ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

A definition of the crystal commutor using Kashiwara's involution

Joel Kamnitzer1 and Peter Tingley2
1American Institute of Mathematics Palo Alto CA USA
2UC Berkeley Department of Mathematics Berkeley CA USA

DOI: 10.1007/s10801-008-0136-1

Abstract

Henriques and Kamnitzer defined and studied a commutor for the category of crystals of a finite dimensional complex reductive Lie algebra. We show that the action of this commutor on highest weight elements can be expressed very simply using Kashiwara's involution on the Verma crystal.

Pages: 261–268

Keywords: keywords coboundary category; crystals; crystal commutor

Full Text: PDF

References

1. Henriques, A., Kamnitzer, J.: Crystals and coboundary categories. Duke Math. J. 132(2), 191-216 (2006).
2. Kamnitzer, J.: The crystal structure on the set of Mirković-Vilonen polytopes. Adv. Math. 215(1), 66- 93 (2007).
3. Kashiwara, M.: The crystal base and Littelmann's refined Demazure character formula. Duke Math. J. 71(3), 839-858 (1993)
4. Kashiwara, M.: On crystal bases. In: Representations of Groups, Banff, AB,
1994. CMS Conf. Proc., vol. 16, pp. 155-197. Amer. Math. Soc., Providence (1995)
5. Littelmann, P.: Cones, crystals, and patterns. Transform. Groups 3(2), 145-179 (1998)
6. Savage, A.: Crystals, quiver varieties and coboundary categories for Kac-Moody algebras. 1This question has recently been answered in the affirmative by Savage [6, Theorem 6.4].




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition