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Abstract In this paper, we study the primitive ideals of quantum algebras supporting
a rational torus action. We first prove a quantum analogue of a Theorem of Dixmier;
namely, we show that the Gelfand-Kirillov dimension of primitive factors of various
quantum algebras is always even. Next we give a combinatorial criterion for a prime
ideal that is invariant under the torus action to be primitive. We use this criterion to
obtain a formula for the number of primitive ideals in the algebra of 2 × n quantum
matrices that are invariant under the action of the torus. Roughly speaking, this can be
thought of as giving an enumeration of the points that are invariant under the induced
action of the torus in the “variety of 2 × n quantum matrices”.
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Introduction

This paper is concerned with the primitive ideals of certain quantum algebras, and
in particular with the primitive ideals of the algebra Oq(Mm,n) of generic quantum
matrices. Since S.P. Smith’s famous lectures on ring theoretic aspects of quantum
groups in 1989 (see [22]), primitive ideals of quantum algebras have been exten-
sively studied (see for instance [2] and [13]). In particular, Hodges and Levasseur [9,
10] have discovered a remarkable partition of the primitive spectrum of the quantum
special linear group Oq(SLn) and proved that the primitive ideals of Oq(SLn) corre-
spond bijectively to the symplectic leaves in SLn (endowed with the semi-classical
Poisson structure coming from the commutators of Oq(SLn)). These results were
next extended by Joseph to the standard quantised coordinate ring Oq(G) of a com-
plex semisimple algebraic group G [11, 12]. Let us mention however that it is not
known (except in the case where G = SL2) whether such bijection can be made into
an homeomorphism. Later, it was observed by Brown and Goodearl [1] that the ex-
istence of such partition relies very much on the action of a torus of automorphisms,
and a general theory was then developed by Goodearl and Letzter in order to study
the primitive spectrum of an algebra supporting a “nice” torus action [8]. In partic-
ular, they constructed a partition, called the H -stratification, of the prime spectrum
of such algebras which also induces by restriction a partition of the primitive spec-
trum of such algebras. This theory can be applied to many quantum algebras in the
generic case, and in particular to the algebra Oq(Mm,n) of generic quantum matri-
ces as there is a natural action of the algebraic torus H := K

m+n on this algebra.
In this case, the H -stratification theory of Goodearl and Letzter predicts the follow-
ing [8] (see also [2]). First, the number of prime ideals of Oq(Mm,n) invariant under
the action of this torus H is finite. Next, the prime spectrum of Oq(Mm,n) admits
a stratification into finitely many H-strata. Each H-stratum is defined by a unique
H-invariant prime ideal—that is minimal in its H-stratum—and is homeomorphic to
the scheme of irreducible subvarieties of a torus. Moreover the primitive ideals cor-
respond to those primes that are maximal in their H-strata and the Dixmier-Moeglin
Equivalence holds.

The first aim of this paper is to develop a strategy to recognise those H-invariant
prime ideals that are primitive. In particular, we give a combinatorial criterion for
an H-invariant prime ideal to be primitive. This generalises a result of Lenagan and
the second author [16] who gave a criterion for (0) to be primitive. Our criterion in
this paper is expressed in terms of combinatorial tools such as Cauchon diagrams—
recently, Cauchon diagrams have also appeared in the literature under the name “Le-
diagrams”, see for instance [20, 23]—, perfect matchings, and Pfaffians of 0,±1 ma-
trices. We discuss these concepts in Sections 2.2 and 2.3. As a corollary, we obtain a
formula for the total number of primitive H-invariant ideals in Oq(M2,n). More pre-
cisely, we show that the number of primitive H-invariant prime ideals in Oq(M2,n)

is (3n+1 − 2n+1 + (−1)n+1 + 2)/4. Cauchon [5] (see also [14]) enumerated the H-
invariant prime ideals in Oq(Mn), giving a closed formula in terms of the Stirling
numbers of the second kind. In particular, the number of H-invariant prime ideals
in Oq(M2,n) is 2 · 3n − 2n. Surprisingly, these formulas show that the number of
H-invariant prime ideals that are primitive is far from being negligible, and the pro-
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portion tends to 3/8 as n → ∞. We also give a table of data obtained using Maple
and some conjectures about H-invariant primitive ideals in Oq(Mm,n).

Using our combinatorial criterion, one can show that the Gelfand-Kirillov dimen-
sion of every factor of Oq(Mm,n) by an H-invariant primitive ideal is even. We
next asked ourselves whether all primitive factors of Oq(Mm,n) have even Gelfand-
Kirillov dimension. It turns out that we are able to prove this result for a wide class of
algebras—the so-called CGL extensions—by using both the H -stratification theory
of Goodearl and Letzter, and the theory of deleting-derivations developed by Cau-
chon. Examples of CGL extensions are quantum affine spaces, the algebra of generic
quantum matrices, the positive part U+

q (g) of the quantised enveloping algebra of any
semisimple complex Lie algebra, etc. In particular, our result shows that the Gelfand-
Kirillov dimension of the primitive quotients of the positive part U+

q (g) of the quan-
tised enveloping algebra of any semisimple complex Lie algebra is always even, just
as in the classical case. Indeed, in the classical setting, it is a well-known Theorem
of Dixmier that the primitive factors of enveloping algebras of finite-dimensional
complex nilpotent Lie algebras are isomorphic to Weyl algebras, and so have even
Gelfand-Kirillov dimension. However, contrary to the classical situation, in the quan-
tum case, primitive ideals are not always maximal and two primitive quotients (with
the same even Gelfand-Kirillov dimension) are not always isomorphic; in the case
where g is of type B2, there are three classes of primitive quotients of U+

q (B2) of
Gelfand-Kirillov dimension 2 [15].

The paper is organised as follows. In the first section, we recall the notion of CGL
extension that was introduced in [17]. The advantage of these algebras is that one
can use both the H -stratification theory of Goodearl and Letzter, and the deleting-
derivations theory of Cauchon to study their prime and primitive spectra. After re-
calling, these two theories, we prove that every primitive factor of a (uniparameter)
CGL extension has even Gelfand-Kirillov dimension.

The second part of this paper is devoted to a particular (uniparameter) CGL ex-
tension: the algebra Oq(Mm,n) of generic quantum matrices. We first prove our com-
binatorial criterion for an H-invariant prime ideal to be primitive. Then we use this
criterion in order to obtain a formula for the total number of primitive H-invariant
ideals in Oq(M2,n). Finally, we give a table of data obtained using Maple and some
conjectures about H-invariant primitive ideals in quantum matrices.

Throughout this paper, we use the following conventions.
• If I is a finite set, |I | denotes its cardinality.
• [[a, b]] := {i ∈ N | a ≤ i ≤ b}.
• K denotes a field and we set K

∗ := K \ {0}.
• If A is a K-algebra, then Spec(A) and Prim(A) denote respectively its prime and
primitive spectra.

1 Primitive ideals of CGL extensions

In this section, we recall the notion of CGL extension that was introduced in [17]. Ex-
amples include various quantum algebras in the generic case such as quantum affine
spaces, quantum matrices, positive part of quantised enveloping algebras of semisim-
ple complex Lie algebras, etc. As we will see, the advantage of this class of algebras
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is that one can both use the stratification theory of Goodearl and Letzter and the the-
ory of deleting-derivations of Cauchon in order to study their prime and primitive
spectra. This will allow us to prove that every primitive factor of a (uniparameter)
CGL extension has even Gelfand-Kirillov dimension.

