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Abstract An approach, based on the Smith Normal Form, is introduced to study the
spectra of symmetric matrices with a given graph. The approach serves well to ex-
plain how the path cover number (resp. diameter of a tree T ) is related to the maximal
multiplicity MaxMult(T ) occurring for an eigenvalue of a symmetric matrix whose
graph is T (resp. the minimal number q(T ) of distinct eigenvalues over the symmetric
matrices whose graphs are T ). The approach is also applied to a more general class
of connected graphs G, not necessarily trees, in order to establish a lower bound on
q(G).
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1 Introduction

This paper concerns the relationship between the algebraic and geometric properties
of a symmetric matrix and the combinatorial arrangement of its nonzero entries (i.e.,
its graph). We begin by establishing some basic graph theoretic notation and termi-
nology that follows that in [4].

A graph G consists of a vertex set V (G) and an edge set E(G), where an edge
is an unordered pair of distinct vertices of G. We use uv to denote the edge joining
vertices u and v. If uv is an edge, then we say that u and v are adjacent, and that v

is a neighbor of u. A vertex is incident with an edge if it is one of the two vertices
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of the edge. The degree of a vertex is the number of edges incident to the vertex.
A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G).
A subgraph H is an induced subgraph if two vertices of V (H) are adjacent in H if
and only if they are adjacent in G. If U is a subset of V (G), then G \ U denotes the
induced sugraph of G whose vertex set is V (G) \ U .

A path P of G is a sequence v1, v2, . . . , vn of distinct vertices such that consecu-
tive vertices are adjacent, and is denoted by v1—v2—· · ·—vn. We say that P covers
the vertices v1, . . . , vn, and that vj is covered by P for j = 1, . . . , n. The vertices v1
and vn are the end vertices of P . The length of P is defined to be n − 1 (that is, the
length is 1 less than the number of vertices). If each vertex of G belongs to at most
one of the paths P1, . . . ,Pk , then P1, . . . ,Pk are disjoint paths of G. If P1 = v1—· · ·
—vs and P2 = vs—· · ·—vt are paths whose only common vertex is vs , then P1P2
denotes the path v1—· · ·— vs— · · ·—vt , obtained by concatenating P1 and P2.

If there is a path between each pair of vertices of G, then G is connected; otherwise
G is disconnected. A cycle is a connected graph where every vertex has exactly two
neighbors. The length of a cycle is the number of its vertices. A cycle of G is a
subgraph of G that is a cycle. An acyclic graph is a graph with no cycles. A connected
acyclic graph is called a tree, and an acyclic graph is called a forest.

Let G be a connected graph. The distance between two vertices u and v of G is
the minimal length of a path from u to v. The diameter of a connected graph G is the
maximum of the distances between pairs of vertices of G, and is denoted by d(G).
If G is a tree, then d(G) is the longest length of a path in G. The path cover number
of G is the minimal number of disjoint paths needed to cover all of the vertices of G,
and is denoted by p(G).

As is customary, we use graphs to model the combinatorial structure of a matrix.
Let A = [aij ] be an n by n symmetric matrix. The graph G(A) of A consists of the
vertices 1,2, . . . , n, and the edges ij for which i �= j and aij �= 0. Note that G(A)

does not depend on the diagonal entries of A. The matrix A is acyclic if G(A) is a
tree (see [3]). For a given graph G on n vertices, define S(G) to be the set of all n by
n real, symmetric matrices with graph G, i.e.,

S(G) = {A ∈ R
n×n | AT = A, G(A) = G}.

For the remainder of this section, matrices are real. Let σ be a multi-list of n real
numbers. If there exists an n by n symmetric matrix A whose spectrum is σ , then we
say that σ is realized by A, or A realizes σ . The spectrum of S(G) for a graph G

is the set of all spectra realized by some matrix in S(G). The maximal multiplicity
occurring for an eigenvalue of a matrix in S(G) is denoted by MaxMult(G). For a
given graph G, one can ask to characterize the spectrum of S(G). This characteriza-
tion problem is known as the Inverse Eigenvalue Problem for the graph G, or IEP-G
for short. If G is a tree, then we use IEP-T instead of IEP-G.

The IEP-G seems quite difficult. A first step toward resolving the IEP-G for a given
graph G is to analyze the possible multiplicities of the eigenvalues in the spectra of
matrices in S(G). If the distinct eigenvalues of A are λ1 < λ2 < · · · < λq and their
corresponding multiplicities m1, . . . ,mq , then 〈m1,m2, . . . ,mq〉 is the ordered mul-
tiplicity list of the eigenvalues of A. For the IEP-T, based on the interplay between
the spectral properties of acyclic matrices and the combinatorial properties of trees,
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some significant and intriguing progress has recently been made on (ordered) multi-
plicity lists (see [3, 8, 9, 11–14, 16]). The significant graphical parameters of trees T

considered in those literature are d(T ) and p(T ). For instance, A. Leal Duarte and
C.R. Johnson showed in [8, 14] that the minimal number q(T ) of distinct eigenvalues
over the matrices in S(T ) satisfies q(T ) ≥ d(T ) + 1, and MaxMult(T ) = p(T ).

In this paper, we introduce an approach based on the Smith Normal Form to study
the spectra of matrices in S(G). In Section 2 we relate the multiplicities of the eigen-
values of an n by n symmetric matrix A to the Smith Normal Form of xI − A where
I is the identity matrix. In Section 3 it is proved that an eigenvalue of multiplicity
k + 1 or more of an acyclic matrix A ∈ S(T ) for a tree T must be an eigenvalue of
each principal submatrix of A whose graph is obtained from T by deleting k dis-
joint paths. As an application, we give an example showing that the IEP-T is not
equivalent to determining the ordered multiplicity lists of the eigenvalues of matri-
ces in S(T ). In Section 4 the known result MaxMult(T ) ≤ P(T ) is demonstrated
to be a direct consequence of the Smith Normal Form approach, and a systematic
way to compute p(T ) for a tree T is given. In Section 5 it is shown that the bound
q(T ) ≥ d(T ) + 1 is also a direct consequence of the Smith Normal Form approach,

and that q(W) ≥ 9d(W)

8
+ 1

2
for an infinite family of trees W . In Section 6 it is

shown that the Smith Normal Form approach can be applied to graphs that are not
trees.

