a semifield spread S containing the

identity map, then the algebraic structure (Fq2 ,+,◦) where + is the sum of the field
Fq2 and ◦ is defined as

x ◦ y = ϕy(x),
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with ϕy the unique element of S such that ϕy(1) = y is a semifield with identity 1 and
left nucleus Fq ; this semifield is (up to isotopy) the semifield S which coordinatizes
the plane π(S).

3 Cyclic semifield spreads in PG(3, qn), n odd

In this section we will study cyclic Fq -semifield spreads of PG(3, qn) (n > 1 odd)
whose associated semifield S has middle and right nuclei both isomorphic to Fq2 . We
start by proving some lemmas which are fundamental to our purpose.

Lemma 1 Let Fq be the field of scalar 2 × 2 matrices over Fq , i.e.

Fq =
{(

u 0
0 u

)
: u ∈ Fq

}

.

If F is any field of 2 × 2 matrices over Fqn isomorphic to Fq2 and containing Fq ,
then

F =
{(

u + At Bt

Ct u + Dt

)
: u, t ∈ Fq

}
,

where A,B,C,D are elements of Fqn such that A + D,BC − AD ∈ Fq and the
polynomial X2 + (A + D)X + AD − BC is Fq -irreducible.

Proof Let M =
(

A B

C D

)
be an element of F \ Fq . Any element of F has the form

(
α 0
0 α

)
+

(
β 0
0 β

)(
A B

C D

)
=

(
α + βA βB

βC α + βD

)
,

with α,β ∈ Fq . Since the field F is closed under the product, straightforward com-
putations show that

A + D ∈ Fq and BC − AD ∈ F
∗
q .

Moreover, since F is a field, any matrix of F is non-singular, i.e. the polynomial

X2 + (A + D)X + AD − BC

is Fq -irreducible. �

Lemma 2 Let F be the field of the previous lemma and let α =
(

u + At Bt

Ct u + Dt

)
,

with u, t ∈ Fq , be any element of F . Then,

αq =
(

u + Dt −Bt

−Ct u + At

)
.
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Proof Note that since

X2 + (A + D)X + AD − BC

is Fq -irreducible, then also

X2 − (A + D)X + AD − BC

is Fq -irreducible. Let λ be one root in Fq2 of

X2 − (A + D)X + AD − BC;

then λ ∈ Fq2 \ Fq and hence {λ,1} is an Fq -basis of Fq2 . Also, the map

ψ :
(

u + At Bt

Ct u + Dt

)
∈ F �→ λt + u ∈ Fq2

is an isomorphism between F and Fq2 = Fq(λ). Hence, since λq = (A + D) − λ, if

α =
(

u + At Bt

Ct u + Dt

)
,

with u, t ∈ Fq , then

αq = ψ−1(λqt + u) =
(

u′ + At ′ Bt ′
Ct ′ u′ + Dt ′

)
,

where u′ = u + t (A + D) and t ′ = −t ; the result follows. �

Now, we are able to exhibit the general form of a cyclic Fq -semifield spread of
PG(3, qn), n odd, whose associated semifield has right and middle nuclei both iso-
morphic to Fq2 .

Lemma 3 Any cyclic semifield spread S of PG(3, qn), n odd, whose associated
semifield has right and middle nuclei both isomorphic to Fq2 and center isomorphic
to Fq can be described as follows

x = 0, y = x(I (α0 + α1u + · · · + αn−1
2

u
n−1

2 ) + T (β0 + β1u + · · · + βn−3
2

u
n−3

2 ))

(3.1)
where αi,βj vary in F , with F a field of 2 × 2 matrices isomorphic to Fq2 described
in Lemma 1, I is the identity matrix,

T =
(

x0
(D−A)x0−Bx2

C

x2 −x0

)
,

and u = x2
0 + (D−A)x0x2−Bx2

2
C

.
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Proof If S is a cyclic semifield spread of PG(3, qn), whose associated semifield
has right and middle nuclei both isomorphic to Fq2 and center isomorphic to Fq ,
then its spread set with respect to the lines �∞ = {(0,0, x2, x3) : x2, x3 ∈ Fqn} and
�0 = {(x0, x1,0,0) : x1, x2 ∈ Fqn} consists of the matrices

Iα0 + Tβ0 + T 2α1 + T 3β1 + · · · + T n−2βn−3
2

+ T n−1αn−1
2

, (3.2)

where αi,βj vary in a field of matrices F isomorphic to Fq2 and T is a 2 × 2 matrix
over Fqn such that αT = T αq for any α ∈ F and such that T induces a non-linear
collineation of PG(n − 1, q2) without fixed proper subspaces (i.e., (T ,F ) is an irre-
ducible pair, see [11]). Hence, the spread set CS of S is a right vector space over the
field of matrices F generated by {I, T ,T 2, . . . , T n−1}. Since S is a semifield spread
with center Fq , we may assume that F contains the field of scalar matrices over Fq

and by Lemma 1 we have

F =
{(

u + At Bt

Ct u + Dt

)
: u, t ∈ Fq

}
,

where

A + D,AD − BC ∈ Fq

and

X2 + (A + D)X + AD − BC

is Fq -irreducible. Since n is odd such a polynomial is also Fqn -irreducible and this
implies that BC �= 0 and that the field F is contained in the field of matrices (isomor-
phic to Fq2n )

{(
u + At Bt

Ct u + Dt

)
: u, t ∈ Fqn

}
.

If T =
(

x0 x1
x2 x3

)
, with xi ∈ Fqn , by αT = T αq and by Lemma 2 we get

(
u + At Bt

Ct u + Dt

)(
x0 x1
x2 x3

)
=

(
x0 x1
x2 x3

)(
u + Dt −Bt

−Ct u + tA

)

for all u, t in Fq and this implies the following conditions:

x3 = −x0, x1 = (D − A)x0 − Bx2

C
.

Hence,

T =
(

x0
(D−A)x0−Bx2

C

x2 −x0

)
.

Straightforward computations show that

T 2k−1 = uk−1T T 2k = ukI
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for k = 1, . . . , n−1
2 and with

u = x2
0 + (D − A)x0x2 − Bx2

2

C
.

Now the result follows. �

A spread set of the form (3.1) produces a cyclic semifield spread if the pair (T ,F )

is irreducible. So, by Lemma 3, we may obtain all the cyclic semifield spreads of
PG(3, qn), n odd, whose associated semifield has middle and right nuclei both iso-
morphic to Fq2 and center isomorphic to Fq , by determining all the irreducible pairs
(T ,F ), where F is a field of 2 × 2 matrices over Fqn isomorphic to Fq2 described in
Lemma 1 and T is a 2 × 2 matrix of the type shown in Lemma 3.

In order to do this, it is useful to describe the spread set associated with a cyclic
semifield spread in terms of Fqn -linear maps of Fq2n in such a way that the field of the
matrices F corresponds to the field of the scalar maps of Fq2n defined by elements of
Fq2 , i.e. the maps x ∈ Fq2n �→ αx ∈ Fq2n , with α ∈ Fq2 .

To this aim, let S be a cyclic semifield spread and let CS be the associated spread
set as described in Lemma 3. Recall that, since n is odd, the polynomial

X2 − (A + D)X + AD − BC

is both Fq -irreducible and Fqn -irreducible and in particular C �= 0. Let λ be a root
in Fq2n of X2 − (A + D)X + AD − BC; then λ ∈ Fq2 \ Fq and Fq2n = Fqn(λ). Set

λ̄ = λ
C

− D
C

and consider the Fqn -basis {λ̄,1} of Fq2n . The 2 × 2 matrix over Fqn

representing (in the fixed basis and with respect to the left multiplication) the linear
map

ᾱ : x ∈ Fq2n �→ αx ∈ Fq2n ,

with α ∈ Fq2n , is
(

u + At Bt

Ct u + Dt

)
,

where t, u are the components of α in the Fqn -basis {λ,1}. In particular, if α ∈ Fq2

then t, u ∈ Fq .