1.1 H -stratification theory of Goodearl and Letzter, and CGL extensions

Let A denote a K-algebra and H be a group acting on A by K-algebra automor-
phisms. A nonzero element x of A is an H -eigenvector of A if h · x ∈ K

∗x for all
h ∈ H . In this case, there exists a character λ of H such that h · x = λ(h)x for all
h ∈ H , and λ is called the H -eigenvalue of x.

A two-sided ideal I of A is said to be H -invariant if h · I = I for all h ∈ H .
An H -prime ideal of A is a proper H -invariant ideal J of A such that whenever J

contains the product of two H -invariant ideals of A, J contains at least one of them.
We denote by H -Spec(A) the set of all H -prime ideals of A. Observe that, if P is a
prime ideal of A, then

(P : H) :=
⋂

h∈H

h · P (1)

is an H -prime ideal of A. This observation allowed Goodearl and Letzter [8] (see
also [2]) to construct a partition of the prime spectrum of A that is indexed by the
H -spectrum. Indeed, let J be an H -prime ideal of A. We denote by SpecJ (A) the
H -stratum associated to J ; that is,

SpecJ (A) = {P ∈ Spec(A) | (P : H) = J }. (2)

Then the H -strata of Spec(A) form a partition of Spec(A) [2, Chapter II.2]; that is:

Spec(A) =
⊔

J∈H-Spec(A)

SpecJ (A). (3)

This partition is the so-called H -stratification of Spec(A). When the H -spectrum of
A is finite this partition is a powerful tool in the study of the prime spectrum of A.
In the generic case most quantum algebras have a finite H -spectrum (for a suitable
action of a torus on the algebra considered). We now move to the situation where the
H -spectrum is finite.

Throughout this paragraph N denotes a positive integer and R is an iterated Ore
extension; that is,

R = K[X1][X2;σ2, δ2] . . . [XN ;σN, δN ], (4)

where σj is an automorphism of the K-algebra

Rj−1 := K[X1][X2;σ2, δ2] . . . [Xj−1;σj−1, δj−1]
and δj is a K-linear σj -derivation of Rj−1 for all j ∈ {2, . . . ,N}. Thus R is a
noetherian domain. Henceforth, we assume that, in the terminology of [17], R is
a CGL extension.
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Definition ([17]) The iterated Ore extension R is said to be a CGL extension if

1. For all j ∈ [[2,N]], δj is locally nilpotent;
2. For all j ∈ [[2,N]], there exists qj ∈ K

∗ such that σj ◦ δj = qj δj ◦ σj and, for all
i ∈ [[1, j − 1]], there exists λj,i ∈ K

∗ such that σj (Xi) = λj,iXi ;
3. None of the qj (2 ≤ j ≤ N ) is a root of unity;
4. There exists a torus H = (K∗)d that acts rationally by K-automorphisms on R

such that:
• X1, . . . ,XN are H -eigenvectors;
• The set {λ ∈ K

∗ | (∃h ∈ H)(h · X1 = λX1)} is infinite;
• For all j ∈ [[2,N]], there exists hj ∈ H such that hj · Xi = λj,iXi if 1 ≤ i < j

and hj · Xj = qjXj .

Some of our results will only be available in the “uniparameter case”.

Definition Let R be a CGL extension. We say that R is a uniparameter CGL exten-
sion if there exist an antisymmetric matrix (ai,j ) ∈ MN(Z) and q ∈ K

∗ not a root of
unity such that λj,i = qaj,i for all 1 ≤ i < j ≤ N .

The following result was proved by Goodearl and Letzter.

Theorem 1.1 [2, Theorem II.5.12] Every H -prime ideal of R is completely prime,
so that H -Spec(R) coincides with the set of H -invariant completely prime ideals of
R. Moreover there are at most 2N H -prime ideals in R.

As a corollary, the H -stratification breaks down the prime spectrum of R into a
finite number of parts, the H -strata. The geometric nature of the H -strata is well
known: each H -stratum is homeomorphic to the scheme of irreducible varieties of
a K-torus [2, Theorems II.2.13 and II.6.4]. For completeness, we mention that the
H -stratification theory is a powerful tool to recognise primitive ideals.

Theorem 1.2 [2, Theorem II.8.4] The primitive ideals of R are exactly the primes of
R that are maximal in their H -strata.

1.2 A fundamental example: quantum affine spaces

Let N be a positive integer and � = (�i,j ) ∈ MN(K∗) a multiplicatively anti-
symmetric matrix; that is, �i,j�j,i = �i,i = 1 for all i, j ∈ [[1,N ]]. The quan-
tum affine space associated to � is denoted by O�(KN) = K�[T1, . . . , TN ]; this
is the K-algebra generated by N indeterminates T1, . . . , TN subject to the relations
TjTi = �j,iTiTj for all i, j ∈ [[1,N]]. It is well known that O�(KN) is an iterated
Ore extension that we can write:

O�(KN) = K[T1][T2;σ2] . . . [TN ;σN ],
where σj is the automorphism defined by σj (Ti) = �j,iTi for all 1 ≤ i < j ≤ N .
Observe that the torus H = (K∗)N acts by automorphisms on O�(KN) via:

(a1, . . . , aN) · Ti = aiTi for all i ∈ [[1,N]] and (a1, . . . , aN) ∈ H.
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Moreover, it is well known (see for instance [17, Corollary 3.8]) that O�(KN) is a
CGL extension with this action of H . Hence O�(KN) has at most 2N H -prime ideals
and they are all completely prime.

The H -stratification of Spec(O�(KN)) has been entirely described by Brown and
Goodearl when the group 〈λi,j 〉 is torsion free [1] and next by Goodearl and Letzter
in the general case [7]. We now recall their results.

Let W denote the set of subsets of [[1,N]]. If w ∈ W , then we denote by Kw the
(two-sided) ideal of O�(KN) generated by the indeterminates Ti with i ∈ w. It is
easy to check that Kw is an H -invariant completely prime ideal of O�(KN).

Proposition 1.3 [7, Proposition 2.11] The following hold:

1. The ideals Kw with w ∈ W are exactly the H -prime ideals of O�(KN). Hence
there are exactly 2N H -prime ideals in that case;

2. For all w ∈ W , the H -stratum associated to Kw is given by

SpecKw

(
O�(KN)

)

=
{
P ∈ Spec

(
O�(KN)

)
| P ∩ {Ti | i ∈ [[1,N]]} = {Ti | i ∈ w}

}
.

1.3 The canonical partition of Spec(R)

In this paragraph, R denotes a CGL extension as in Section 1.1. We present the canon-
ical partition of Spec(R) that was constructed by Cauchon [3]. This partition gives
new insights to the H -stratification of Spec(R).

In order to describe the prime spectrum of R, Cauchon [3, Section 3.2] has con-
structed an algorithm called the deleting-derivations algorithm. The reader is re-
ferred to [3, 5] for more details on this algorithm. One of the interests of this al-
gorithm is that it has allowed Cauchon to rely the prime spectrum of a CGL exten-
sion to the prime spectrum of a certain quantum affine space. More precisely, let
� = (μi,j ) ∈ MN(K∗) be the multiplicatively antisymmetric matrix whose entries
are defined as follows.

μj,i =
⎧
⎨

⎩

λj,i if i < j

1 if i = j

λ−1
j,i if i > j,

where the λj,i with i < j are coming from the CGL extension structure of R (see
Definition in Section 1.1). Then we set R := K�[T1, . . . , TN ] = O�(KN).