2 SNF and multiplicities of eigenvalues

Throughout the remainder of this paper, we let I denote identity matrices. In this
section we give some useful results on the Smith Normal Form of matrices over
the real polynomial ring R[x]. We refer the reader to [2, 5] for the basic facts. In
particular, we relate the multiplicities of the eigenvalues of a real, symmetric matrix
A to the Smith Normal Form of xI − A.

For p(x), q(x) ∈ R[x], we write p(x)|q(x) if p(x) divides q(x), and p(x) � q(x)

if p(x) does not divide q(x). We write (x − a)k || q(x) when (x − a)k | q(x) and
(x − a)k+1

� q(x). We let F denote the field of rational functions over R (that is,
F is the field of quotients of R[x]), and let (R[x])m×n denote the set of all m by n

matrices over R[x]. The rank of a matrix M ∈ (R[x])m×n is defined to be the rank
of M over F. Let GLn be the set of all invertible matrices of order n over R[x], i.e.,

GLn = {P ∈ (R[x])n×n | P has an inverse in (R[x])n×n}.
It is a well-known fact that

GLn = {P ∈ (R[x])n×n | detP ∈ R \ {0}}. (1)

Matrices M and N in (R[x])m×n are equivalent over R[x] if there exist P ∈ GLm

and Q ∈ GLn such that N = PMQ. Hence, equivalent matrices have the same rank.
A k by k minor of M is the determinant of a k by k submatrix of M . The monic

greatest common divisor of all k by k minors of M is the kth determinantal divisor
of M and is denoted by �k(M). Also, define �0(M) = 1.
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Proposition 1 Let M,N ∈ (R[x])m×n. If M and N are equivalent over R[x], then
�k(M) = �k(N) for each k ∈ {1, . . . , n}.

The following fundamental theorem asserts that each square matrix over R[x] is
equivalent to a diagonal matrix over R[x] of a special form (see [2, 5]).

Theorem 2 (Smith Normal Form) Let M ∈ (R[x])n×n of rank r . Then there ex-
ist P,Q ∈ GLn and monic polynomials ei(x) (i = 1,2, . . . , r) such that PMQ =
D ⊕ O , where O is the zero matrix of order n − r , D = diag(e1(x), . . . , er (x)),

and ei(x)|ei+1(x) for i = 1, . . . , r − 1. Moreover, �k(M) =
k∏

j=1

ej (x) and ek(x) =
�k(M)

�k−1(M)
for each k ∈ {1, . . . , r}.

In the above theorem, D ⊕O is called the Smith Normal Form (SNF) of M , and ei(x)

is called the ith invariant factor of M .
Now assume that A is an n by n real matrix, and let S be the SNF of xI − A. The

characteristic polynomial of A, denoted by pA(x), is det(xI − A) = �n(xI − A).
Since det(xI − A) is nonzero, the rank of xI − A is n. Thus, S is a full rank matrix
of the form diag(e1(x), . . . , en(x)). Since S and xI − A are equivalent over R[x],
Proposition 1 implies that

pA(x) =
n∏

j=1

ej (x) = �n(S). (2)

Further assume that A is symmetric. Then the spectrum of a symmetric matrix A

and the invariant factors of xI − A are closely related. Let P,Q ∈ GLn such that
P(xI − A)Q = S. Since A is symmetric, there exists a real orthogonal matrix U of
order n so that UT AU is of the form D = diag(λ1, . . . , λn). The diagonal matrix D

is called a diagonalization of A. Thus, S = PU(xI − D)UT Q. Moreover, since (1)
implies that PU,UT Q ∈ GLn, the SNF of xI − D is also S. This with Proposition 1
together imply that �i(xI − A) = �i(xI − D) = �i(S) for all i.

Henceforth �i(x) denotes �i(xI − A). If λ is an eigenvalue of A, then mA(λ)

denotes the algebraic multiplicity of λ. Let p(x) ∈ R[x] and a ∈ R. If (x −a) || p(x),
then x − a is a linear factor of p(x). By considering xI − D, we have the following
result on the factors of �i(x) and ei(x).

Theorem 3 Let A be an n by n symmetric matrix whose distinct eigenvalues are
λ1, λ2, . . . , λq and let S = diag(e1(x), . . . , en(x)) be the SNF of xI − A. Then the
following hold.

(a) If k ≤ n − mA(λj ), then (x − λj ) � �k(x) and (x − λj ) � ek(x).
(b) If k > n−mA(λj ), then (x −λj )

k−n+mA(λj )||�k(x) and x −λj is a linear factor
of ek(x).