On the other hand the matrix

T =
(

x0
(D−A)x0−Bx2

C

x2 −x0

)

represents, in the fixed basis {λ,1}, the Fqn -linear map of Fq2n

T̄ : x ∈ Fq2n �→ bxqn ∈ Fq2n ,

where b = x2λ̄ − x0. It follows that for any k = 1, . . . , n−1
2 the matrices T 2k−1 and

T 2k represent, in the fixed basis {λ,1}, the Fqn -linear maps of Fq2n

T̄ 2k−1 : x ∈ Fq2n �→ buk−1xqn ∈ Fq2n
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and

T̄ 2k : x ∈ Fq2n �→ ukx ∈ Fq2n ,

where u = bqn+1. Then, the Fqn -linear maps of Fq2n corresponding to the matrices

of CS in the basis {λ,1}, are

idα0 + T̄ β0 + T̄ 2α1 + T̄ 3β1 + · · · + T̄ n−2βn−3
2

+ T̄ n−1αn−1
2

,

where α0, . . . , α n−1
2

, β0, . . . , β n−3
2

∈ Fq2 , i.e.

x ∈ Fq2n �→(α0 + α1u + · · · + αn−1
2

u
n−1

2 )x

+ b(β0 + β1u + · · · + βn−3
2

u
n−3

2 )xqn ∈ Fq2n ,

where αi,βj ∈ Fq2 . Let S be such a set of Fqn -linear maps. Note that, since |S| = q2n,

then {1, u, . . . , u
n−1

2 } is independent over Fq2 and this implies that Fq2n = Fq2(u), i.e.
{1, u, . . . , un−1} is an Fq2 -basis of Fq2n . Therefore, by the previous arguments and by
Lemma 3, we obtain part (1) of the following:

Theorem 1 (1) Any spread set of Fqn -linear maps of a cyclic semifield spread S
of PG(3, qn), n odd, whose associated semifield has the right and middle nuclei
both isomorphic to Fq2 and the center isomorphic to Fq may be represented in the
following form:

y = (α0 + α1u + · · · + αn−1
2

u
n−1

2 )x + b(β0 + β1u · · · + βn−3
2

u
n−3

2 )xqn

,

where αi,βi vary in Fq2 , u is a fixed element of Fqn such that {1, u, . . . , un−1} is an

Fq2 -basis of Fq2n and b is a fixed element of Fq2n such that bqn+1 = u.
(2) Conversely, if u and b are two fixed elements of Fqn and Fq2n (n odd), re-

spectively, such that {1, u, . . . , un−1} is an Fq2 -basis of Fq2n and bqn+1 = u then the
following

y = (α0 + α1u + · · · + αn−1
2

u
n−1

2 )x + b(β0 + β1u · · · + βn−3
2

u
n−3

2 )xqn

,

(where αi,βi vary in Fq2 ) is a spread set of Fqn -linear maps of a cyclic semifield
spread of PG(3, qn), whose associated semifield has the right and middle nuclei
both isomorphic to Fq2 and the center isomorphic to Fq .

Proof We give the proof of part (2). The set of the Fqn -linear maps

Su,b = {ϕα0,...,α n−1
2

,β0,...,β n−3
2

: αi,βj ∈ Fq2},

where ϕα0,...,α n−1
2

,β0,...,β n−3
2

is defined by
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x ∈ Fq2n �−→(α0 + α1u + · · · + αn−1
2

u
n−1

2 )x

+ b(β0 + β1u + · · · + βn−3
2

u
n−3

2 )xqn ∈ Fq2n ,

contains the zero map, is closed under the sum and |Su,b| = q2n. So it defines a spread
set of a semifield spread if the non-zero maps of Su,b are non-singular. Suppose that
there exist x ∈ F

∗
q2n and αi,βj ∈ Fq2 such that

(α0 + α1u + · · · + αn−1
2

u
n−1

2 )x + b(β0 + β1u + · · · + βn−3
2

u
n−3

2 )xqn = 0.

Then

b(β0 + β1u + · · · + βn−3
2

u
n−3

2 )xqn−1 = −α0 − α1u − · · · − αn−1
2

u
n−1

2

and hence

bqn+1(β0 + β1u + · · · + βn−3
2

u
n−3

2 )q
n+1 = (α0 + α1u + · · · + αn−1

2
u

n−1
2 )q

n+1,

i.e.

u(β
q

0 + β
q

1 u + · · · + β
q
n−3

2
u

n−3
2 )(β0 + β1u + · · · + βn−3

2
u

n−3
2 )

= (α
q

0 + α
q

1 u + · · · + α
q
n−1

2
u

n−1
2 )(α0 + α1u + · · · + αn−1

2
u

n−1
2 ).

Now, since {1, u, . . . , un−1} is an Fq2 -basis of Fq2n (in particular since n is odd and

u ∈ Fqn , it is also an Fq -basis of Fqn ), we get αi = βj = 0 for any i = 0, . . . , n−1
2 and

for any j = 0, . . . , n−3
2 . So the non-zero maps of Su,b are all non-singular.

Let

T : x ∈ Fq2n �→ bxqn ∈ Fq2n

and note that T ∈ Su,b . Since

T (αx) = αqbxqn = αqT (x)

for any α ∈ Fq2 , T induces a strictly semilinear collineation of PG(n − 1, q2) =
PG(Fq2n ,Fq2). Let Um be an m-dimensional subspace of PG(n − 1, q2) (m > −1)
fixed by T of minimum dimension. Then we can write

Um = 〈x,T (x), . . . , T m(x)〉
and hence

T m+1(x) = α0x + · · · + αmT m(x)

for some αi ∈ Fq2 . If m < n − 1, then the Fqn -linear map

α0 + α1T + · · · + αmT m − T m+1
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of Su,b is singular, a contradiction. So, T induces an irreducible semilinear collinea-
tion over Fq2 and since Su,b is the subspace over Fq2 generated by

{id, T ,T 2, . . . , T n−1},

we have that Su,b defines a cyclic semifield spread of PG(3, qn).
Now we compute the nuclei of the semifield Su,b defined by Su,b. It is easy

to see that an element y of a semifield S belongs to Nr (resp. Nm) if and only
if ϕy ◦ ϕ ∈ S (resp. ϕ ◦ ϕy ∈ S) for any element ϕ of S (see e.g. [22, Sec. 4]).
From this, we get that Fq2 is contained in the right and middle nuclei of the

semifield Su,b . Also if ϕ : x �→ Ax + Bxqn
is an element of the right nucleus of

Su,b , then ϕ ◦ ϕα0,...,α n−1
2

,0,...,0 ∈ Su,b for any αi ∈ Fq2 , and this implies B = 0.

Now, from ϕ ◦ ϕα0,...,α n−1
2

,0,...,0 = Aϕα0,...,α n−1
2

,0,...,0 ∈ Su,b for any αi ∈ Fq2 , we get

A[1, u, . . . , u
n−1

2 ]F
q2 = [1, u, . . . , u

n−1
2 ]F

q2 . Hence A ∈ Fq2 , i.e. Nr = Fq2 . By using
similar arguments we obtain Nm = Fq2 ; this concludes the proof. �

Corollary 1 The transpose Ŝ of a cyclic semifield spread S of PG(3, qn), n odd,
whose associated semifield has right and middle nuclei both isomorphic to Fq2 and
center Fq is a cyclic semifield spread.

Proof By the previous theorem part (1) a spread set of linear maps of S can be rep-
resented in the form Su,b where u is a fixed element of Fqn such that {1, u, . . . , un−1}
is an Fq2 -basis of Fq2n and b is a fixed element of Fq2n such that bqn+1 = u. So a

spread of linear maps of Ŝ is Su,bqn and since (bqn
)q

n+1 = bqn+1 = u, from (2) of
Theorem 1 we get the result. �

By Theorem 1, all of the cyclic semifield spreads in PG(3, qn), n odd, whose
associated semifields have middle and right nuclei both isomorphic to Fq2 and cen-
ter isomorphic to Fq , are obtained by selecting the elements b ∈ Fq2n such that

{1, u, . . . , un−1} is an Fq -basis with bqn+1 = u, i.e. selecting the elements b ∈ Fq2n in

such a way that bqn+1 does not belong to any proper subfield of Fqn . So far, the only
known examples of cyclic semifield spreads have been exhibited by Jha and Johnson
(see e.g. [10]) and they are obtained by choosing the element b as a primitive element
of Fq2n . In the rest of this section, we will denote by Su,b a cyclic semifield spread
defined by the set Su,b of Fqn -linear maps of Theorem 1.

Now we describe some geometric properties of the cyclic semifield spreads Su,b .
First we give a technical lemma

Lemma 4 Let u be an element of Fqn such that {1, u, . . . , un−1} is an Fq2 -basis of
Fq2n (n odd). Let

γ (u) = γ0 + γ1u + · · · + γsu
s with s ≤ n − 1

2
, γi ∈ Fq2
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and γs �= 0 and suppose that the polynomial

γ (x) = γ0 + γ1x + · · · + γsx
s

has no non-constant factors in Fq [x]. If

β(u) = β0 + β1u + · · · + βn−1
2

u
n−1

2 �= 0

with βi ∈ Fq2 and γ (u)
β(u)

∈ Fqn , then

β(u) = t (u)γ (u),

where t (u) = t0 + t1u + · · · + tcu
c ∈ Fqn, tc �= 0 and c ≤ n−1

2 − s.

