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Abstract A graph is one-regular if its automorphism group acts regularly on the set
of its arcs. In this article a complete classification of tetravalent one-regular graphs of
order twice a product of two primes is given. It follows from this classification that
with the exception of four graphs of orders 12 and 30, all such graphs are Cayley
graphs on Abelian, dihedral, or generalized dihedral groups.
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1 Introduction

For a finite, simple and undirected graph X, we use V (X), E(X), A(X) and Aut(X)

to denote its vertex set, edge set, arc set and full automorphism group, respectively.
For u,v ∈ V (X), denote by {u,v} the edge incident to u and v in X, and by Cn and
Kn the cycle and the complete graph of order n, respectively. A graph X is said to
be vertex-transitive and arc-transitive (or symmetric) if Aut(X) acts transitively on
V (X) and A(X), respectively. In particular, if Aut(X) acts regularly on A(X), then
X is said to be one-regular.

A one-regular graph with each vertex having the same valency must be connected,
and a graph of valency 2 is one-regular if and only if it is a cycle. The first example of
cubic one-regular graph was constructed by Frucht [10] with 432 vertices, and much
subsequent work was done in this line as part of a more general problem dealing with
the investigation of cubic arc-transitive graphs (see [4–9, 26]). Tetravalent one-regular
graphs have also received considerable attention. Chao [2] classified all tetravalent
one-regular graphs of prime order, and Marušič [23] constructed an infinite family
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of tetravalent one-regular Cayley graphs on alternating groups. All tetravalent one-
regular circulant graphs were classified in [37], and all tetravalent one-regular Cayley
graphs on Abelian groups were classified in [36]. One may deduce a classification of
tetravalent one-regular Cayley graphs on dihedral groups from Kwak and Oh [16] and
Wang et al. [32, 33]. Malnič et al. [21] constructed an infinite family of infinite one-
regular graphs, which steps into the important territory of symmetry in infinite graphs;
see also [19, 31] for some more results related to this topic. Let p and q be primes.
Clearly, every tetravalent one-regular graph of order p is a circulant graph. For a
tetravalent one-regular graph X of order pq , if |V (X)| = 2p, then X is a circulant
graph by [3] or [22]; if p = q , then X is a Cayley graph on an Abelian group of order
p2 (clearly p ≥ 3 and any Sylow p-subgroup of Aut(X) has order p2 which is regular
on V (X)), and hence circulant by [36]; if p > q > 2, then X is not vertex-primitive
by [29, 34], and then circulant by [27, 34], which can also be deduced from [24]. It
follows that all tetravalent one-regular graphs of order p or pq are circulant, and a
classification of such graphs can be easily deduced from [37]. In this paper we classify
all tetravalent one-regular graphs of order 2pq . It follows from the classification that
with the exception of four graphs of orders 12 and 30, all such graphs are Cayley
graphs on Abelian, or dihedral, or generalized dihedral groups. For more results on
tetravalent symmetric graphs, see [11, 12, 17, 28].

We now introduce Cayley graph and coset graph. Let G be a permutation group
on a set � and α ∈ �. Denote by Gα the stabilizer of α in G, that is, the subgroup
of G fixing the point α. We say that G is semiregular on � if Gα = 1 for every
α ∈ �, and regular if G is transitive and semiregular on �. For a finite group G and
a subset S of G such that 1 /∈ S and S = S−1, the Cayley graph Cay(G,S) on G with
respect to S is defined to have vertex set G and edge set {{g, sg} | g ∈ G,s ∈ S}.
Given a g ∈ G, define the permutation R(g) on G by x �→ xg, for x ∈ G. Then, the
homomorphism taking g to R(g), for g ∈ G, is called the right regular representation
of G, under which the image R(G) = {R(g) | g ∈ G} of G is a regular permutation
group on G. It is easy to see that R(G) is isomorphic to G, which can therefore
be regarded as a subgroup of the automorphism group Aut(Cay(G,S)). Thus the
Cayley graph Cay(G,S) is vertex-transitive. Furthermore, the group Aut(G,S) =
{α ∈ Aut(G) | Sα = S} is a subgroup of Aut(Cay(G,S))1, the stabilizer of the vertex
1 in Aut(Cay(G,S)). A Cayley graph Cay(G,S) is said to be normal if R(G) is
normal in Aut(Cay(G,S)). Xu [38, Proposition 1.5] proved that Cay(G,S) is normal
if and only if Aut(Cay(G,S))1 = Aut(G,S). A graph is called a circulant graph, in
short, a circulant if it is a Cayley graph on a cyclic group.