(c) en−k(x) = ∏
j :mA(λj )>k(x − λj ).
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Proof Fix j , and let λ = λj , and m = mA(λj ). Let D be a diagonalization of A.
Without loss of generality, we may assume that

xI − D =
⎡

⎢⎣
x − μ1

. . .

x − μn−m

⎤

⎥⎦ ⊕
⎡

⎢⎣
x − λ

. . .

x − λ

⎤

⎥⎦

m×m

,

where μi �= λ for each i = 1, . . . , n − m.
(a) Suppose k ≤ n − m. The determinant of diag(x − μ1, . . . , x − μk) is not divisible
by x −λ. Thus, (x −λ) � �k(x). By Theorem 2, ek(x)|�k(x). Hence, (x −λ) � ek(x).
(b) Suppose k > n−m, and let M be a k by k submatrix of xI −D. If M is not a prin-
cipal submatrix of xI − D, then M has a zero row and hence detM = 0. Otherwise,
at least k − (n − m) diagonal entries of M are x − λ. Thus, (x − λ)k−(n−m)|�k(x).
Note that xI − D has a k by k minor equal to det[diag(x − μ1, . . . , x − μn−m,x −
λ, . . . , x − λ)]. Thus (x − λ)k−(n−m)+1

� �k(x). Hence,

(x − λ)k−(n−m) || �k(x). (3)

By Theorem 2, ek(x) = �k(x)

�k−1(x)
. By (3), �k(x) has exactly k − n + m factors

equal to x −λ and �k−1(x) has exactly (k −n+m)− 1 factors equal to x −λ. Thus,
(x − λ) || ek(x), and (b) holds.
(c) By (2), en−k(x) is a product of linear factors from {x − λ1, . . . , x − λq}, and by
(a) and (b), the factors are distinct, and x − λj is a factor of en−k(x) if and only if
mA(λj ) > k. Thus (c) holds. �

Useful, immediate consequences of Theorem 3 are the following:

Corollary 4 Let A be an n by n symmetric matrix, and S = diag(e1(x), . . . , en(x))

be the SNF of xI − A. Suppose that λ is an eigenvalue of A. Then

(a) mA(λ) ≥ k if and only if (x − λ)|en−k+1(x)

(b) mA(λ) = k if and only if (x − λ)|en−k+1(x) but (x − λ) � en−k(x).

Theorem 3(c) implies

deg(en−k(x)) is the number of eigenvalues of A with multiplicity k + 1 or more.
(4)

The minimal polynomial of a square matrix A is the unique, monic polynomial
p(x) of smallest degree such that p(A) = O . Taking k = 0 in Theorem 3(c), we see
that en = (x − λ1)(x − λ2) · · · (x − λq), which is known to be the minimal polyno-
mial of symmetric matrix A. Thus, deg(en(x)) equals the number q(A) of distinct
eigenvalues of A, and by Theorem 2, we have the following:

Corollary 5 Let A be an n by n symmetric matrix, and S = diag(e1(x), . . . , en(x))

be the SNF of xI − A. Then en(x) is the minimal polynomial of A, and

q(A) = n − deg(�n−1(x)).
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Corollary 5 allows one to obtain a lower bound on q(A) from an upper bound on
deg(�n−1(x)).

3 Eigenvalues of principal submatrices of an acyclic matrix

In this section we associate a digraph on n vertices with an n by n matrix M , and de-
scribe certain minors of M in terms of the structure of the digraph associated with M .
We use this description to show that an eigenvalue of A ∈ S(T ) with multiplicity k+1
or more is an eigenvalue of each principal submatrix of A whose rows and columns
correspond to the vertices not covered by a set of k disjoint paths. As an application,
we provide an example showing that the IEP-T is not equivalent to determining the
ordered multiplicity lists of the eigenvalues of matrices in S(T ) (see also [1]).

Let M = [mij ] be an n by n matrix. The digraph D(M) of M consists of the
vertices 1,2, . . . , n, and arcs (i, j) from vertex i to vertex j if and only if mij �= 0.
The underlying graph of the digraph D(M) is the graph obtained by treating each
arc (i, j) (i �= j ) of D(M) as the edge ij , and ignoring the loops. A directed walk
in D(M) is a sequence of vertices (v1, v2, . . . , v�), such that (vi, vi+1) is an arc for
each i = 1, . . . , � − 1, and v1 is the initial vertex and v� is the terminal vertex of the
directed walk. The directed walk (v1, v2, . . . , v�) covers the vertices v1, v2, . . . , v�,
and has length � − 1. If no vertex of a directed walk is repeated, then the directed
walk is a directed path.

If digraph D(M) has a unique directed path from vertex i to vertex j , then the
unique directed path is denoted by Pi→j . If the underlying graph of D(M) has a
unique path connecting vertex i and vertex j , then the path is denoted by Pi−j .

The weight of the arc (i, j) of D(M) is mij . The weight of a directed walk β of
D(M) is the product of the weights of its arcs, and is denoted by wt(β).

If α and β are subsets of {1, . . . , n}, then we denote the submatrix of M ob-
tained by removing (resp. retaining) rows indexed by α and columns indexed by
β by M(α,β) (resp. M[α,β]). When α = β , we use M(α) and M[α], respectively.

The following result ([15, Theorem 9]) will be a useful tool throughout the re-
mainder of the paper.

Theorem 6 Let M be an n × n matrix. Then, for i, j ∈ {1,2, . . . , n} with i �= j ,

detM({j}, {i}) = (−1)i+j
∑

P

(−1)�(P )wt(P )detM(V (P )) ,

where the sum is taken over all directed paths P in D(M) from i to j , and �(P ) is
the length of P .

Note that if M is acyclic, then for each pair of distinct vertices i and j there is a
unique directed path from i to j in D(M), and hence

detM({j}, {i}) = (−1)i+j+�(Pi→j )wt(Pi→j )detM(V (Pi−j )).
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Corollary 7 Let M be an n by n matrix having digraph D with underlying graph G,
and let i1, i2, . . . , ik , j1, j2, . . . , jk ∈ {1,2, . . . , n} be distinct. Suppose that for each
r = 1,2, . . . , k, there is a directed path Pir→jr from ir to jr in D with underlying
path Pir−jr in G such that Pir−jr is the unique path connecting ir and jr in G and
paths Pi1−j1, . . . ,Pik−jk

are disjoint. Then

detM({j1, . . . , jk}, {i1, . . . , ik})

= ±
k∏

r=1

wt(Pir→jr ) · detM(V (Pi1−j1) ∪ · · · ∪ V (Pik−jk
)).

Proof The proof is by induction on k. The statement is vacuously true for k = 0, and
the case k = 1 is true by Theorem 6. Let k ≥ 2 and assume that the statement is true
for k − 1.

Let B be the matrix obtained from M by interchanging columns jr and ir for each
r = 1, . . . , k − 1. Then, since path Pik−jk

is the unique path in G connecting ik and
jk that is disjoint from paths Pi1−j1, . . . ,Pik−1−jk−1 , the directed path Pik→jk

is still
the unique directed path from ik to jk in the digraph D(B({j1, . . . , jk−1})) with the
underlying path Pik−jk

. Hence, it follows that

detM({j1, . . . , jk}, {i1, . . . , ik})
= ±det[B({j1, . . . , jk−1})]({jk}, {ik})
= ±wt(Pik→jk

)det[B({j1, . . . , jk−1})](V (Pik−jk
)) by Theorem 6

= ±wt(Pik→jk
)det[B(V (Pik−jk

))]({j1, . . . , jk−1})
= ±wt(Pik→jk

)det[M(V (Pik−jk
))]({j1, . . . , jk−1}, {i1, . . . , ik−1}).

Since matrix M(V (Pik−jk
)) with indices i1, . . . , ik−1, j1, . . . , jk−1 satisfies the con-

dition in the statement, the result follows by the inductive hypothesis. �

Theorem 8 Let A ∈ S(T ) where T is a tree on n vertices and let S = diag(e1(x), . . . ,

en(x)) be the SNF of xI − A. If Pi1−j1, . . . ,Pik−jk
are disjoint paths in T covering

n − t vertices of T , then
�n−k(x)|det(xI − A)(V (Pi1−j1) ∪ · · · ∪ V (Pik−jk

)) and deg(�n−k(x)) ≤ t .
Furthermore, if λ is an eigenvalue of A with mA(λ) ≥ k + 1, then λ is an eigenvalue
of A(V (Pi1−j1) ∪ · · · ∪ V (Pik−jk

)) with multiplicity mA(λ) − k or more.

Proof For each s = 1, . . . , k, let Pis→js be the directed path from is to js in digraph
D(xI − A) with underlying graph Pis−js . By Corollary 7,

det(xI − A)({j1, . . . , jk}, {i1, . . . , ik})

= ±
k∏

s=1

wt(Pis→js ) · det(xI − A)(V (Pi1−j1) ∪ · · · ∪ V (Pik−jk
)).
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Fig. 1

Since each wt(Pis→js ) is a nonzero constant and (xI − A)({j1, . . . , jk}, {i1, . . . , ik})
is an n − k by n − k submatrix of xI − A,

�n−k(x)|det(xI − A)(V (Pi1−j1) ∪ · · · ∪ V (Pik−jk
)). (5)

Suppose that λ is an eigenvalue of A with mA(λ) ≥ k + 1. By Theorem 3, the
multiplicity of (x − λ) as a factor of �n−k(x) is mA(λ) − k. Therefore, by (5),
(x − λ)mA(λ)−k|det(xI − A)(V (Pi1−j1) ∪ · · · ∪ V (Pik−jk

)). This implies that λ is an
eigenvalue of A(V (Pi1−j1) ∪ · · · ∪ V (Pik−jk

)) with multiplicity mA(λ) − k or more.
Note that the degree of polynomial det(xI − A)(V (Pi1−j1) ∪ · · · ∪ V (Pik−jk

)) is
t . Thus, by (5),

deg(�n−k(x)) ≤ t. �

If deg(�n−k(x)) ≤ t , then Theorem 2 implies that deg(en−k(x)) ≤ t . Hence, Corol-
lary 4 implies the following.

Corollary 9 Let A ∈ S(T ), where T is a tree on n vertices. If k disjoint paths of T

cover n − t vertices of T , then there are at most t eigenvalues of A with multiplicity
k + 1 or more.

It was conjectured in [11] that the IEP-T for a tree T is equivalent to determining
the ordered multiplicity lists of the eigenvalues of matrices in S(T ), i.e., each multi-
list of real numbers of the eigenvalues of a matrix in S(T ) is the spectrum of a matrix
in S(T ). Indeed, it was shown in [11] that for some classes of trees, these two prob-
lems are equivalent. A counterexample to the conjecture was given in [1]. We give a
counterexample on fewer vertices with a simple argument. This counterexample was
motivated by that in Figure 2.2 of [1].

Example 10 Consider the tree T illustrated in Figure 1. We will show that an ordered
multiplicity list of the eigenvalues of a matrix in S(T ) requires the eigenvalues having
the ordered multiplicity list to satisfy a certain algebraic condition.

It can be verified that the eigenvalues of the (0,1)-matrix A in S(T ) with trace 0
are −√

5, −√
2, 0,

√
2,

√
5, and the ordered multiplicity list of the eigenvalues of A

is 〈1,2,4,2,1〉.
Suppose that

σ = (λ1, λ2, λ2, λ3, λ3, λ3, λ3, λ4, λ4, λ5)
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is realized by a matrix B in S(T ) as its spectrum where λ1 < λ2 < λ3 < λ4 < λ5.
The disjoint paths 4—1—5, 7—2—8 and 10—3—9 cover all the vertices except
vertex 6. Since mB(λ3) = 4, Corollary 8 implies that λ3 is the eigenvalue of B[{6}],
i.e., B[{6}] = λ3.

Next, since the three disjoint paths 4—1—6—2—7, 10—3—9, and 8 cover all
the vertices except vertex 5, Theorem 8 implies that λ3 is the eigenvalue of B[{5}],
i.e., B[{5}] = λ3. Similarly, λ3 is the eigenvalue of B[{i}], i.e., B[{i}] = λ3 for each
i = 4,5,7,8,9,10.