Proof Let

β(x) = β0 + β1x + · · · + βn−1
2

x
n−1

2 = m(x)δ(x)

where m(x) is the factor of β(x) of maximum degree belonging to Fq [x] and let

δ(x) = δ0 + δ1x + · · · + δlx
l

where l ≤ n−1
2 . Since γ (u)

β(u)
∈ Fqn , β(u) = m(u)δ(u) and m(u)q

n = m(u), we get

γ (u)δ(u)q
n = δ(u)γ (u)q

n

,

i.e.

(γ0 + γ1u + · · · + γsu
s)(δ

q

0 + δ
q

1 u + · · · + δ
q
l ul)

= (γ
q

0 + γ
q

1 u + · · · + γ
q
s us)(δ0 + δ1u + · · · + δlu

l).

Since s + l ≤ n − 1 and {1, u, . . . , un−1} is an Fq2 -basis of Fq2n from the above
equality we get the following polynomial equality

γ (x)δ̂(x) = γ̂ (x)δ(x) (3.3)

where γ̂ (x) and δ̂(x) are the conjugates over Fq2 of γ (x) and δ(x), respectively. Note
that if a polynomial g(x) ∈ Fq2 [x] does not have non-constant factors in Fq [x] then
g(x) and ĝ(x) do not have non-constant common factors. Then γ (x) (resp. δ(x)) and
γ̂ (x) (resp. δ̂(x)) does not have non-constant factors in common. So by Equality 3.3
we get δ(x) = αγ (x) with α ∈ Fq . So

β(x) = αm(x)γ (x) = t (x)γ (x),

where t (x) ∈ Fq [x] has degree at most n−1
2 − s and hence β(u) has the required

form. �

Now we can prove the following
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Theorem 2 Let Su,b be a cyclic semifield spread defined by the spread set of Fqn -
linear maps Su,b. The following properties hold true.

a) The Desarguesian spread D containing the lines �∞ and �0 whose spread set of
Fqn -linear maps is

D = {x ∈ Fq2n �→ ξx ∈ Fq2n : ξ ∈ Fq2n}
shares qn+1 + 1 lines with the spread Su,b .
The Desarguesian spread D′ containing the lines �∞ and �0 whose spread set of
Fqn -linear maps is

D′ = {x ∈ Fq2n �→ ηxqn ∈ Fq2n : η ∈ Fq2n}
shares qn−1 + 1 lines with the spread Su,b .

b) Any regulus R (resp. R′) passing through �∞ and �0 and contained in D (resp.
D′) shares qs+1 + 1 lines with Su,b , where −1 ≤ s ≤ n−1

2 (resp. −1 ≤ s ≤ n−3
2 ).

Moreover, there exist exactly q + 1 reguli in D sharing q
n+1

2 + 1 lines with Su,b .
Each of these q + 1 reguli is defined by the set of Fqn -linear maps

Rα = {x ∈ Fq2n �→ λαx ∈ Fq2n : λ ∈ Fqn},
where α ∈ F

∗
q2 .

c) The Desarguesian spread D is the unique Desarguesian spread containing the
line �∞ and �0 sharing qn+1 + 1 lines with Su,b .

Proof a) Since

Su,b = {x ∈ Fq2n �→ (α0 + α1u + · · · + αn−1
2

u
n−1

2 )x

+ b(β0 + β1u + · · · + βn−3
2

u
n−3

2 )xqn ∈ Fq2n : αi ∈ Fq2}

(see proof of Theorem 1 part (2)), it is clear that

D ∩ Su,b = {x ∈ Fq2n �→ (α0 + α1u + · · · + αn−1
2

u
n−1

2 )x ∈ Fq2n : αi ∈ Fq2},

and

D′ ∩ Su,b = {x ∈ Fq2n �→ b(β0 + β1u + · · · + βn−3
2

u
n−3

2 )xqn ∈ Fq2n : αi ∈ Fq2}.
Hence

|D ∩ Su,b| = qn+1 and |D′ ∩ Su,b| = qn−1,

i.e.

|D ∩ Su,b| = qn+1 + 1 and |D′ ∩ Su,b| = qn−1 + 1.

b) Note that any regulus passing through �∞ and �0 is defined by a set R of
Fqn -linear maps of V (the vector space of all Fqn -linear maps of Fq2n ) which is an
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1-dimensional Fqn -subspace of V. Let R be a regulus through �∞ and �0, contained
in D and passing through another line of Su,b . Then, the set of the Fqn -linear maps
defining the lines of R \ {�∞} is

Rα(u) = {x ∈ Fq2n �→ λα(u)x ∈ Fq2n : λ ∈ Fqn}
where

α(u) = α0 + α1u + · · · + αn−1
2

u
n−1

2

with αi given elements of Fq2 not all zero. Let

α(x) = α0 + α1x + · · · + αn−1
2

x
n−1

2 ∈ Fq2 [x]
and write

α(x) = l(x)γ (x)

where l(x) is the factor of α(x) belonging to Fq [x] with maximum degree. Let

γ (x) = γ0 + γ1x + · · · + γsx
s, with γi ∈ Fq2 and γs �= 0.

It is clear that Rα(u) = Rγ(u). Now, a line of Su,b \ {�0} belongs to such a regulus if
and only if there exist λ ∈ F

∗
qn and β0, β1, . . . , β n−1

2
∈ Fq2 (not all zero) such that

λγ (u) = β0 + β1u + · · · + βn−1
2

u
n−1

2

i.e., from Lemma 4, if and only if

λ = t (u) = t0 + t1u + · · · + tcu
c,

with ti ∈ Fq and c ≤ n−1
2 − s. Hence, if t = n−1

2 − s, then |R ∩ Su,b| = qt+1 + 1.
Similar arguments show the results related to the regulus passing through the lines
�∞ and �0 and contained in D′. Moreover, the reguli of D through the lines �∞ and

�0 sharing with Su,b q
n+1

2 +1 lines are obtained with s = 0, i.e. with γ (x) = γ ∈ F
∗
q2 ;

precisely they are the reguli defined by the Fqn -linear maps

Rγ = {x ∈ Fq2n �→ λγ ∈ Fq2n : λ ∈ Fqn}, where γ ∈ F
∗
q2 .

c) Let D̄ be a Desarguesian spread of PG(3, qn) different from D containing the
lines �∞ and �0, sharing qn+1 + 1 lines with Su,b and let D̄ be the spread set of
Fqn -linear maps defining D̄. The spread sets of Fqn -linear maps D and D̄ are distinct
Fqn -vector subspaces of V = V (4,Fqn) of dimension 2 and hence dimFqn (D ∩ D̄)

is either 0 or 1. Recalling that Su,b is an Fq -vector subspace of V = V (4n,Fq) of
dimension 2n, since

|Su,b ∩ D| = |Su,b ∩ D̄| = qn+1,

then

dimFq
(Su,b ∩ D) = dimFq

(Su,b ∩ D̄) = n + 1.



16 J Algebr Comb (2009) 29: 1–34

If D ∩ D̄ = {0}, then

2n = dimFq
Su,b ≥ dimFq

〈Su,b ∩ D,Su,b ∩ D̄〉 = n + 1 + n + 1 = 2n + 2,

a contradiction. So dimFqn (D ∩ D̄) = 1. Hence D and D̄ share a regulus through �∞
and �0 defined by the Fqn -linear maps of D ∩ D̄. Since by b) a regulus through �∞
and �0 of D shares with Su,b at most q

n+1
2 + 1 lines, then

dimFq
(Su,b ∩ D ∩ D̄) ≤ n + 1

2

and this implies

dimFq
(Su,b ∩ 〈D,D̄〉) ≥ n + 1 + n + 1 − n + 1

2
= 3n + 3

2
.

Since D′ ∩D = {0}, we have D′
� 〈D,D̄〉Fqn and hence dimFqn (D′ ∩ (〈D,D̄〉)) = 1,

i.e. D′ ∩ 〈D,D̄〉Fqn defines a regulus of D′ through �∞ and �0. Since by b) a regulus

of D′ through �∞ and �0 shares at most q
n−1

2 + 1 lines with Su,b we have

dimFq
(Su,b ∩ (D′ ∩ 〈D,D̄〉)) ≤ n − 1

2
.

Finally, since |Su,b ∩ D′| = qn−1, we get

2n = dimFq
Su,b ≥ dimFq

〈Su,b ∩ 〈D,D̄〉, Su,b ∩ D′〉

≥ 3n + 3

2
+ n − 1 − n − 1

2
= 2n + 1,

a contradiction. This proves the Theorem. �

4 A generalization

In the previous setting we have the norm N(b) = Nq2n/qn(b) = bqn+1 = u. However,
the general form of the spread of linear maps can produce other non-cyclic semifields,
which may be considered as constructed from cyclic semifields.

Let Su,b be the set consisting of the Fqn -linear maps of Fq2n

Su,b = {ϕα0,...,α n−1
2

,β0,...,β n−3
2

: αi,βj ∈ Fq2} (∗)

where

ϕα0,...,α n−1
2

,β0,...,β n−3
2

: x ∈ Fq2n �→(α0 + α1u + · · · + αn−1
2

u
n−1

2 )x

+ b(β0 + β1u + · · · + βn−3
2

u
n−3

2 )xqn ∈ Fq2n

with u ∈ F
∗
qn , b ∈ F

∗
q2n and {1, u, . . . un−1} an Fq2 -basis of Fq2n (n odd). So |Su,b| =

q2n, the zero map belongs to Su,b and Su,b is closed under sum. We have the following
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Proposition 1 The set Su,b is a spread set of Fqn -linear maps if and only if

N(b) �∈ P(u) =
{

N(α0 + α1u + · · · + αn−1
2

u
n−1

2 )

N(β0 + β1u + · · · + βn−3
2

u
n−3

2 )

: αi,βj ∈ Fq2

}

. (4.1)

In this case the associated semifield Su,b has Nl = Fqn , Nr = Nm = Fq2 and center
Fq .

Proof The set Su,b is a spread set if and only if all the non-zero elements of Su,b are
non-singular maps, and this is equivalent to require that

N(b)N(β0 + β1u + · · · + βn−3
2

u
n−3

2 ) �= N(α0 + α1u + · · · + αn−1
2

u
n−1

2 ),

for all α0, . . . , α n−1
2

and β0, . . . , β n−3
2

∈ Fq2 not all zero, i.e. N(b) �∈ P(u) . In this

case, the left nucleus of the associated semifield Su,b is Fqn and it is easy to verify
that the right and the middle nuclei are both Fq2 and the center is Fq . �

If Condition (4.1) holds true then the semifield Su,b and the semifield spread Su,b

defined by Su,b are called semifield and semifield spread of type (∗), respectively.

It is useful to observe that a set Su,b of Fqn -linear maps defined as type (∗) is not
uniquely defined by the pair (u, b). Indeed

Proposition 2 Let Su,b and Su′,b′ be two sets of Fqn -linear maps of Fq2n defined as
in (∗), then Su,b = Su′,b′ if and only if u′ = α + βu, α,β ∈ Fq , β �= 0 and b′ = ξb

with ξ ∈ F
∗
q2 .

Proof We first note that Su,b = Su′,b′ if and only if the following conditions hold true

[1, u, . . . , u
n−1

2 ]F
q2 = [1, u′, . . . , u′ n−1

2 ]F
q2 ; (4.2)

b[1, u, . . . , u
n−3

2 ]F
q2 = b′[1, u′, . . . , u′ n−3

2 ]F
q2 . (4.3)

The sufficient condition is obvious. Concerning the necessary condition, from (4.2)

it follows that u′ ∈ [1, u, . . . , u
n−1

2 ]F
q2 , then there exist α0, α1, . . . , αt ∈ Fq2 , with

αt �= 0 and 1 ≤ t ≤ n−1
2 , such that u′ = α0 + α1u + · · · + αtu

t . Again from (4.2)

since u′2 ∈ [1, u, . . . , u
n−1

2 ]F
q2 and {1, u, . . . , un−1} is an Fq -basis of Fqn , then 2t ≤

(n − 1)/2. After n−1
2 steps, taking into account (4.2) we get t = 1. Let now

u′ = α + βu, with α ∈ Fq and β ∈ F
∗
q .
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By (4.3) there exist β0, β1, . . . , βk ∈ Fq2 , with βk �= 0 and 0 ≤ k ≤ n−3
2 such that

b′ = b(β0 + β1u + · · · + βku
k).

So

b′u′ = b(β0 + β1u + · · · + βku
k)(α + βu)

and again from (4.3) we get k + 1 ≤ (n − 3)/2. After n−3
2 steps, (4.3) yields k = 0.

This concludes the proof. �

Definition 1 Since {1, u, . . . , un−1} is an Fq -basis of Fqn and N(b) = bqn+1 ∈ Fqn

then N(b) can be uniquely written in the following manner:

N(b) = L0 + L1u + · · · + Ln−1u
n−1 with Li ∈ Fq .

If Su,b = Su′,b′ then, by Proposition 2, b′ = ξb with ξ ∈ Fq2 and u′ = α + βu, α,β ∈
Fq , β �= 0 and hence

N(b′) = ξq+1N(b) = ξq+1(L0 + L1u + · · · + Ln−1u
n−1)

= ξq+1

(

L0 + L1

(
u′ − α

β

)

+ · · · + Ln−1

(
u′ − α

β

)n−1)

.

This means that if t is the maximum integer (1 ≤ t ≤ n − 1) such that

N(b) = L0 + L1u + · · · + Ltu
t , with Lt �= 0,

then

N(b′) = L′
0 + L′

1u
′ + · · · + L′

t u
′t , with L′

t �= 0.

From these arguments the following definition makes sense.
A semifield Su,b of type (∗) has degree t (1 ≤ t ≤ n − 1) if

N(b) = L0 + L1u + · · · + Ltu
t with Lt �= 0.

Proposition 3 A semifield Su,b of type (∗) is cyclic if and only if it has degree 1.

Proof It follows from Theorem 1, Proposition 2 and Definition 1. �

Theorem 3 The transpose of a semifield spread of type (∗) is a semifield spread of
type (∗) with the same degree.

Proof The spread set of linear maps of the transpose of Su,b is Su,bqn . Since

N(bqn
) = N(b), the result follows. �

From Theorem 1 we have that the pairs (u, b) with N(b) = u satisfy Condition
(4.1). From this, a question naturally arises:



J Algebr Comb (2009) 29: 1–34 19

Are there other pairs (u, b) satisfying Condition (4.1)?
Or equivalently:
Do there exist semifields Su,b of type (∗) of degree greater than 1? (Q)

A first answer to this question is the following

Theorem 4 If

N(b) = A + Bu + Cu2 (A,B,C ∈ Fq and C �= 0),

then Su,b is a semifield if and only if the polynomial

f (x) = A + Bx + Cx2 ∈ Fq [x]
has two distinct roots in Fq .

In order to prove this theorem, we start with the following

Lemma 5 Let

f (x) = A + Bx + Cx2 ∈ Fq [x]
non-constant and let n ≥ 3. Then, there exist α0, α1, . . . , α n−1

2
and β0, β1, . . . , β n−3

2
elements of Fq2 not all zero, such that

(A + Bx + Cx2)(β0 + β1x · · · + βn−3
2

x
n−3

2 )(β
q

0 + β
q

1 x · · · + β
q
n−3

2
x

n−3
2 )

= (α0 + α1x + · · · + αn−1
2

x
n−1

2 )(α
q

0 + α
q

1 x + · · · + α
q
n−1

2
x

n−1
2 ) (4.4)

if and only if f (x) has either two coincident roots in Fq or two conjugate roots in Fq2 .

Proof We start by proving the sufficient condition. In our hypotheses, we can write
f (x) = C(x − x0)(x − x

q

0 ), and hence B = −C(x0 + x
q

0 ) and A = Cx
q+1
0 . Now, let

α1 ∈ Fq2 such that α
q+1
1 = C and let α0 = −x0α1. Then

A + Bx + Cx2 = α
q+1
0 + (α0α

q

1 + α
q

0 α1)x + α
q+1
1 x2 = (α0 + α1x)(α

q

0 + α
q

1 x)

and hence (4.4) occurs.
Now, we prove the necessary condition. Suppose that (4.4) occurs for some

αi,βi ∈ Fq2 not all zero. By way of contradiction suppose that either f (x) has degree
1 or f (x) has two distinct roots in Fq . Let

g(x) = (β0 + β1x · · · + βn−3
2

x
n−3

2 ), ĝ(x) = (β
q

0 + β
q

1 x · · · + β
q
n−3

2
x

n−3
2 ) and

h(x) = (α0 + α1x + · · · + αn−1
2

x
n−1

2 ), ĥ(x) = (α
q

0 + α
q

1 x + · · · + α
q
n−1

2
x

n−1
2 ).