Using his deleting-derivations algorithm, Cauchon has shown [3, Section 4.4] that
there exists an (explicit) embedding ϕ : Spec(R) −→ Spec(R) called the canoni-
cal embedding. This canonical embedding allows the construction of a partition of
Spec(R) as follows.

We keep the notation of the previous sections. In particular, W still denotes the set
of all subsets of [[1,N]]. If w ∈ W , we set

Specw (R) = ϕ−1 (
SpecKw

(
R

))
.
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Moreover, we denote by W ′ the set of those w ∈ W such that Specw(R) = ∅. Then it
follows from the work of Cauchon [3, Proposition 4.4.1] that

Spec(R) =
⊔

w∈W ′
Specw(R) and | W ′ |≤| W |= 2N.

This partition is called the canonical partition of Spec(R); this gives another way
to understand the H -stratification since Cauchon has shown [3, Théorème 5.5.2] that
these two partitions coincide. As a consequence, he has given another description of
the H -prime ideals of R.

Proposition 1.4 [3, Lemme 5.5.8 and Théorème 5.5.2]

1. Let w ∈ W ′. There exists a (unique) H -invariant (completely) prime ideal Jw of
R such that ϕ(Jw) = Kw , where Kw denotes the ideal of R generated by the Ti

with i ∈ w.
2. H -Spec(R) = {Jw | w ∈ W ′}.
3. SpecJw

(R) = Specw(R) for all w ∈ W ′.

Regarding the primitive ideals of R, one can use the canonical embedding to char-
acterise them. Indeed, let P be a primitive ideal of R. Assume that P ∈ Specw(R) for
some w ∈ W ′. Then, it follows from Theorem 1.2 that P is maximal in Specw(R).
Now, recall from the work of Cauchon [3, Théorèmes 5.1.1 and 5.5.1] that the canon-
ical embedding induces an inclusion-preserving homeomorphism from Specw(R)

onto Specw(R) = SpecKw
(R). Hence ϕ(P ) is a maximal ideal within Specw(R) =

SpecKw
(R), and so we deduce from Theorem 1.2 that ϕ(P ) is a primitive ideal of R

that belongs to Specw(R) = SpecKw
(R). Also, similar arguments show that, if P is

a prime ideal of R such that ϕ(P ) is a primitive ideal of R, then P is primitive. So,
one can state the following result.

Proposition 1.5 Let P ∈ Spec(R) and assume that P ∈ Specw(R) for some w ∈ W ′.
Then ϕ(P ) ∈ SpecKw

(R) and P is primitive if and only if ϕ(P ) is primitive.

This result was first obtained by Cauchon [4, Théorème 5.5.1].

1.4 Gelfand-Kirillov dimension of primitive quotients of a CGL extension

In this paragraph, R still denotes a CGL extension. We start by recalling the notion
of Tdeg-stable algebra defined by Zhang [24].

Definition Let A be a K-algebra and V be the set of finite-dimensional subspaces of
A that contain 1.

1. Let V ∈ V and n be a nonnegative integer. If {v1, . . . , vm} is a basis of V , then
we denote by V n the subspace of A generated by the n-fold products of elements
in V . (Here we use the convention V 0 = K.)
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2. The Gelfand-Kirillov dimension of A, denoted GKdim(A), is defined by:

GKdim(A) = sup
V ∈V

lim
n→∞

log(dim(V n))

log(n)
.

3. The Gelfand-Kirillov transcendence degree of A, denoted Tdeg(A), is defined by:

Tdeg(A) = sup
V ∈V

inf
b

lim
n→∞

log(dim((bV )n))

log(n)
,

where b runs through the set of regular elements of A.
4. A is Tdeg-stable if the following hold:

• GKdim(A) = Tdeg(A).
• For every multiplicative system of regular elements S of A that satisfies the Ore
condition, we have: Tdeg(S−1A) = Tdeg(A).

Let P ∈ Prim(R) ∩ Specw(R) for some w ∈ W ′. Then, it follows from Proposi-
tion 1.5 that ϕ(P ) is a primitive ideal of R that belongs to SpecKw

(R), where

Kw = 〈Ti | i ∈ w〉.
Let i /∈ w. We denote by ti the canonical image of Ti in the algebra R/Kw . Also, we
denote by Bw the subalgebra of Frac(R/Kw) defined by Bw := K〈t±1

i | i /∈ w〉. Bw

is the quantum torus associated to the quantum affine space R/Kw . In other words,
Bw is a McConnell-Pettit algebra in ti with i /∈ w (see [19]).

It follows from the work of Cauchon [3, Théorème 5.4.1] that there exists a mul-
tiplicative system of regular elements F of R/P that satisfies the Ore condition in
R/P , and such that

(R/P ) F −1 = (
R/ϕ(P )

)
E −1 � Bw

ϕ(P )E −1
,

where E denotes the canonical image of the multiplicative system of R generated
by the normal elements Ti with i /∈ w. (Observe that ϕ(P ) ∩ E = ∅ since ϕ(P ) ∈
Specw(R).)

As ϕ(P ) is a primitive ideal of R, we deduce from [7, Theorem 2.3] that ϕ(P )E −1

is a primitive ideal of the quantum torus Bw . As all the primitive ideals of Bw are
maximal [7, Corollary 1.5], ϕ(P )E −1 is a maximal ideal of Bw and

ϕ(P )E −1 =
〈
ϕ(P )E −1 ∩ Z(Bw)

〉
,

where Z(Bw) denotes the centre of Bw . Also, it follows from [7, Corollary 1.5] that
ϕ(P )E −1 ∩ Z(Bw) is a maximal ideal of Z(Bw). Recall from [7, 1.3] that Z(Bw) is
a commutative Laurent polynomial ring over K.

We now assume that R is a uniparameter CGL extension. In this case, it follows
from [21, Proposition 2.3] that Bw/

(
ϕ(P )E −1

)
is isomorphic to a simple quantum

torus, and its GK dimension is an even integer.
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As a quantum torus is Tdeg-stable [24, Proposition 7.2], so is Bw/(ϕ(P )E −1).
Moreover, as GKdim(Bw/(ϕ(P )E −1)) is an even integer, we see that (R/P )F −1

is also Tdeg-stable of even Gelfand-Kirillov dimension. As R/P is a subalgebra of
(R/P )F −1 such that Frac(R/P ) = Frac((R/P )F −1), we deduce from [24, Proposi-
tion 3.5 (4)] the following results.

Theorem 1.6 Assume that R is a uniparameter CGL extension and let P be a prim-
itive ideal of R.

1. R/P is Tdeg-stable.
2. GKdim (R/P ) is an even integer.

This result can be applied to several quantum algebras. In particular, it follows
from [3, Lemma 6.2.1] that it can be applied to the positive part U+

q (g) of the quan-
tised enveloping algebra of any semisimple complex Lie algebra when the parameter
q ∈ K

∗ is not a root of unity. As a result, every primitive quotient of U+
q (g) has even

Gelfand-Kirillov dimension. Roughly speaking, this is a quantum counterpart of the
Theorem of Dixmier that asserts that the primitive factor algebras of the enveloping
algebra U(n) of a finite-dimensional complex nilpotent Lie algebra n are isomorphic
to Weyl algebras. Indeed, our result shows that, as in the classical case, the Gelfand-
Kirillov dimension of a primitive quotient of U+

q (g) is always an even integer. In the
quantum case however, primitive ideals are not always maximal, and two primitive
quotients with the same Gelfand-Kirillov dimension are not always isomorphic. In-
deed, in the case where g is of type B2, it turns out that there are three classes of
primitive quotients of U+

q (B2) of Gelfand-Kirillov dimension 2 [15].