The three disjoint paths 7—2—6—3—10, 8 and 9 cover seven vertices. Thus,
by Theorem 8, λ3 is an eigenvalue of B[{4,1,5}]. Similarly, λ3 is an eigenvalue of
B[{10,3,9}] and B[{7,2,8}].

Finally, we show that both eigenvalues of B with multiplicity 2 are eigenvalues of
B[{4,1,5}], B[{7,2,8}] and B[{10,3,9}]. We consider only the case for B[{4,1,5}].
Since the single path 7—2—6—3—10 covers five vertices, and mB(λ2) = mB(λ4) =
2, Theorem 8 implies that λ2 and λ4 are eigenvalues of B[{4,1,5,8,9}]. However,
B[{4,1,5,8,9}] = B[{4,1,5}] ⊕ B[{8}] ⊕ B[{9}]. Since B[{8}] = B[{9}] = λ3, λ2
and λ4 are eigenvalues of B[{4,1,5}]. The other cases can be shown by choosing the
paths 4—1—6—2—7 and 4—1—6—3—10, respectively.

So far, we have shown that σ(B[{6}]) = λ3, and σ(B[{4,1,5}]) = σ(B[{7,2,8}])
= σ(B[{10,3,9}]) = (λ2, λ3, λ4). Now, we consider the trace of B . The trace of B is
equal to the sum of the traces of B[{6}], B[{4,1,5}], B[{7,2,8}] and B[{10,3,9}].
Since the trace is equal to the sum of all the eigenvalues, we have

λ1 + 2λ2 + 4λ3 + 2λ4 + λ5 = λ3 + 3(λ2 + λ3 + λ4)

and hence,

λ1 + λ5 = λ2 + λ4.

Therefore, if the ordered multiplicity list 〈1,2,4,2,1〉 is realized by a matrix B

in S(T ), then σ(B) = (λ1, λ2, λ2, λ3, λ3, λ3, λ3, λ4, λ4, λ5) must satisfy λ1 + λ5 =
λ2 + λ4. For instance, σ = (2,3,3,5,5,5,5,7,7,10) with the ordered multiplicity
list 〈1,2,4,2,1〉 cannot be realized by any matrix in S(T ).

4 Maximal multiplicity and p(T )

Let T be a tree on n vertices. Recall that MaxMult(T ) is the maximal multiplicity
occurring for an eigenvalue among the matrices in S(T ), and the path cover number
p(T ) of T is the minimal number of disjoint paths that cover T .

Let A ∈ S(T ). If k disjoint paths in T cover all the vertices of T , then Corollary 9
implies that no eigenvalue of A has multiplicity more than k. Since A is an arbitrary
matrix in S(T ), it follows that MaxMult(T ) ≤ p(T ). In [8], it was shown that in fact
equality holds.

Theorem 11 If T is a tree, then

MaxMult(T ) = p(T ).
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For the remainder of this section, we describe a systematic way of computing
p(T ). This method will be used repeatedly in the following sections. We first show
the existence of a specific path for a given tree (see also [16, Lemma 3.1]).

Proposition 12 Let T be a tree on n vertices. Then there exists a path in T such that
the end vertices of the path are pendant vertices of T , and at most one vertex of the
path has degree 3 or more in T .

Proof The proof is by induction on n. The result is clearly true if n ≤ 2. Assume that
n ≥ 3 and proceed by induction.

If T has diameter 2, then any path of length 2 works. Assume that the diameter of
T is at least 3, and let P be a path in T , u—v—a1—· · ·—ak−1—ak , whose length
is the diameter of T . Since u is a pendant vertex of T , T \ {u} is also a tree. By the
inductive hypothesis, there exists a path P ′ of T \ {u} satisfying the given condition.

If the path P ′ in T \ {u} does not contain v, then P ′ is also a path in T satisfying
the given condition. If P ′ contains v as an end vertex, then the path Pu−vP

′ is a
path in T satisfying the given condition. Otherwise P ′ contains v and v is not an end
vertex of P ′. Thus there exists a neighbor w of v in T \{u} such that w �= a1. Suppose
that w is not a pendant vertex of T . Then there exists a neighbor y of w other than v.
Since T is a tree, y /∈ {a2, . . . , ak} and hence, y—w—v—a1—· · ·—ak−1—ak is a
path in T , whose length is longer than P , which is a contradiction. Therefore, w is a
pendant vertex of T , and the path u—v—w in T satisfies the given condition. �

If T is a path, then a path in T satisfying the conditions in Proposition 12 is
T itself. Otherwise, there exists a path P in T such that the end vertices of P are
pendant vertices of T , and exactly one vertex of P has degree 3 or more in T . Next,
we show that for such a path P , p(T \ V (P )) = p(T ) − 1.

Proposition 13 Let T be a tree that is not a path. Suppose that P is a path in T such
that P ’s end vertices are pendant vertices of T and P has exactly one vertex v of
degree 3 or more in T . Then

p(T ) = p(T \ V (P )) + 1.