Equality (4.4) becomes

f (x)g(x)ĝ(x) = h(x)ĥ(x).
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Note that gĝ and hĥ are elements of Fq [x] and a root in Fq of a polynomial of this
type always has even algebraic multiplicity. Indeed, if a ∈ Fq , then (x − a)s |h(x)

if and only if (x − a)s |ĥ(x). Hence, in our hypotheses, if x0 is a root of f (x) in
Fq [x], then x0 has odd algebraic multiplicity as a root of f (x)g(x)ĝ(x) and, on the
other hand, it has even algebraic multiplicity as a root of the polynomial h(x)ĥ(x), a
contradiction. �

We now give the proof of Theorem 4.

Proof (Theorem 4) By Proposition 1, Su,b is not a semifield if and only if there exist
αi,βi ∈ Fq2 , not all zero, such that

N(b)N(β0 + β1u + · · · + βn−3
2

u
n−3

2 ) = N(α0 + α1u + · · · + αn−1
2

u
n−1

2 ),

i.e.

(A + Bu + Cu2)(β0 + β1u + · · · + βn−3
2

u
n−3

2 )(β
q

0 + β
q

1 u + · · · + β
q
n−3

2
u

n−3
2 )

= (α0 + α1u + · · · + αn−1
2

u
n−1

2 )(α
q

0 + α
q

1 u + · · · + α
q
n−1

2
u

n−1
2 ). (4.5)

Since the exponent of u in the above equality is at most n − 1 and {1, u, . . . , un−1} is
an Fq2 -basis of Fq2n , by (4.5) we have the following polynomial equality

(A + Bx + Cx2)(β0 + β1x + · · · + βn−3
2

x
n−3

2 )(β
q

0 + β
q

1 x + · · · + β
q
n−3

2
x

n−3
2 )

= (α0 + α1x + · · · + αn−1
2

x
n−1

2 )(α
q

0 + α
q

1 x + · · · + α
q
n−1

2
x

n−1
2 ).

By the previous lemma, this equality can occur if and only if f (x) has either two
coincident Fq -roots or two conjugate Fq2 -roots. Hence, since C �= 0, we can say that
Su,b is a semifield if and only if the polynomial A + Bx + Cx2 ∈ Fq [x] has two
distinct roots in Fq . �

So, if Su,b is semifield of type (∗) of degree 2, from Proposition 3 it follows that
Su,b is never cyclic. However, as we shall see in the next section these semifields of
degree 2 are isotopic to cyclic semifields.

Note that if n = 3, Theorem 4 gives a complete answer to the question (Q). In the
case n > 3, it remains to investigate the possibility that Su,b has degree greater than
two and we deal with this problem in Section 6.

5 The question of isomorphisms

We start this section by observing that the geometric properties proved for any cyclic
semifield spread (Theorem 2) hold true for any semifield spread of type (∗) as well.

We have the following
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Lemma 6 Let Su,b and Su′,b′ be two semifield spreads of type (∗). Suppose that Su,b

and Su′,b′ are isomorphic, and let φ and ψ be the Fqn -linear maps of Fq2n and τ the
automorphism of Fq2n such that

Su′,b′ = {φ ◦ ϕτ ◦ ψ : ϕ ∈ Su,b}.
Then either

φ : x ∈ Fq2n �→ Lx ∈ Fq2n and ψ : x ∈ Fq2n �→ Mx ∈ Fq2n

where LM = λβ with λ ∈ F
∗
qn and β ∈ F

∗
q2 , or

φ : x ∈ Fq2n �→ L′xqn ∈ Fq2n and ψ : x ∈ Fq2n �→ M ′xqn ∈ Fq2n ,

where L′M ′qn = λβ with λ ∈ F
∗
qn and β ∈ F

∗
q2 .

Proof Note that by (c) of Theorem 2, the Desarguesian spread D is the unique De-
sarguesian spread containing �∞ and �0 sharing qn+1 + 1 lines with any semifield
of type (∗). Moreover from (b) of Theorem 2 the q + 1 reguli Rα of D defined
by the sets of Fqn -linear maps Rα = {x ∈ Fq2n → λαx ∈ Fq2n : λ ∈ Fqn}, α ∈ F

∗
q2 ,

are the unique reguli of D sharing q
n+1

2 + 1 lines with any semifield of type (∗).
Hence an isomorphism between Su,b and Su′,b′ must: (i) leave invariant the Desar-
guesian spread D; (ii) leave invariant the set of the q + 1 reguli {Rα : α ∈ F

∗
q2}. Let

φ : x ∈ Fq2n �→ Lx + L′xqn ∈ Fq2n and ψ : x ∈ Fq2n �→ Mx + M ′xqn ∈ Fq2n . From
(i), we have φ ◦ ϕτ ◦ ψ ∈ D = {x ∈ Fq2n �→ ηx ∈ Fq2n : η ∈ Fq2n} for each ϕ ∈ D. If
ϕ : x ∈ Fq2n �→ ξx ∈ Fq2n , since

φ ◦ ϕτ ◦ ψ(x) = (LξτM + L′ξτqn

M ′qn

)x + (LξτM ′ + L′ξτqn

Mqn

)xqn

,

this implies that LξτM ′ + L′ξτqn
Mqn = 0 for any ξ ∈ Fq2n , which is equivalent to

LM ′ = L′Mqn = 0, i.e. either L′ = M ′ = 0 or L = M = 0 (recall that φ and ψ are
bijective maps). Now, from (ii) we have that for each α ∈ Fq2 , the map φ ◦ ατ ◦ ψ

must belong to Rγ = {x ∈ Fq2n �→ λγ x ∈ Fq2n : λ ∈ Fqn} for some γ ∈ F
∗
q2 . Since

φ ◦ατ ◦ψ(x) = ατLMx or φ ◦ατ ◦ψ(x) = ατqn
L′M ′qn

x, we have that either LM =
λβ or L′M ′qn = λβ , with λ ∈ F

∗
qn and β ∈ F

∗
q2 . �

Remark 1 From Lemma 6 it follows that if

φ : x ∈ Fq2n �→ Lx ∈ Fq2n and ψ : x ∈ Fq2n �→ Mx ∈ Fq2n

where LM = λβ with λ ∈ F
∗
qn and β ∈ F

∗
q2 , then

Su′,b′ = {x ∈ Fq2n �→ (α0 + α1u
τ + · · · + αn−1

2
uτ

n−1
2 )λx

+ bτλMqn−1(β0 + β1u
τ + · · · + βn−3

2
uτ

n−3
2 )xqn ∈ Fq2n : αi,βj ∈ Fq2}, (5.1)
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whereas if

φ : x ∈ Fq2n �→ L′xqn ∈ Fq2n and ψ : x ∈ Fq2n �→ M ′xqn ∈ Fq2n ,

where L′M ′qn = λβ ′ with λ ∈ F
∗
qn and β ′ ∈ F

∗
q2 , then

Su′,b′ = {x ∈ Fq2n �→ (α0 + α1u
τ + . . . α n−1

2
uτ

n−1
2 )λx

+ bτqn

λ
1

M ′qn−1
(β0 + β1u

τ + · · · + βn−3
2

uτ
n−3

2 )xqn ∈ Fq2n : αi,βj ∈ Fq2}.

In the latter case Su′,b′ can be obtained also by an isomorphism of the first type with
M = bτM ′−1.

Hence via isomorphisms of second type we get the same semifield spread sets
obtained via isomorphisms of the first type. So we can consider only isomorphisms
of the first type, i.e. if Su′,b′ is isomorphic to Su,b , then there exist λ ∈ F

∗
qn , M ∈ F

∗
q2n

and τ ∈ Aut(Fq2n) such that

Su′,b′ = {x ∈ Fq2n �→ (α0 + α1u
τ + · · · + αn−1

2
uτ

n−1
2 )λx

+ bτλMqn−1(β0 + β1u
τ + · · · + βn−3

2
uτ

n−3
2 )xqn ∈ Fq2n : αi,βj ∈ Fq2}.

First we consider the case τ = 1.