Remark 1 The uniparameter hypothesis is needed in Theorem 1.6. Indeed, let q be
any 3×3 multiplicatively antisymmetric matrix whose entries generate a free abelian
group of rank 3 in K

∗. Then it follows from [19, Proposition 1.3] and [7, Theo-
rem 2.3] that (0) is a primitive ideal in the quantum affine space Oq(K3). However
the Gelfand-Kirillov dimension of Oq(K3) is equal to 3, and so is not even.

2 Primitive H-primes in quantum matrices

In this section, we study the primitive ideals of a particular CGL extension: the alge-
bra of generic quantum matrices. In particular, we prove a combinatorial criterion for
an H -prime ideal to be primitive in this algebra. Then we use this criterion to com-
pute the number of primitive H -primes in the algebra of 2 × n quantum matrices.
The motivation to obtain a formula for the total number of primitive H -primes in the
algebra of m×n quantum matrices comes from the fact that this number corresponds
to the number of “H -invariant points” in the “variety of quantum matrices”. We finish
by giving some data and some conjectures for the number of primitive H -primes in
m × n quantum matrices.

Throughout this section, q ∈ K
∗ is not a root of unity, and m,n denote positive

integers.
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2.1 Quantum matrices as a CGL extension

We denote by R = Oq(Mm,n) the standard quantisation of the ring of regular func-
tions on m × n matrices with entries in K; it is the K-algebra generated by the m × n

indeterminates Yi,α , 1 ≤ i ≤ m and 1 ≤ α ≤ n, subject to the following relations:

Yi,βYi,α = q−1Yi,αYi,β, (α < β);
Yj,αYi,α = q−1Yi,αYj,α, (i < j);
Yj,βYi,α = Yi,αYj,β, (i < j,α > β);
Yj,βYi,α = Yi,αYj,β − (q − q−1)Yi,βYj,α, (i < j,α < β).

It is well known that R can be presented as an iterated Ore extension over K, with
the generators Yi,α adjoined in lexicographic order. Thus the ring R is a noetherian
domain; we denote by F its skew-field of fractions. Moreover, since q is not a root
of unity, it follows from [6, Theorem 3.2] that all prime ideals of R are completely
prime.

It is well known that the algebras Oq(Mm,n) and Oq(Mn,m) are isomorphic.
Hence, all the results that we will proved for Oq(M2,n) will also be valid for
Oq(Mn,2).

It is easy to check that the group H := (K∗)m+n acts on R by K-algebra automor-
phisms via:

(a1, . . . , am, b1, . . . , bn).Yi,α = aibαYi,α for all (i, α) ∈ [[1,m]] × [[1, n]].

Moreover, as q is not a root of unity, R endowed with this action of H is a CGL
extension (see for instance [17]). This implies in particular that H-Spec(R) is finite
and that every H-prime is completely prime.

2.2 H-primes and Cauchon diagrams

As R = Oq(Mm,n) is a CGL extension, one can apply the results of Section 1 to this
algebra. In particular, using the theory of deleting-derivations, Cauchon has given a
combinatorial description of H-Spec(R). More precisely, in the case of the algebra
R = Oq(Mm,n), he has described the set W ′ that appeared in Section 1.3 as follows.

First, it follows from [5, Section 2.2] that the quantum affine space R that appears
in Section 1.3 is in this case R = K�[T1,1, T1,2, . . . , Tm,n], where � denotes the mn×
mn matrix defined as follows. We set

A :=

⎛

⎜⎜⎜⎜⎜⎝

0 1 1 . . . 1
−1 0 1 . . . 1
...

. . .
. . .

. . .
...

−1 . . . −1 0 1
−1 . . . . . . −1 0

⎞

⎟⎟⎟⎟⎟⎠
∈ Mm(Z) ⊆ Mm(C),
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Fig. 1 An example of a 4 × 6
Cauchon diagram

and

B = (bk,l) :=

⎛

⎜⎜⎜⎜⎜⎝

A Im Im . . . Im

−Im A Im . . . Im

...
. . .

. . .
. . .

...

−Im . . . −Im A Im

−Im . . . . . . −Im A

⎞

⎟⎟⎟⎟⎟⎠
∈ Mmn(C),

where Im denotes the identity matrix of Mm. Then � is the mn × mn matrix whose
entries are defined by �k,l = qbk,l for all k, l ∈ [[1,mn]].

We now recall the notion of Cauchon diagrams that first appears in [5].

Definition An m × n Cauchon diagram C is simply an m × n grid consisting of mn

squares in which certain squares are coloured black. We require that the collection of
black squares have the following property:
If a square is black, then either every square strictly to its left is black or every square
strictly above it is black.
We let Cm,n denote the collection of m × n Cauchon diagrams.

See Figure 1 above for an example of a 4 × 6 Cauchon diagram.
Using the canonical embedding (see Section 1.3), Cauchon [5] produced a bijec-

tion between H-Spec(Oq(Mm,n)) and the collection Cm,n of m × n Cauchon dia-
grams. Roughly speaking, with the notation of previous sections, the set W ′ is the
set of m × n Cauchon diagrams. Let us make this precise. If C is a m × n Cauchon
diagram, then we denote by KC the (completely) prime ideal of R generated by the
indeterminates Ti,α such that the square in position (i, α) is a black square of C. Then,
with ϕ : Spec(R) → Spec(R) denoting the canonical embedding, it follows from [5,
Corollaire 3.2.1] that there exists a unique H-invariant (completely) prime ideal JC

of R such that ϕ(JC) = KC ; moreover there is no other H-prime in Oq(Mm,n):

H-Spec(Oq(Mm,n)) = {JC |C ∈ Cm,n}.

Definition A Cauchon diagram C is labeled if each white square in C is labeled with
a positive integer such that:

1. the labels are strictly increasing from left to right along rows;
2. if i < j then the label of each white square in row i is strictly less than the label

of each white square in row j .

See Figure 2 for an aexample of a 4 × 6 labeled Cauchon diagram.
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Fig. 2 An example of a 4 × 6
labeled Cauchon diagram

2.3 Perfect matchings, Pfaffians and primitivity

Our main tool in deducing when an H-prime ideal is primitive is to compute the
Pfaffian of a skew-symmetric matrix. We start with some background.

Notation Let C be an m × n labeled Cauchon diagram with d white squares and
labels 	1 < · · · < 	d .

1. AC denotes the d × d skew-symmetric matrix whose (i, j) entry is +1 if the
square labeled 	i is in the same column and strictly above the square labeled 	j or
is in the same row and strictly to the left of the square labeled 	j ; its (i, j) entry
is −1 if the square labeled 	i is in the same column and strictly below the square
labeled 	j or is in the same row and strictly to the right of the square labeled 	j ;
otherwise, the (i, j) entry is 0.

2. G(C) denotes the directed graph whose vertices are the white squares of C and in
which we draw an edge from one white square to another if the first white square
is either in the same row and strictly on the left of the second white square or
the first white square is in the same column and strictly above the second white
square.