Proof Note that each path cover of T \ V (P ) can be extended to a path cover of T

by including the path P . Hence p(T ) ≤ p(T \ V (P )) + 1.
It is shown next that p(T ) ≥ p(T \V (P ))+1. Let p denote p(T ) and C = {Pi}pi=1

be a set of p disjoint paths in T covering all of the vertices of T . If P ∈ C, then, since
C \ {P } covers all of the vertices of T \ V (P ), p(T \ V (P )) ≤ p − 1. Otherwise,
P �∈ C. Then two disjoint paths in C, say α and β , are needed to cover the vertices
of P . Assume that β covers the vertex v. Then α covers only the vertices of P .
Thus, (C \ {α,β}) ∪ {β \ V (P )} covers all the vertices of T \ P . This implies that
p(T \ V (P )) ≤ p − 1; equivalently, p ≥ p(T \ V (P )) + 1. �

Example 14 By repeated use of Proposition 13, we can efficiently compute the path
cover number of the tree T in Figure 2.
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Note that P1 = 3—1—4 and P2 = 9—2—10 satisfy the condition in Proposition 13
for T and T \ V (P1), respectively, and the disjoint paths P1,P2 and P3 = 5–6–7–8
cover all of the vertices of T . Hence, by Proposition 13, p(T ) = 3. This implies, by
Theorem 11, that if a multi-list σ of 10 real numbers has an element with multiplicity
greater than 3, then σ cannot be realized by any matrix in S(T ).

5 Relationship between d(T ) and q(T )

In this section, we study the relation between d(T ) and q(T ).
Let T be a tree on n vertices and A ∈ S(T ). By Corollary 5,

q(A) = n − deg(�n−1(x)) (6)

and by Theorem 8, if a path in T has � vertices, then

deg(�n−1(x)) ≤ n − �. (7)

Thus, by choosing a path of the longest length, (6) and (7) imply that

q(A) ≥ d(T ) + 1. (8)

Since (8) holds for every matrix in S(T ), q(T ) ≥ d(T ) + 1. Thus, the following
known theorem (see [14]) follows easily from the Smith Normal Form approach.

Theorem 15 Let T be a tree. Then

q(T ) ≥ d(T ) + 1.

Next, we provide a class of trees W for which q(W) is much larger than d(W)+1.
The (k, �)-whirl W for k ≥ 2 and � ≥ 1 is the tree on n = 2k� + k + 1 vertices
consisting of an axis vertex v, vertices vi adjacent to v and pendant paths αi

1, α
i
2 of

length � whose end vertices are adjacent to vi for i = 1,2, . . . , k. The 2k pendant
paths are called the legs of W . Note that d(W) = 2� + 2. If the number of vertices
of each leg of W is not specified, we say that W is a k-whirl. If the numbers of the
vertices of the 2k legs are not necessarily equal, then W is a generalized k-whirl.
Figure 3 illustrates the (3, �)-whirl (� ≥ 1).

Some basic properties of generalized k-whirls are the following.
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Lemma 16 Suppose that W is a generalized k-whirl (k ≥ 2) on n vertices with 2k

legs {αi
1, α

i
2}ki=1 such that each leg has at least one vertex. Let A ∈ S(W) and let

A′ be the direct sum of A[αi
j ] for all i ∈ {1, . . . , k} and j ∈ {1,2}. If nr denotes the

number of eigenvalues of A with multiplicity r , then the following hold:

(a) nk+1 ≤ 1 and nj = 0 for j ≥ k + 2;
(b) If λ ∈ σ(A) and mA(λ) = k + 1, then λ is a simple eigenvalue of A[αi

j ] for all
i ∈ {1, . . . , k} and j ∈ {1,2}, and mA′(λ) = 2k;

(c) If μ ∈ σ(A) and mA(μ) = k, then, for all i �= s, j and t , μ is a simple eigenvalue
of at least one of A[αi

j ], A[αs
t ], and mA′(μ) ≥ 2k − 2; and

(d) (2k − 2)nk + (2k)nk+1 ≤ n − (k + 1).

Proof (a) Let Pi = αi
1viα

i
2 for i = 1, . . . , k. By applying Proposition 13 to the paths

P1, . . . ,Pk , we conclude that p(W) = k + 1. Hence, Theorem 11 implies that there
is no eigenvalue of A with multiplicity k + 2 or more, that is, nj = 0 for j ≥ k + 2.
Furthermore, since the k disjoint paths P1, . . . ,Pk in W cover all of the vertices of
W except v, Corollary 9 implies that there exists at most one eigenvalue of A with
multiplicity k + 1, that is, nk+1 ≤ 1. This proves (a).

(b) Suppose that λ ∈ σ(A) and mA(λ) = k + 1. Consider the following k dis-
joint paths in W : Q1 = α1

2(v1—v—vk)α
k
2 , Qi = αi

1viα
i
2 for i = 2, . . . , k − 1 and

Qk = αk
1 . Then W \ (V (Q1)∪ · · · ∪V (Qk)) is α1

1 and hence, Theorem 8 implies that
λ ∈ σ(A[α1

1]). By Theorem 11, λ is a simple eigenvalue of A[α1
1]. Similarly, λ is a

simple eigenvalue of A[α1
2] and A[αi

j ] for each i = 2, . . . , k and j = 1,2. Therefore,
mA′(λ) = 2k, and (b) holds.

(c) Suppose that μ ∈ σ(A) and mA(μ) = k. Let R1 = α1
2(v1—v—vk)α

k
2 , and

Ri = αi
1viα

i
2 for i = 2, . . . , k−1. Then A[W \(V (R1)∪· · ·∪V (Rk−1))] is, up to per-

mutation similarity, equal to A[α1
1]⊕A[αk

1]. Thus, by Theorem 8, μ is an eigenvalue
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of A[α1
1] ⊕ A[αk

1] and hence, by Theorem 11, μ is a simple eigenvalue of at least
one of A[α1

1], A[αk
1]. Similarly, μ is a simple eigenvalue of at least one of A[αi

j ],
A[αs

t ] for all i, s ∈ {1, . . . , k}, i �= s and j, t ∈ {1,2}. If μ is a simple eigenvalue
of at most 2k − 3 of the 2k matrices in {A[αi

1],A[αi
2]}ki=1, then there is a pair of

A[αi
j ],A[αs

t ] for i �= s such that none of A[αi
j ],A[αs

t ] has μ as an eigenvalue. Thus,

μ is a simple eigenvalue of at least 2k − 2 matrices in {A[αi
1],A[αi

2]}ki=1. Therefore,
mA′(μ) ≥ 2k − 2, and (c) holds.