Theorem 5 If

Su′,b′ = {x ∈ Fq2n �→ (α0 + α1u + · · · + αn−1
2

u
n−1

2 )λx

+ bλMqn−1(β0 + β1u + · · · + βn−3
2

u
n−3

2 )xqn ∈ Fq2n : αi,βj ∈ Fq2}
then

u′ = α + βu

γ + δu
∈ Fqn \ Fq, λ = 1

μ(γ + δu)
n−1

2

and b′ = bM
qn−1

μ′(γ + δu)
,

where α,β, γ, δ ∈ Fq2 , (γ, δ) �= (0,0),μ,μ′ ∈ F
∗
q2 and M ∈ F

∗
q2n .

Proof Since

Su′,b′ ={x ∈ Fq2n �→ (α0 + α1u
′ + · · · + αn−1

2
u′ n−1

2 )x

+ b′(β0 + β1u
′ + · · · + βn−3

2
u′ n−3

2 )xqn ∈ Fq2n : αi,βj ∈ Fq2},
our hypothesis occurs if and only if

[1, u′, . . . , u′ n−1
2 ]F

q2 = λ[1, u, . . . , u
n−1

2 ]F
q2 (5.2)
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b′[1, u′, . . . , u′ n−3
2 ]F

q2 = bλMqn−1[1, u, . . . , u
n−3

2 ]F
q2 . (5.3)

From (5.2) it follows that

λ = 1

D(u)
,where D(u) = ᾱ0 + · · · + ᾱ n−1

2
u

n−1
2 for some ᾱi ∈ Fq2 ; (5.4)

u′i = λEi(u) = Ei(u)

D(u)
,where Ei(u) = c

(i)
0 + · · · + c

(i)
n−1

2
u

n−1
2 for some c

(i)
j ∈ Fq2 .

(5.5)
From (5.3) it follows that

b′ = bλMqn−1A0(u), (5.6)

u′ib′ = bλMqn−1Ai(u), for i = 1, . . . , n−3
2 , (5.7)

where Ai(u) = γ
(i)
0 + · · · + γ

(i)
n−3

2
u

n−3
2 for some γ

(i)
j ∈ Fq2 and i = 0, . . . , n−3

2 .

Putting together (5.6) and (5.7) we have

u′i = Ai(u)

A0(u)
, for i = 1, . . . , n−3

2 . (5.8)

Moreover,

u′i = u′i−1u′ = Ai−1(u)

A0(u)
· A1(u)

A0(u)
, for i = 1, . . . , n−3

2

and so from (5.8) it follows

Ai(u)A0(u) = A1(u)Ai−1(u), for i = 1, . . . , n−3
2 . (5.9)

Since the exponent of u in the above equality is at most n − 3 and {1, u, . . . , un−1} is
an Fq2 -basis of Fq2n , by (5.9), we have the following polynomial equalities

Ai(x)A0(x) = A1(x)Ai−1(x), for i = 1, . . . , n−3
2 . (5.10)

In particular for i = 2, Equation (5.10) becomes

A2
1(x) = A0(x)A2(x).

Let A1(x) = f1(x)ε1 · · ·ft (x)εt be the decomposition of A1(x) in irreducible factors
of Fq2 [x] and let εi be the multiplicity of the factor fi(x).
CASE 1: A1(x) � |A0(x). In this case there exists an irreducible factor fi(x) such that
f

εi

i � |A0 and hence from the above equality f
εi+1
i |A2. From (5.10) with i = 3, we

have

A0(x)A3(x) = A1(x)A2(x)
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and since f
εi

i |A1(x), f
εi

i � |A0, f
εi+1
i |A2 then f

εi+2
i |A3. After n−3

2 steps from (5.10)
with i = n−3

2 ,

A0(x)An−3
2

(x) = A1(x)An−5
2

(x), (5.11)

we have

f
εi+ n−5

2
i |An−3

2

and since εi ≥ 1 and An−3
2

(x) has degree at most n−3
2 , we get εi = 1 and fi has

degree 1, i.e.

An−3
2

(x) = ξfi(x)
n−3

2 ,

ξ ∈ F
∗
q2 .

Again from (5.11), we get

An−5
2

(x) = A0(x)ξfi(x)
n−3

2

f1(x)ε1 · · ·fi−1(x)εi−1 · fi(x) · fi+1(x)εi+1 · · ·ft (x)εt

and hence An−5
2

(x) = fi(x)
n−5

2 · e(x), where e(x) is a polynomial of degree at most

1, which is not proportional to fi(x) and we also get

u′ = A1(u)

A0(u)
=

An−3
2

(u)

An−5
2

(u)
= d(u)

e(u)
,

where d(u) = ξfi(u).
From (5.5), for i = n−1

2 we get

u′ n−1
2 =

En−1
2

(u)

D(u)

and hence

d(u)
n−1

2 D(u) = e(u)
n−1

2 En−1
2

(u).

From the above equality it follows the polynomial equality

d(x)
n−1

2 D(x) = e(x)
n−1

2 En−1
2

(x).

Since d(x) and e(x) are not proportional, then D(x) = μe(x)
n−1

2 , where μ ∈ F
∗
q2 .

Hence λ = 1

μe(u)
n−1

2
.

Since An−5
2

(x) = fi(x)
n−5

2 · e(x), from Equalities (5.9) and going backward we

get A0(u) = e(u)
n−3

2

ξ
n−5

2
. So from (5.6), we have b′ = bMqn−1

μ′e(u)
, where μ′ = μξ

n−5
2 .
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CASE 2: A1(x)|A0(x). In this case degA1(x) < degA0(x), otherwise u′ ∈ Fq , hence
degA1(x) ≤ n−5

2 . From (5.10), we get

Ai−1(x) = Ai(x)
A0(x)

A1(x)

and hence

degAi−1(x) ≥ degAi(x) + 1 for i = 1, . . . , n−3
2 . (5.12)

From (5.12), with i = n−3
2 and i = n−5

2 we get

degAn−5
2

(x) ≥ degAn−3
2

(x) + 1,

degAn−7
2

(x) ≥ degAn−5
2

(x) + 1 ≥ degAn−3
2

(x) + 2,

and after n−7
2 steps we get

n − 5

2
≥ degA1(x) ≥ degAn−3

2
(x) + n − 5

2
.

This implies that An−3
2

(x) is a constant polynomial, say β̄ ,

degA1(x) = n − 5

2
and degA0(x) = n − 3

2
.

Let

e(x) = A0(x)

A1(x)
.

Using Equalities (5.10), we get

A0(x) = e(x)
n−3

2 β̄.

From Equality (5.5) for i = n−1
2 , arguing as in Case 1, we get

λ = 1

μe(u)
n−1

2

,

for some μ ∈ F
∗
q2 .

Using (5.6), we get

b′ = bMqn−1

μ′e(u)
,

where μ′ = μ

β̄
. �

Now we are able to prove
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Theorem 6 The semifield spreads Su,b and Su′,b′ are isomorphic, if and only if

u′ = α + βuτ

γ + δuτ
∈ Fqn \ Fq, λ = 1

μ(γ + δuτ )
n−1

2

and b′ = bτM
qn−1

μ′(γ + δuτ )
,

where α,β, γ, δ ∈ Fq2 , (γ, δ) �= (0,0), μ,μ′ ∈ F
∗
q2 , M ∈ F

∗
q2n and τ ∈ Aut(Fq2n).

In addition if Su,b and Su′,b′ are isotopic and Su,b is cyclic, then

N(b′) = A + Bu′ + Cu′2,

where either C = 0 or the polynomial A + Bx + Cx2 ∈ Fq [x] has two distinct roots
in Fq .

Proof If the semifield spreads Su,b and Su′,b′ are isomorphic then there exist λ ∈ F
∗
qn ,

M ∈ F
∗
q2n and τ ∈ Aut(Fq2n) such that

Su′,b′ = {x ∈ Fq2n �→ (α0 + α1u
τ + · · · + αn−1

2
uτ

n−1
2 )λx

+ bτλMqn−1(β0 + β1u
τ + · · · + βn−3

2
uτ

n−3
2 )xqn ∈ Fq2n : αi,βj ∈ Fq2}.

Also, Su′,b′ and Suτ ,bτ satisfy the assumptions of Theorem 5, so we get

u′ = α + βuτ

γ + δuτ
∈ Fqn \ Fq, λ = 1

μ(γ + δuτ )
n−1

2

and b′ = bτM
qn−1

μ′(γ + δuτ )
,

where α,β, γ, δ,μ,μ′ ∈ Fq2 and M ∈ F
∗
q2n .