Observe that AC is the skew adjacency matrix of the directed graph G(C), and that
both AC and G(C) are independent of the set of labels which appear in C. Hence AC

and G(C) are defined for any Cauchon diagram.

Definition Given a (labeled) Cauchon diagram C, the determinant of C is the ele-
ment det(C) of C defined by:

det(C) := det(AC).

Before proving a criterion of primitivity for JC in terms of the Pfaffian of AC and
perfect matchings, we first establish the following equivalent result.

Theorem 2.1 Let P be an H-prime in Oq(Mm,n). Then P is primitive if and only if
the determinant of the Cauchon diagram corresponding to P is nonzero.

Proof Let C be an m × n Cauchon diagram with d white squares. We make C

into a labeled Cauchon diagram with labels 	1 < · · · < 	d . It follows from Propo-
sition 1.5 that JC is primitive if and only if KC is a primitive ideal of the quan-

tum affine space R, that is if and only if the ring R
KC

is primitive. Recall that

R = K�[T1,1, T1,2, . . . , Tm,n], where � denotes the mn × mn matrix whose entries
are defined by �k,l = qbk,l for all k, l ∈ [[1,mn]]—the matrix B has been defined in
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Section 2.2. Let �C denote the multiplicatively antisymmetric d × d matrix whose
entries are defined by (�C)i,j = q(AC)i,j .

As KC is the prime ideal generated by the indeterminates Ti,α such that the square

in position (i, α) is a black square of C, the algebra R
KC

is isomorphic to the quantum
affine space K�C

[t1, . . . , td ] by an isomorphism that sends Ti,α + KC to tk if the
square of C in position (i, α) is the white square labeled 	k , and 0 otherwise.

Hence JC is primitive if and only if the quantum affine space K�C
[t1, . . . , td ] is

primitive. To finish the proof, we use the same idea as in [16, Corollary 1.3].
It follows from [7, Theorem 2.3 and Corollary 1.5] that the quantum affine

space K�C
[t1, . . . , td ] is primitive if and only if the corresponding quantum torus

P(�C) := K�C
[t1, . . . , td ]
−1 is simple, where 
 denotes the multiplicative system

of K�C
[t1, . . . , td ] generated by the normal elements t1, . . . , td . Next, Spec(P (�C))

is Zariski-homeomorphic via extension and contraction to the prime spectrum of the
centre Z(P (�C)) of P(�C), by [7, Corollary 1.5]. Further, Z(P (�C)) turns out to
be a Laurent polynomial ring. To make this result precise, we need to introduce the
following notation.

If s = (s1, . . . , sd) ∈ Z
d , then we set t s := t

s1
1 . . . t

sd
d ∈ P(�). As in [7], we denote

by σ : Z
d × Z

d → K
∗ the antisymmetric bicharacter defined by

σ(s, t) :=
d∏

k,l=1

(�C)
sktl
k,l for all s, t ∈ Z

d .

Then it follows from [7, 1.3] that the centre Z(P (�C)) of P(�C) is a Laurent poly-
nomial ring over K in the variables (tb1)±1, . . . , (tbr )±1, where (b1, . . . , br ) is any
basis of S := {s ∈ Z

d | σ(s,−) ≡ 1}. Since q is not a root of unity, easy computations
show that s ∈ S if and only if At

Cst = 0. Hence the centre Z(P (�C)) of P(�C) is a
Laurent polynomial ring in dimC(ker(At

C)) indeterminates (here we use the fact that
dimQ(ker(At

C)) = dimC(ker(At
C))). As a consequence, the quantum torus P(�C) is

simple if and only if the matrix AC is invertible, that is, if and only if det(C) = 0.
To summarize, we have just proved that JC is primitive if and only if det(C) = 0, as
desired. �

We finish this section by reformulating Theorem 2.1 in terms of Pfaffian and per-
fect matchings. Notice that the notion of perfect matchings of a directed graph or a
skew-symmetric matrix is well known (see for instance [18]). Roughly speaking, we
define a perfect matching of a labeled Cauchon diagram as a perfect matching of the
directed graph G(C).

Definition Given a labeled Cauchon diagram C, we say that π = {{i1, j1}, . . . ,
{im, jm}} is a perfect matching of C if:

1. i1, j1, . . . , im, jm are distinct;
2. {i1, . . . , im, j1, . . . , jm} is precisely the set of labels which appear in C;
3. ik < jk for 1 ≤ k ≤ m;
4. for each k the white square labeled ik is either in the same row or the same column

as the white square labeled jk .
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We let P M(C) denote the collection of perfect matchings of C.

For example, for the Cauchon diagram in the Figure 2, we have the perfect match-
ing {{1,4}, {3,8}, {7,13}, {10,16}, {11,17}, {15,18}, {19,22}}.

Definition Given a perfect matching π = {{i1, j1}, . . . , {im, jm}} of C we call the sets
{ik, jk} for k = 1, . . . ,m the edges in π . We say that an edge {i, j} in π is vertical if
the white squares labeled i and j are in the same column; otherwise we say that the
edge is horizontal.

Given a perfect matching π of C, we define

sgn(π) := sgn

(
1 2 3 4 · · · 2m − 1 2m

i1 j1 i2 j2 · · · im jm

)
. (5)

We note that this definition of sgn(π) is independent of the order of the edges (see
Lovasz [18, p. 317]). It is vital, however, that ik < jk for 1 ≤ k ≤ m. We then define

Pfaffian(C) :=
∑

π∈P M(C)

sgn(π). (6)

In particular, if C has no perfect matchings, then Pfaffian(C) = 0.
Observe that Pfaffian(C) is independent of the set of labels which appear in C, so

that one can speak of the Pfaffian of any Cauchon diagram.
We are now able to establish the following criterion of primitivity for JC . Even

though this criterion is equivalent to the criterion given in Theorem 2.1, this reformu-
lation will be crucial in the following section.

Theorem 2.2 Let P be an H-prime in Oq(Mm,n). Then P is primitive if and only if
the Pfaffian of the Cauchon diagram corresponding to P is nonzero.

Proof Let C be an m × n Cauchon diagram. It follows from Theorem 2.1 that JC is
primitive if and only if the determinant of AC is nonzero. Since the determinant of
AC is the square of the Pfaffian of C [18, Lemma 8.2.2], JC is primitive if and only
if the Pfaffian of C is nonzero, as claimed. �

To compute the sign of a permutation, we use inversions.

Definition Let x = (i1, i2, . . . , in) be a finite sequence of real numbers. We de-
fine inv(x) to be #{(j, k) | j < k, ij > ik}. Given another finite real sequence
y = (j1, . . . , jm), we define inv(x|y) = #{(k, 	) ∈ [[1, n]] × [[1,m]] | jk < i	}.

The key fact we need is that if σ is a permutation in Sn, then

sgn(σ ) = (−1)inv(σ (1),...,σ (n)). (7)
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2.4 Enumeration of H -primitive ideals in Oq(M2,n)

In this section, we give a formula for the number of primitive H-prime ideals in the
ring of 2 × n quantum matrices. We begin with some notation.

Notation Given a statement S, we take χ(S) to be 1 if S is true and to be 0 if S is
not true.

We now compute the Pfaffian of a 2 × n Cauchon diagram. To do this, we first
must find the Pfaffian of a 1 × n Cauchon diagram.

Lemma 2.3 Let C ∈ C1,n be a 1 × n Cauchon diagram. Then

Pfaffian(C) =
{

1 if the number of white squares in C is even;
0 otherwise.