(d) The order of A′ is n − (k + 1). Since the number of eigenvalues of A′ cannot
exceed the order of A′, (2k − 2)nk + (2k)nk+1 ≤ n − (k + 1). �

Theorem 17 Let W be the (k, �)-whirl with k ≥ 3 and � ≥ 2. Then

q(W) ≥ d(W) + 1 + (k − 2)(� − 1)

(k − 1)2
> d(W) + 1.

In particular, if W is a (3, �)-whirl, then

q(W) ≥ 9d(W)/8 + 1/2.

Proof Let A ∈ S(W) and let nj be the number of eigenvalues of A with multiplicity
j . By Lemma 16(a),

n = 2k� + k + 1 =
k+1∑

i=1

i · ni.

Moreover,

2k� + k + 1 =
k+1∑

i=1

i · ni

= n1 + 2n2 + · · · + knk + (k + 1)nk+1

= 2 + (n1 − 2 + 2n2 + · · · + (k − 1)nk + (k − 1)nk+1) + nk + 2nk+1.

By [10, Corollary 7], it follows that n1 ≥ 2. Thus,

2k� + k + 1 ≤ 2 + (k − 1)(n1 − 2 + n2 + · · · + nk + nk+1) + nk + 2nk+1

= 2 + (k − 1)(q(A) − 2) + nk + 2nk+1. (9)

Next, since n = 2k� + k + 1, Lemma 16(d) implies

(2k − 2)nk + (2k)nk+1 ≤ 2k�. (10)

Thus, by solving (10) for nk , we have

nk ≤ k� − knk+1

k − 1
.
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Furthermore, by (9),

2k� + k + 1 ≤ 2 + (k − 1)(q(A) − 2) + k� − knk+1

k − 1
+ 2nk+1

= (k − 1)q(A) − 2k + 4 + k� + (k − 2)nk+1

k − 1
.

By Lemma 16(a), nk+1 ≤ 1 and hence,

2k� + 3k − 3 ≤ (k − 1)q(A) + k� + k − 2

k − 1
. (11)

By solving (11) for q(A), we have

q(A) ≥ (2k� + 3k − 3)(k − 1) − (k� + k − 2)

(k − 1)2

= 2k2� + 3k2 − 3k� − 7k + 5

(k − 1)2

= 2� + 3 + (k − 2)(� − 1)

(k − 1)2
.

Since d(W) = 2� + 2, we have

q(A) ≥ d(W) + 1 + (k − 2)(� − 1)

(k − 1)2
. (12)

Since A is an arbitrary matrix in S(W), (12) implies that

q(W) ≥ d(W) + 1 + (k − 2)(� − 1)

(k − 1)2
> d(W) + 1

for k ≥ 3 and � ≥ 2.
For k = 3, using d(W) = 2� + 2, this simplifies to q(W) ≥ 9d(W)/8 + 2, as

claimed. �

6 q(G) for a class of connected graphs G

In the previous sections the Smith Normal Form approach is shown to be an efficient
tool for acyclic graphs. In this section, we illustrate the promise of the Smith Normal
Form approach for more than just acyclic graphs by finding a lower bound on q(G)

for an infinite class of connected graphs G described in Figure 4.

Theorem 18 Let G be a connected graph on n vertices that consists of a connected
subgraph H on m vertices containing vertices v1, v2, v3 such that for all r , s, and t

with {r, s, t} = {1,2,3}, there exists a unique shortest path from vs to vt that does not
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pass vr ; and 6 legs L1, . . . ,L6 on � vertices such that end vertices of L1,L2 (resp.
L3,L4 and L5,L6) are adjacent to vertex v1 (resp. v2 and v3). Then

q(G) ≥ 9�

4
− 2m + 15

2
.

Proof Let A ∈ S(G) and λ1, . . . , λq be the distinct eigenvalues of A and let nj be
the number of eigenvalues of A with multiplicity j . We use iu and jv to denote the
pendant vertices of the 6 legs in G (see Figure 4).

Consider M = xI − A. We compute the determinant of an (n − 3) by (n − 3)

submatrix of M , and find an upper bound on
∑

λj :mA(λj )≥4

(mA(λj ) − 2). In G there is

a unique path Pis−js from is to js and a unique directed path Pis→js from is to js for
s = 1,2,3. Since Pi1−j1,Pi2−j2 and Pi3−j3 are disjoint, Corollary 7 implies that

detM({j1, j2, j3}, {i1, i2, i3}) = ±
3∏

s=1

wt(Pis→js ) ·detM[V (H)\{v1, v2, v3}]. (13)

Since the wt(Pis→js )’s are nonzero constants and M({j1, j2, j3}, {i1, i2, i3}) is an
(n − 3) by (n − 3) submatrix of M , we have

�n−3(x)|detM[V (H) \ {v1, v2, v3}].

By Theorem 3, if λ is an eigenvalue of A with mA(λ) ≥ 4, then λ is an eigenvalue
of M[V (H) \ {v1, v2, v3}] with multiplicity mA(λ) − 3 or more. Since the order of
M[V (H) \ {v1, v2, v3}] is m − 3, it follows that

∑

λj :mA(λj )≥4

1 ≤
∑

λj :mA(λj )≥4

(mA(λj ) − 3) ≤ m − 3. (14)

Thus, by (14),
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∑

λj :mA(λj )≥4

(mA(λj ) − 2) =
∑

λj :mA(λj )≥4

(mA(λj ) − 3)

+
∑

λj :mA(λj )≥4

1 ≤ 2m − 6. (15)

Next, we compute the determinants of certain (n − 2) by (n − 2) submatrices of
M and thereby find an upper bound on n3. Let {a1, b1} = {ir , jr}, {a2, b2} = {is, js}
and {a3, b3} = {it , jt } for some r , s and t with {r, s, t} = {1,2,3}. The submatrices of
concern have the form M({a1, a2}, {b1, b3}).