Now, let Su,b be a spread set of linear maps defining the cyclic semifield spread

Su,b with N(b) = u, then from u′ = α+βuτ

γ+δuτ we get uτ = α−u′γ
δu′−β

and hence

b′ = bτMqn−1 δu′ − β

μ′(δα − γβ)
.

This implies that

N(b′) = (α − u′γ )(δqu′ − βq)

(μ′(δα − γβ))q+1
.

Note that since u′ ∈ Fqn \ Fq , then α/γ and βq/δq are distinct elements of Fq .
Conversely, suppose that

u′ = α + βuτ

γ + δuτ
, α,β, γ, δ ∈ Fq2 , (γ, δ) �= (0,0) and b′ = bτMqn−1

μ′(γ + δuτ )
,

with μ′ ∈ F
∗
q2 , M ∈ F

∗
q2n and τ ∈ Aut(Fq2n).

Let Su,b and Su′,b′ be the sets of the Fqn -linear maps of Fq2n defining Su,b and
Su′,b′ , respectively. It is sufficient to prove that there exist λ ∈ F

∗
qn , M ∈ F

∗
q2n and an
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automorphism τ of Fq2n , such that

Su′,b′ = {x ∈ Fq2n �→ (α0 + α1u
τ + · · · + αn−1

2
uτ

n−1
2 )λx

+ bτλMqn−1(β0 + β1u
τ + · · · + βn−3

2
uτ

n−3
2 )xqn ∈ Fq2n : αi,βj ∈ Fq2}.

We first suppose that

u′ = 1

γ + δuτ
,

with γ, δ ∈ Fq2 and δ �= 0; note that since γ + δuτ belong to Fqn , then γ and δ must
belong to Fq . Let

λ = 1

(γ + δuτ )
n−1

2

and observe that for any i = 1, . . . , n−1
2 , we get

u′i = 1

(γ + δuτ )i
= 1

(γ + δuτ )
n−1

2

(γ + δuτ )
n−1

2 −i

and hence

u′i ∈ 1

(γ + δuτ )
n−1

2

[1, uτ , . . . , uτ
n−1

2 ]F
q2 .

Moreover, it can be seen that since 1, u, . . . , u
n−1

2 are independent over Fq2 then

1, uτ , . . . , uτ n−1
2 are independent over Fq2 as well. So

[1, u′, . . . , u′ n−1
2 ]F

q2 = λ[1, uτ , . . . , uτ
n−1

2 ]F
q2 .

Similar arguments show that

b′ [1, u′, . . . , u′ n−3
2 ]F

q2 = bτMqn−1

(γ + δuτ )
n−1

2

[1, uτ , . . . , uτ
n−3

2 ]F
q2

and so we have the result.
Now, suppose that

u′ = α + βuτ

γ + δuτ

and let

u′′ = 1

γ + δuτ
.

For the previous case Su,b is isomorphic to Su′′,b′ . Also,

u′ = αδ − γβ

δ
u′′ + β

δ
.
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So by Proposition 2 Su′,b′ = Su′′,b′ and then Su,b and Su′,b′ are isomorphic. �

We finish this section with the following

Corollary 2 Let Su,b be a semifield of type (∗) with degree t > 1. Then Su,b is iso-
topic to a cyclic semifield if and only if t = 2.

Proof The necessary condition follows from Theorem 6. Now, suppose that Su,b

has degree 2. Then by Theorem 4, N(b) = (α + βu)(γ + δu) with α,β, γ, δ ∈ Fq

and βδ �= 0. Set u′ = 1
γ+δu

and b′ = bMqn−1

μ′(γ+δu)
, where μ′ ∈ F

∗
q2 and M ∈ F

∗
q2n .

Then, again from Theorem 6 it follows that Su,b and Su′,b′ are isotopic and since

N(b′) = β+(αδ−γ )u′
μ′q+1δ

, then Su′,b′ is cyclic. �

Corollary 3 If Su,b is a semifield spread of type (∗), then the transpose Ŝu,b is iso-
morphic to Su,b .

Proof By arguments of Section 2, the transpose Ŝu,b of the semifield spread Su,b of
type (∗) is defined by the spread set of Fqn -linear maps Su,bqn . Now the result follows

from Theorem 6 with u′ = u, b′ = bbqn−1, λ = 1 and τ = 1. �

6 New semifields of order 45 and order 165

Let Su,b be a semifield of type (∗). If n = 3, then Su,b has degree 1 or 2 and so it is
either a cyclic semifield or isotopic to a cyclic semifield. If n > 3 (n odd), then Su,b

could have degree t ≥ 3. By Corollary 2, such a semifield Su,b would not be isotopic
to a cyclic semifield. So the question is: are there some pairs (u, b) such that b �∈ P(u)

and Su,b has degree t ≥ 3?
Computing results show that if q = 2 or q = 4 and n = 5, there exist semifields

Su,b of type (∗) with degree > 2.
Indeed, let ω denote a primitive element of F25 with minimal polynomial x5 +

x2 + 1 ∈ F2[x]. By using the software package MAGMA [7] we have

F25 \ P(ω) = {ω,ω18,ω19,ω21}.
The elements ω and ω18 produce cyclic semifields, the element ω19 produces

semifields of degree 2 (hence semifields isotopic to cyclic semifields), whereas ω21

produces semifields of degree 4. Indeed,

ω21 = ω3 + ω4.

Hence, the semifield Sω,b , with b ∈ F210 such that N(b) = b33 = ω21, is of degree 4
and by Corollary 2 is not isotopic to a cyclic semifield.

Let now q = 4 and let ω be a primitive element of F45 with minimal polynomial
x10 + x6 + x5 + x3 + x2 + x + 1 over F2. MAGMA computational results show that
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the elements of F45 \ P(ω11) which produce semifields Sω11,b of degree greater than
2 are

ω176 = ξ(ω11)3 +(ω11)4, ω517 = ξ2(ω11)3 +ξ(ω11)4, ω858 = (ω11)3 +ξ2(ω11)4,

where ξ = ω341 ∈ F4. Hence, the semifields Sω11,b , with b ∈ F210 such that

N(b) = b1025 ∈ {ω176,ω517,ω858}
are of degree 4 and by Corollary 2 they are not isotopic to cyclic semifields. So we
have

Theorem 7 For q = 2 and n = 5, q = 4 and n = 5 there exist semifields of type (∗)

not isotopic to cyclic semifields.

From a given semifield S, by the so called Knuth operations (transpose and dual),
it is possible to construct six semifields, one of which is the original. We will call
these six semifields derivatives of S. The group S3 permutes the nuclei (up to iso-
morphisms) of the six derivatives [18, Sec. 6].

In what follows we will prove that our examples are not isotopic to any derivative
of a known semifield.

Theorem 8 The semifields of order 45 and the semifields of order 165 exhibited above
are new.

Proof The examples exhibited above have left nucleus Fq5 , right and middle nuclei
Fq2 and center Fq (q ∈ {2,4}) (see Proposition 1). A symplectic semifield has right
and middle nuclei both isomorphic to the center [15, 18], while a semifield isotopic
to a commutative semifield has left and right nuclei both isomorphic to the center.
Hence, our examples are isotopic neither to a derivative of a symplectic semifield nor
to a derivative of a commutative semifield. These arguments and the even charac-
teristic allow us to say that our examples are not isotopic to a generalized Dickson
semifield, to any semifield of type B , F , C listed in Section 10 and to any of their
derivatives.

Since a Knuth semifield of type (17), (18) or (19) (see [8, pag. 241]) is 2-
dimensional over at least two of its nuclei and since a Knuth semifield of type (20)

(see [8, pag. 242]) has the three nuclei equal to the center, then our examples are not
isotopic to any derivative of such semifields.

Moreover, a Sandler semifield has order qm2
, left nucleus and center of order q

(see [8, pag. 243] and [22, Thm. 1]); hence, again by comparing the nuclei, one can
see that our semifields are not isotopic to any derivative of a Sandler semifield.

Also, the multiplication of a Generalized Twisted Field of order q depends on two
automorphisms of Fq , say S and T with S �= I , T �= I and S �= T and |Nl | = |Fix T |,
|Nr | = |Fix S| and |Nm| = |Fix ST −1| (see [1, Lemma 1]). If a derivative of such a
semifield was isotopic to one of our examples then it would have order s2n (n odd),
two of its nuclei both of order s2 and the other one of order sn; and this is not possible.
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Finally, since the transpose is the unique Knuth operation leaving invariant the di-
mension over the left nucleus and interchanging the dimensions over the other nuclei
and since the transpose of a cyclic semifield is a cyclic semifield as well (see Corol-
lary 1), our examples cannot be the derivatives of a cyclic semifield. So, by these
arguments and by Theorem 7, we have the assert. �

Moreover, computations using the program Magma show that

Theorem 9 For (q,n) ∈ {(3,5), (2,7), (2,9)} semifields Su,b of type (∗) of degree
t > 2 do not exist.