Proof If the number of white squares in C is odd, then C has no perfect match-
ings and hence its Pfaffian is zero. Thus we may assume that the number of white
squares is an even integer 2m and the white squares are labeled from 1 to 2m

from left to right. We prove that the Pfaffian is 1 when C has 2m white squares
by induction on m. When m = 1, there is only one perfect matching and its sign
is 1. Thus we obtain the result in this case. We note that any perfect matching
of C is going to contain {1, i} for some i. Thus π = {1, i} ∪ π ′, where π ′ is a
perfect matching of the Cauchon diagram Ci obtained by taking C and colour-
ing the white squares labeled 1 and i black. Write π ′ = {{i1, j1}, . . . , {im−1, jm−1}}
and let x = (1, i, i1, j1, . . . , im−1, jm−1) and let x′ = (i1, j1, . . . , im−1, jm−1). Then
inv(x) = inv(x′) + (i − 2). Hence sgn(π) = sgn(π ′)(−1)i−2. Since there is a bijec-
tive correspondence between perfect matchings of C which contain {1, i} and perfect
matchings of Ci we see that

∑

{π∈P M(C) | {1,i}∈π}
sgn(π) =

∑

π ′∈P M(Ci)

(−1)i−2sgn(π ′) = (−1)i−2

by the inductive hypothesis. Hence

Pfaffian(C) =
∑

π∈P M(C)

sgn(π)

=
2m∑

i=2

∑

{π∈P M(C) | {1,i}∈π}
sgn(π)

=
2m∑

i=2

(−1)i−2

= 1. �
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In particular, we see that a 1 × n Cauchon diagram corresponds to a primitive ideal
if and only if the number of white squares is even. This is a special case of [16,
Theorem 1.6], but we need the value of the Pfaffian to study the 2 × n case.

Notation We let C′
m,n denote the collection of m × n Cauchon diagrams which do

not have any columns which consist entirely of black squares.

We note that if C ∈ Cm,n has exactly d columns consisting entirely of black squares,
then if we remove these d columns we obtain an element of C′

m,n−d . Hence we obtain
the relation

|Cm,n| =
n∑

i=0

(
n

i

)
|C′

m,n−i |, (8)

where we take |Cm,0| = |C′
m,0| = 1.

We begin by enumerating the elements of C′
2,n which correspond to primitive H-

primes in Oq(M2,n). Let C ∈ C′
2,n. Then the second row of C has a certain number of

contiguous black squares beginning at the lower left square. If the second row does
not consist entirely of black squares, then there is some smallest i ≥ 1 for which the
(2, i) square of C is white. We note that the (2, j) square must also be white for
i ≤ j ≤ n, since otherwise we would necessarily have a column consisting entirely of
black squares by the conditions defining a Cauchon diagram. Since C has no columns
consisting entirely of black squares, the (1, j) square is white for 1 ≤ j < i. The
remaining n− i squares in positions (1, j) for i ≤ j ≤ n can be coloured either white
or black and the result will still be an element of C′

2,n. Hence

|C′
2,n| =

n∑

i=0

2n−i = 2n+1 − 1. (9)

To enumerate the primitive H-primes of Oq(M2,n), we need to introduce the follow-
ing terminology.

Notation Given an element C of C′
2,n, we use the following notation:

1. p(C) denotes the largest i such that the (2, i) square of C is black.
2. Vert(C) denotes the set of j ∈ {p(C) + 1, . . . , n} such that the (1, j) square of C

is white. (We use the name Vert(C), because this set consists of precisely the set
of j such that the j ’th column of C is completely white and hence it is only in
these columns where a vertical edge can occur in a perfect matching of C.)

3. Given a perfect matching π of C we let Vert(π) denote the set of j ∈ Vert(C)

such that there is a vertical edge in π connecting the two white squares in the j ’th
column.

4. Given a subset T ⊆ {1,2, . . . , n} we let sumC(T ) denote the sum of the labels in
all white squares in the columns indexed by the elements of T .

For example, if we use the Cauchon diagram C in Figure 3 below, then p(C) = 1,
Vert(C) = {2,4,6}, sumC({2,3}) = (2 + 5) + 6 = 13.
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Fig. 3 The decomposition of a 2 × 6 labeled Cauchon diagram into rows with T = {2,6}

Lemma 2.4 Let C ∈ C′
2,n be a labeled Cauchon diagram with m white squares in the

first row and m′ white squares in the second row with labels {1,2, . . . ,m + m′}, and
let T be a subset of Vert(C). Then

∑

{π∈P M(C) : Vert(π)=T }
sgn(π) =

{
(−1)(

|T |+1
2 )+sumC(T ) if m ≡ m′ ≡ |T | (mod2);

0 otherwise.

Proof Let C1 denote the first row of C except that all squares in position (1, j) with
j ∈ T are now coloured black and their labels are removed. Similarly, let C2 denote
the second row of C with the squares in positions (2, j) with j ∈ T coloured black
and their labels removed (see Figure 3).
Then the perfect matchings π of C with Vert(π) = T are in one-to-one correspon-
dence with ordered pairs (π1,π2) in which πj is a perfect matching of Cj for
j = 1,2. Let πj be a perfect matching of Cj for j = 1,2. It is therefore no loss
of generality to assume that C1 and C2 both have an even number of squares. We let
t = |T |. Write

π1 = {{a1, b1}, {a2, b2}, . . . , {ar , br}}
and

π2 = {{c1, d1}, {c2, d2}, . . . , {cs, ds}}.
We write

ρ = {{e1, f1}, {e2, f2}, . . . , {et , ft }},
where e1 < e2 < · · · < et are the labels of the white squares which appear in the
positions {(1, j) | j ∈ T } and f1 < f2 < · · · < ft are the labels which appear in the
positions {(2, j) | j ∈ T }. We note that ρ is precisely the vertical edges in the perfect
matching π = π1 ∪ π2 ∪ ρ of C. Let

x1 = (a1, b1, . . . , ar , br ), x2 = (c1, d1, . . . , cs, ds), x3 = (e1, f1, . . . , et , ft ).

Finally, let

x = x1x3x2 = (a1, b1, . . . , ar , br , e1, f1, . . . , et , ft , c1, d1, . . . , cs, ds).

Note that

sgn(π) = (−1)inv(x) sgn(πi) = (−1)inv(xi ) for i = 1,2. (10)
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We have

inv(x) = inv(x1) + inv(x2) + inv(x3) + inv(x1|x2) + inv(x1|x3) + inv(x3|x2).

Since

e1 < e2 < · · · < et < f1 < · · · < ft

we have

inv(x3) = inv(e1, f1, e2, f2, . . . , et , ft ) = (t − 1) + · · · + 1 =
(

t

2

)
.

Then t + 2r = m and {e1, . . . , et , a1, . . . , ar , b1, . . . , br} = {1,2, . . . ,m}. Also t +
2s = m′ and {f1, . . . , ft , c1 . . . , cs, d1, . . . , ds} = {m+ 1,m+ 2, . . . ,m+m′}. Notice
that the f1, . . . , fd are greater than the labels appearing in C1 and hence

inv(x1|x3) = #{(k, 	) | ek < a	} + #{(k, 	) | ek < b	}.
Since {a1, . . . , ar , b1, . . . , br} = {1,2, . . . ,m} \ {e1, . . . , et }, we see that for each k,

#{	 | ek < a	} + #{	 | ek < b	} = #{ek + 1, . . . ,m} \ {ek+1, . . . , et } = m − ek −
(t − k). Thus

inv(x1|x3) =
t∑

k=1

(m − ek − t + k)

= mt − (e1 + · · · + et ) −
(

t

2

)
.