By considering the matrix B obtained from M by interchanging columns a2 and
b3, and the digraph D(B({a2})), a similar argument as in the proof of Corollary 7
shows that

det[M({a2}, {b3})]({a1}, {b1}) = ±wt(Pa1→b1)det[M(V (Pa1−b1))]({a2}, {b3}).
Let N = M(V (Pa1−b1)). By Theorem 6,

detN({a2}, {b3}) = ±
∑

P

(−1)�(P )wt(P )detN(V (P )) ,

where the sum is taken over all directed paths P in D(N) from b3 to a2. Note that
N(V (P )) is permutationally similar to M[V (Lb2)]⊕M[V (La3)]⊕M[V (H)\V (P )]
where Lb2 and La3 are the legs containing b2 and a3, respectively. It follows that
there is a polynomial fr(x) such that detM({a1, a2}, {b1, b3}) is a constant multiple
of detM[V (Lb2)]detM[V (La3)]fr(x). Note that fr(x) depends only upon s and t

and not the choice of a2 ∈ {is, js} and b3 ∈ {it , jt }. Also note that the assumption that
there is a unique shortest directed path from vs to vt not through vr implies that fr(x)

is a nonzero polynomial of degree at most m − 3. Since M({a1, a2}, {b1, b3}) is an
(n − 2) by (n − 2) submatrix of M ,

�n−2(x)|detM[V (Lb2)] · detN [V (La3)] · fr(x).

Let μ ∈ σ(A) and mA(μ) = 3. Then, by Theorem 3, μ is a zero of detM[V (Lb2)]·
detM[V (La3)] · fr(x). If μ is an eigenvalue of neither A[V (Lb2)] nor A[V (La3)],
then μ is a zero of fr(x). Note that Lb2 and La3 are arbitrary legs of G incident to
different vi ’s.

If μ is not an eigenvalue of at least 4 of A[Lr ]’s, then there exist A[V (Lu)] and
A[V (Lv)] such that λ �∈ σ(A[V (Lu)]) and λ �∈ σ(A[V (Lv)]), and Lu,Lv are con-
nected to different vi ’s. Thus, in this case, μ is a zero of fk(x) for some k ∈ {1,2,3}.
Therefore, the number, n′

3, of such μ satisfies

n′
3 ≤ 3(m − 3). (16)

Let n′′
3 be the number of eigenvalues μ of A with multiplicity 3 such that μ is an

eigenvalue of at least 4 of A[V (Lr)]’s. Then n3 = n′
3 +n′′

3. Since μ is an eigenvalue of
A[V (L1)]⊕· · ·⊕A[V (L6)] with multiplicity at least 4, and the order of A[V (L1)]⊕
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· · · ⊕ A[V (L6)] is 6�, 4n′′
3 ≤ 6�. Equivalently,

n′′
3 ≤ 3�

2
. (17)

Now, we compute a lower bound on q(A) = q . Note that

n = 6� + m =
q∑

i=1

mA(λi) = 2q − n1 + n′
3 + n′′

3 +
∑

λj :mA(λj )≥4

(mA(λj ) − 2)

≤ 2q + n′
3 + n′′

3 +
∑

λj :mA(λj )≥4

(mA(λj ) − 2).

By (15), (16), and (17), we have

6� + m ≤ 2q + 3(m − 3) + 3�

2
+ 2m − 6. (18)

Hence, by solving (18) for q = q(A), we have

q(A) ≥ 9�

4
− 2m + 15

2
. (19)

Since A is an arbitrary matrix in S(G), (19) implies

q(G) ≥ 9�

4
− 2m + 15

2
. �

7 Coda

There has been some very interesting previous research on the relationship between
the structure of the Jordan blocks associated with the eigenvalue 0 of a matrix and the
digraph of the matrix, and that Smith Normal Form techniques were used to prove
some of the results. More specifically, in the case that A is a nilpotent upper triangular
matrix, Gansner [6] gave necessary conditions on the sizes of the Jordan blocks of A

associated with 0 in terms of sizes of disjoint paths. Moreover, the necessary condi-
tions were shown to hold for generic A. Hershkowitz and Schneider (see the survey
[7]) extended Gansner’s results to the much more difficult case of upper triangular
matrices and then to the even more difficult case of arbitrary matrices. In particular,
the work of Hershkowitz and Schneider gives a combinatorial formula for the max-
imum multiplicity of an eigenvalue among the matrices with a given zero-nonzero
pattern.

There are two main differences between the previous work and this paper. First,
in the present work, when studying the family of matrices with a given graph, the
diagonal entries are allowed to be arbitrary. In the previous work, each diagonal entry
was fixed to be zero, or nonzero. Second, and more importantly, the previous work
studied the Jordan structure of single eigenvalue at a time, and the present work be-
gins the simultaneous study of the Jordan structure of all of the eigenvalues. In this
light, a general problem, that this paper only begins to address is the following:
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Given a graph G (or a digraph D), determine all the possible structures of the
Jordan blocks (of all multiplicities) of matrices with graph G (or digraph D).

More precisely,

Given G (or D) find necessary and sufficient conditions for the existence of a
matrix A with graph G (or digraph D) such that A has q distinct eigenvalues,
and the sizes of the Jordan blocks of A corresponding to the ith eigenvalue are
si1 , si2 , . . . , sibi

for i = 1,2, . . . , q .

A complete solution in the case that G is a tree would be significant, and appears
difficult.
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