7 The number of non-isomorphic semifield spreads Su,b with degree ≤ 2

Let Su,b be a cyclic semifield spread, then a semifield spread Su′,b′ is isomorphic to
Su,b if and only if

u′ = α + βuτ

γ + δuτ
and b′ = bτMqn−1

μ′(γ + δuτ )
,

where α,β, γ, δ ∈ Fq2 , (γ, δ) �= (0,0),μ,μ′ ∈ F
∗
q2 and M ∈ F

∗
q2n .

Among these the cyclic ones are obtained with u′ = uτ or u′ = 1
uτ with τ ∈

Aut(Fq2n) and b′ = bτ Mqn−1

μ′ or b′ = bτ Mqn−1

μ′uτ . Note that since u ∈ Fqn , then the order

of the orbit of u under the action of Aut(Fq2n) is at most nh, where q = ph. Recall-
ing that Su,b = Su,ξb , with ξ ∈ F

∗
q2 and that the number of b’s with the same norm

over Fqn , non-proportional in Fq2 is qn+1
q+1 , we have that the number of cyclic semi-

field spreads isomorphic to Su,b is at most 2nh
qn+1
q+1 . By Corollary 2 any semifield

spread Su,b of type (∗) with degree ≤ 2 is isomorphic to a cyclic one. So the number
of non-isomorphic semifield spreads of type (∗) with degree ≤ 2 coincides with the
number of non-isomorphic cyclic semifield spreads.

Since {1, u, . . . , un−1} is an Fq -basis of Fqn if and only if u does not belong to
any proper subfield of Fqn and since two cyclic semifield spreads Su,b and Su′,b′ are
the same if and only if u′ = α +βu, β �= 0 (see Proposition 2), the number of distinct
cyclic semifield spreads Su,b is qn−θ

q(q−1)
· qn+1

q+1 where θ is the size of the union of the
proper subfields of Fqn . In this way we have proved the following

Theorem 10 The number of non-isomorphic semifield spreads of type (∗) with de-
gree at most 2 is at least

qn − θ

q(q − 1)2nh
.

In particular if n is a prime, then θ = q and this lower bound is

qn−1 − 1

2(q − 1)nh
.



J Algebr Comb (2009) 29: 1–34 31

8 Net replacement interpretation

We have given a variety of constructions of semifields with spread sets of the follow-
ing general form:

x = 0, y = (α0 + α1u + · · · + αn−1
2

u
n−1

2 )x + b(β0 + β1u · · · + βn−3
2

u
n−3

2 )xqn

,

αi, βj ∈ Fq2 , i, j = 0,1, . . . , n − 1,

where b is a fixed element of Fq2n . Consider the partial spread where βj = 0 for all

j = 0,1,2, . . . , n−3
2 . Let D denote that Desarguesian spread of order q2n given by

{
x = 0, y = xm;m ∈ Fq2n

}
.

By Theorem 2, any semifield spread Su,b of type (∗) has a Desarguesian partial
spread in common with D; i.e.

x = 0, y = (α0 + α1u + · · · + αn−1
2

u
n−1

2 )x;αi ∈ Fq2; i = 0,1, . . . ,
n − 1

2
.

Furthermore, we note that any other component of the semifield spread corresponds
to a Baer subplane of the Desarguesian affine plane defined by D. Write

Fq2n =
〈
α0 + α1u + · · · + αn−1

2
u

n−1
2

〉
⊕

〈
β0u

n+1
2 + β1u

n+3
2 · · · + βn−3

2
un−1

〉

= Vα ⊕ Vβ.

Hence, we have a replacement net of degree q2n − qn+1 of the net
{
y = xm;m ∈ Vα ⊕ Vβ − Vα

}

in the Desarguesian plane defined by D.
Hence, we obtain:

Theorem 11 The semifields of order q2n constructed here may be constructed from
a Desarguesian affine plane of order q2n by the net replacement of a net of degree
q2n − qn+1.

9 More semifield spreads by algebraic lifting

We note that the construction process of ‘algebraic lifting’ produces from any spread
in PG(3, h) a corresponding spread in PG(3, h2). Furthermore, the process con-
structs a semifield spread from any additive spread set. Hence, we obtain new classes
of semifields of order q4n, for n odd with spreads in PG(3, q2n) from any of the con-
structed cyclic or non-cyclic semifields of order q2n, since the spreads constructed
above are all in PG(3, qn).

Note that the non-cyclic semifields planes are isomorphic to cyclic semifield
planes but algebraic lifting is an algebraic process. Hence, non-cyclic semifield planes
and cyclic semifield planes probably do not lift to isomorphic semifield planes.
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10 The known finite semifields

In Jha and Johnson [11], there are a variety of constructions of cyclic semifield planes.
One construction is relevant in the work presented here. Let � = lcm(m,n), m,n > 1
be integers, and � > 1. Consider the mapping T :

T : x → ωxqn

,

where ω is a primitive element of Fq� . Then (see Theorem 2 [11]), Jha and Johnson
show that there is an associated cyclic semifield plane, called the ‘Jha-Johnson cyclic
semifield (q,m,n)’. Here the middle and right nuclei contain Fqm and the left nu-
cleus (kernel) is Fqn (actually this is the dual semifield to the semifield constructed
by Jha and Johnson). When m = 2 and n is odd, we obtain a cyclic semifield of
order q2n with kernel Fqn and middle and right nuclei Fq2 . Hence, some of the semi-
fields constructed in this article are Jha-Johnson cyclic semifields. The constructions
here require a basis

{
1, u,u2, . . . , un−1

}
for Fqn over Fq , and an element b such that

bqn+1 = u, so any element u in Fqn not belonging to any proper subfield of Fqn , will
suffice. Here we also give a generalization of such a family (see Section 4) obtaining
new examples for q = 2 and n = 5, q = 4 and n = 5.

To better view the place of the present class within the known classes, we list
here the known examples. This information comes from the text “A Handbook of
Finite Translation Planes,” of M. Biliotti, V. Jha, and N.L. Johnson, which had been
published by Taylor Books in January of 2007.

The known finite semifields and general construction processes are as follows: (the
classes are not necessarily disjoint, see C and D).

Known Semifields:
B: Knuth binary semifields
F : Flock semifields and their 5th cousins:

F1: Kantor–Knuth
F2: Cohen–Ganley, 5th cousin: Payne–Thas.
F3: Penttila–Williams symplectic semifield order 35, 5th cousin, Bader, Lunar-

don, Pinneri flock semifield
C: Commutative semifields/symplectic semifields.

C1: Kantor–Williams Desarguesian Scions (symplectic), Kantor–Williams
commutative semifields

C2: Ganley commutative semifields and symplectic cousins
C3: Coulter–Matthews commutative semifields and symplectic cousins

D: Generalized Dickson/Knuth/Hughes–Kleinfeld semifields
S: Sandler semifields
JJ : Jha–Johnson cyclic semifields (generalizes Sandler, also of type S(ω,m,n),

or p-primitive type 1, or q-primitive type 2)
JMPT : Johnson–Marino–Polverino–Trombetti semifields (generalizes Jha–John-

son type S(ω,2, n)-semifields)
JMPT (45,165): Johnson–Marino–Polverino–Trombetti non-cyclic semifields of

order 45 and order 165
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T : Generalized twisted fields
JH : Johnson–Huang 8 semifields of order 82

CF : Cordero–Figueroa semifield of order 36

General Construction Processes:
L: Algebraically lifted semifields
The algebraically lifted Desarguesian spreads are completely determined. These

are also known as Cordero–Figueroa/Boerner–Lantz semifield planes for q odd or the
Cardinali, Polverino, Trombetti semifield planes for q even

M : The middle-nucleus semifields by distortion-derivation
C: GL(2, q) − q3 plane construction of Jha–Johnson.

Finally, we recall that there are two other constructions producing semifields start-
ing from a given one. Both these constructions can be applied if the starting semifield
is 2-dimensional over its left nucleus (see [17, Sec. 10] and [4, Sec. 6]). Recently,
in [19], it has been proven that, up to a Knuth operation, these two constructions are
equivalent.
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