To compute inv(x3|x2), note that e1, . . . , et are all less than c1, d1, . . . , cs, ds and
hence

inv(x3|x2) =
t∑

k=1

#{	 | c	 < fk} + #{	 | d	 < fk}

=
t∑

k=1

#{m + 1,m + 2, . . . , fk} \ {f1, . . . , fk}

=
t∑

k=1

(fk − m − k)

= −
(

t + 1

2

)
− mt +

t∑

k=1

fk.

Note that inv(x1|x2) = 0 and thus

inv(x) = inv(x1) + inv(x2) +
(

t

2

)
− (e1 + · · · + et ) −

(
t

2

)
−

(
t + 1

2

)
+

t∑

k=1

fk

= inv(x1) + inv(x2) −
(

t

2

)
+ sumC(T ) − 2(e1 + · · · + et ).
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Equation (10) now gives

sgn(π) = sgn(π1)sgn(π2)(−1)(
t+1

2 )+sumC(T ).

It follows that
∑

{π∈P M(C) : Vert(C)=T }
sgn(π)

=
∑

π1∈P M(C1)

∑

π2∈P M(C2)

sgn(π1)sgn(π2)(−1)(
t+1

2 )+sumC(T )

= (−1)(
t+1

2 )+sumC(T )
∑

π1∈P M(C1)

sgn(π1)
∑

π2∈P M(C2)

sgn(π2)

= (−1)(
t+1

2 )+sumC(T )

where the last step follows from Lemma 2.3. �

Theorem 2.5 Let C ∈ C′
2,n be a Cauchon diagram with m white squares in the first

row and m′ white squares in the second row with labels {1,2, . . . ,m + m′}, and let
S = Vert(C). Then Pfaffian(C) = 0 if and only if m ≡ m′ mod 2 and

|S| − 2sumC(S) ≡ 2m + 2 mod 4.

Proof Let S0 consist of the elements j ∈ S with sumC({j}) even and let S1 consist
of the elements j ∈ S with sumC({j}) odd. Notice that if T ⊆ S, then sumC(T ) ≡
|T ∩ S1| mod 2. Hence by Lemma 2.4

Pfaffian(C) =
∑

π∈P M(C)

sgn(π)

=
∑

T ⊆S

∑

π∈P M(C)
Vert(π)=T

sgn(π)

=
∑

T ⊆S

(−1)(
|T |+1

2 )+sumC(T )χ(m ≡ m′ ≡ |T | mod 2)

=
∑

T0⊆S0

∑

T1⊆S1

(−1)(
|T0|+|T1|+1

2 )+|T1|χ(m ≡ m′ ≡ |T0| + |T1| mod 2)

=
|S0|∑

a=0

|S1|∑

b=0

(|S0|
a

)(|S1|
b

)
(−1)(

a+b+1
2 )+bχ(m ≡ m′ ≡ a + b mod 2).

At this point, we divide the evaluation of this sum into three cases.

Case I: m ≡ m′ mod 2.
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In this case, χ(m ≡ m′ mod 2) = 0 and thus Pfaffian(C) = 0.

Case II: m and m′ are both odd.

In this case,

Pfaffian(C) =
|S0|∑

a=0

|S1|∑

b=0

(|S0|
a

)(|S1|
b

)
(−1)(

a+b+1
2 )+bχ(a + b ≡ 1 mod 2).

Note that if a + b is odd, then
(
a+b+1

2

) ≡ (a + b + 1)/2 mod 2 and hence

Pfaffian(C) =
|S0|∑

a=0

|S1|∑

b=0

(|S0|
a

)(|S1|
b

)
(−1)(a+3b+1)/2χ(a + b ≡ 1 mod 2)

= Re

(
i

|S0|∑

a=0

|S1|∑

b=0

(|S0|
a

)(|S1|
b

)
iai3b

)

= Re
(
i(1 + i)|S0|(1 − i)|S1|)

= √
2
|S0|+|S1|

Re

(
i exp

(
πi(|S0| − |S1|)

4

))

= √
2
|S0|+|S1|

sin

(
π(|S1| − |S0|)

4

)
.

Thus we see that the Pfaffian is 0 in this case if and only if |S0| ≡ |S1| mod 4. No-
tice that |S0| − |S1| = |S| − 2|S1|. Moreover, |S1| ≡ sumC(S) mod 2 and hence the
Pfaffian is 0 if and only if

|S| − 2sumC(S) ≡ 0 ≡ 2m + 2 mod 4.

Case III: m and m′ are both even.

The argument here is similar to the argument in Case II. We now use the fact that if

a + b ≡ 0 mod 2, then (−1)(
a+b+1

2 ) = (−1)(a+b)/2. Hence

Pfaffian(C) = Re

( |S0|∑

a=0

|S1|∑

b=0

(|S0|
a

)(|S1|
b

)
iai3b

)

= Re
(
(1 + i)|S0|(1 − i)|S1|)

= √
2
|S0|+|S1|

cos

(
π(|S1| − |S0|)

4

)
.

Thus the Pfaffian is 0 in this case if and only |S1| − |S0| ≡ 2 mod 4. Again, we have
−|S1| + |S0| ≡ |S| − 2sumC(S) and hence the Pfaffian of C is 0 if and only if

|S| − 2sumC(S) ≡ 2 ≡ 2m + 2 mod 4.

Thus we see that in each case we obtain the desired result. �
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Theorem 2.6 Let n be a positive integer. Then the number of primitive H-prime
ideals in the ring Oq(M2,n) is

3n+1 − 2n+1 + (−1)n+1 + 2

4
.

Proof For a, b ∈ {0,1}2, we let fa,b(n) denote the number of Cauchon diagrams C in
C′

2,n with nonzero Pfaffian and with p(C) ≡ a mod 2 and |Vert(C)| ≡ b mod 2. Then
there are p(C) + |Vert(C)| ≡ b + a mod 2 white squares in the first row of C and
n − p(C) ≡ n − a mod 2 white squares in the second row of C. We look at several
cases.

Case I: n + b is odd.

In this case, the total number of white squares is odd and hence the Pfaffian is
always zero. Thus fa,b(n) = 0 in this case.

Case II: n and b are odd (b = 1).

Notice that if n+b is even and b is odd, then Theorem 2.5 gives automatically that
we have nonzero Pfaffian since in this case |Vert(C)|−2sumC(Vert(C))−(2m+2) ≡
b ≡ 1 mod 2. Hence

fa,1(n) =
n∑

p(C)=0

n−p(C)∑

i=0

(
n − p(C)

i

)
χ(i ≡ 1 mod 2)

=
n−1∑

j=0

2n−j−1

= 2n − 1,

if b and n are both odd.

Case III: n is even, b is even, a is odd ((a, b) = (1,0)).

Let us start by looking at Cauchon diagrams in C′
2,n with p(C) = a′ ≡ 1 mod 2

and |Vert(C)| = b′ ≡ 0 mod 2. Such a Cauchon diagram is labeled with the trivial
label: the labels on the first row are 1, . . . , a′ + b′ and the labels in the second row of
C are {a′ +b′ +1, . . . , b′ +n}. Let J be a subset of this interval of even size b′. Let CJ

denote the Cauchon diagram in C′
2,n with p(C) = a′ and SJ = Vert(CJ ) consisting

of all j such that the (2, j) entry of CJ is a white square with label in J . The labels
of the squares in positions (1, j) with j ∈ Vert(CJ ) are just a′ + 1, . . . , a′ + b′. Then

sumCJ
(SJ ) = (a′ + 1) + · · · + (a′ + b′) +

∑

j∈J

j.

Since b′ is even,

(a′ + 1) + · · · + (a′ + b′) ≡ b′(b′ + 1)/2 ≡ b′/2 mod 2.
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By Theorem 2.5, a necessary and sufficient condition for the Pfaffian to be nonzero
in this case is

−b′ + 2sumCJ(SJ ) − 2(a′ + b′) − 2 ≡ 0 mod 4.

Note that −b′ + 2sumCJ(SJ ) ≡ 2
∑

j∈J j mod 4 and since b′ is even and a′ is odd,
we see that the Pfaffian is nonzero in this case if and only if

#{j ∈ J | j ≡ 1 mod 2}

is odd. Note that {b′ +a′ +1, . . . , n+b′} is a set with n−a′ elements, (n−a′ +1)/2
are even and (n − a′ − 1)/2 are odd. The number of ways of choosing a set J of size
b′ with #{j ∈ J | j ≡ 1 mod 2} odd is then

b′∑

i=0

(
(n − a′ − 1)/2

i

)(
(n − a′ + 1)/2

b′ − i

)
χ(i ≡ 1 mod 2).

Thus

f1,0(n) =
∑

a′+b′≤n

b′∑

i=0

(
(n − a′ − 1)/2

i

)(
(n − a′ + 1)/2

b′ − i

)

× χ(i − 1 ≡ b′ ≡ a′ − 1 ≡ 0 mod 2)

=
n/2∑

j=1

n/2−j∑

i=0

n/2−j+1∑

k=0

(
n/2 − j

i

)(
n/2 − j + 1

k

)
χ(i ≡ k ≡ 1 mod 2)

=
n/2−1∑

j=1

2n/2−j−12n/2−j

=
n/2−1∑

j=1

2n−2j−1

= (2 + 23 + · · · + 2n−3).

Case IV: n, a and b are even ((a, b) = (0,0)).

This case is treated using similar arguments than in case III. We keep the notation
of case III. In particular, the labels in the second row of C are just {b′ +a′ +1, . . . , n+
b′}. Again, we must select a subset J of size b′ of these labels. In this case we see
that the Pfaffian is nonzero if and only if

#{j ∈ J | j ≡ 1 mod 2}
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is even. Since (n − a′)/2 of the labels are even and (n − a′)/2 are odd, arguing as in
the third case, we see that

f0,0(n) =
∑

a′+b′≤n

b′∑

i=0

(
(n − a′)/2

i

)(
(n − a′)/2

b′ − i

)
χ(i ≡ b′ ≡ a′ − 1 ≡ 0 mod 2)

=
n/2∑

j=0

n/2−j∑

i=0

n/2−j∑

k=0

(
n/2 − j

i

)(
n/2 − j + 1

k

)
χ(i ≡ k ≡ 0 mod 2)

= 1 +
n/2−1∑

j=0

2n/2−j−12n/2−j−1

= 1 + (1 + 22 + · · · + 2n−2).

Now let f (n) denote the number of Cauchon diagrams in C′
2,n with nonzero Pfaffian.

Then we see that if n is odd,

f (n) = 2n − 1

and if n ≥ 2 is even then

f (n) = f0,0(n) + f0,1(n) = 1 + (1 + 2 + 4 + · · · + 2n−2) = 2n−1.

We now put this information together to obtain the desired result. By Theorem 2.2,
the number of primitive H-primes is just the number of 2 × n Cauchon diagrams
with nonzero Pfaffian. Since adding a completely black column does not affect the
Pfaffian, we see that for n ≥ 1 this number is just

1 +
∑

0<m≤n

(
n

m

)
f (m)

= 1 +
∑

m≤n

(
n

m

)
(2m − 1)χ(m ≡ 1 mod 2) +

∑

0<m≤n

(
n

m

)
2m−1χ(m ≡ 0 mod 2)

= 1 + 1

2

(
(2 + 1)n − (1 − 2)n − 2n

) + 1

4

(
(1 + 2)n + (1 − 2)n − 2

)

= 3n+1 − 2n+1 + (−1)n+1 + 2

4
.

This completes the proof. �

Corollary 2.7 Then the proportion of primitive H-primes in Oq(M2,n) tends to 3/8
as n → ∞.

Proof We have just shown that number of primitive H-primes in Oq(M2,n) is as-
ymptotic to 3n+1/4 as n → ∞. On the other hand, as the number of H-primes in
Oq(M2,n) is equal to the number of H-primes in Oq(Mn,2), it follows from [14,



292 J Algebr Comb (2009) 29: 269–294

Table 1 The values of P(m,n) for small m and n

m P(m,1) P (m,2) P (m,3) P (m,4) P (m,5) P (m,6) P (m,7) P (m,8) P (m,9)

1 1 2 4 8 16 32 64 128 256

2 2 5 17 53 167 515 1577 4793 14507

3 4 17 70 329 1414 6167 25960 108629 447874

4 8 53 329 1865 11243

5 16 167 1414 11243 80806

Corollary 1.5] that the total number of H-primes in Oq(M2,n) is equal to 2 · 3n − 2n.
Hence the proportion of primitive H-primes in Oq(M2,n) is asymptotic to 3/8. �

2.5 Data and conjectures

Let P(m,n) denote the number of primitive H-prime ideals in Oq(Mm,n). Using
Maple, we obtained the data in Table 1.

We know formulas for P(1, n) and P(2, n) and so it is natural to ask if this can be
extended. We thus pose the following question.

Question 1 Can a closed formula for P(m,n) be given? In particular, can a closed
formula for the diagonal terms, P(n,n), be given?

Using this table and the analogy with the 1×n and 2×n cases, we make the following
conjecture.

Conjecture 2.8 The number of primitive H-primes in the ring Oq(M3,n) is given by

1

8
· (15 · 4n − 18 · 3n + 13 · 2n − 6 · (−1)n + 3 · (−2)n

)
.

More generally we believe the following holds.

Conjecture 2.9 Let m ≥ 1 be a positive integer and let P(m,n) denote the num-
ber of primitive H-prime ideals in Oq(Mm,n). Then there exist rational constants
cm+1, cm, . . . , c2−m such that

P(m,n) =
m+1∑

j=2−m

cj j
n

for all positive integers n. Moreover, cm+1 = 1 · 3 · 5 · · · (2m − 1)/2m.

This conjecture, if true, would imply the truth of the following conjecture.

Conjecture 2.10 Let m be a fixed positive integer. Then the proportion of H-primes
in Oq(Mm,n) that are primitive tends to

(2m
m

)
/4m as n → ∞.
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We note that if one follows the Proof of Theorem 2.5, then one sees that the Pfaf-
fian of a 2 × n Cauchon diagram is always either 0 or plus or minus a power of 2.
This also appears to be the case for larger Cauchon diagrams. We therefore make the
following conjecture.

Conjecture 2.11 Let C be a labeled m × n Cauchon diagram. Then |Pfaffian(C)| is
either 0 or a power of 2.

We note this conjecture, if true, would allow us to simplify many computations since
to determine if the Pfaffian is nonzero, it would suffice to consider it mod 3.
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