Let X be a symmetric graph, and A an arc-transitive subgroup of Aut(X). Let
{u,v} be an edge of X. Assume that H = Au is the stabilizer of u ∈ V (X) and that g ∈
A interchanges u and v. It is easy to see that the core HA of H in A (the largest normal
subgroup of A contained in H ) is trivial, and that HgH consists of all elements of A

which maps u to one of its neighbors in X. By [18, 30], the graph X is isomorphic
to the coset graph X∗ = Cos(A,H,HgH), which is defined as the graph with vertex
set V (X∗) = {Ha : a ∈ A}, the set of right cosets of H in A, and edge set E(X∗) =
{{Ha,Hda} ∣

∣ a ∈ A, d ∈ HgH }. The valency of X∗ is |HgH |/|H | = |H : H ∩ Hg|,
and X∗ is connected if and only if HgH generates A. By right multiplication, every
element in A induces an automorphism of X∗. Since HA = 1, the induced action of
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A on V (X∗) is faithful, and hence one may view A as a group of automorphisms of
X∗.

Throughout this paper we denote by Zn the cyclic group of order n as well as
the ring of integers modulo n, by Z

∗
n the multiplicative group of Zn consisting of

numbers coprime to n, and by D2n the dihedral group of order 2n, respectively. For
two groups M and N , N ≤ M means that N is a subgroup of M , and N < M means
that N is a proper subgroup of M .

2 Preliminaries

In this section, we introduce some preliminary results. The first is about transitive
Abelian permutation groups.

Proposition 2.1 [35, Proposition 4.4] Every transitive Abelian group G on a set �

is regular.

For a subgroup H of a group G, denote by CG(H) the centralizer of H in G and
by NG(H) the normalizer of H in G. The following proposition is due to Burnside.

Proposition 2.2 [15, Chapter IV, Theorem 2.6] Let G be a finite group and P a
Sylow p-subgroup of G. If NG(P ) = CG(P ), then G has a normal subgroup N such
that G = NP with N ∩ P = 1.

Kwak and Oh [16, Theorem 3.1] classified tetravalent one-regular normal Cayley
graphs on dihedral groups with a cyclic vertex stabilizer.

Proposition 2.3 A tetravalent Cayley graph X on a dihedral group is one-regular
and normal with cyclic vertex stabilizer if and only if X is isomorphic to Cay(D2n,

{b, ab, a�+1b, a�2+�+1b}) for some pair (n, �) such that �3 + �2 + �+1 ≡ 0(mod n),
n ≥ 10, �2 − 1 
= 0(mod n) and (n, �) 
= (15,2), (15,8), where D2n = 〈a, b | an =
b2 = 1, bab = a−1〉.

The following proposition can be extracted from Xu [37, Theorems 2 and 3],
where tetravalent one-regular circulant graphs were classified.

Proposition 2.4 Let p and q be primes and G = 〈a〉 ∼= Z2pq . A tetravalent Cayley
graph X = Cay(G,S) on G is one-regular if and only if p,q > 2 and S = aH =
{a, ah1, ah2, ah3} where H = {1, h1, h2, h3} is a subgroup of order 4 of Z

∗
2pq such

that −1 ∈ H . Furthermore, distinct subgroups of order 4 containing −1 give noniso-
morphic one-regular graphs.

The next proposition is a special case of [36, Theorem 3.5].

Proposition 2.5 Let p be a prime and G ∼= Z2p × Z2. Then there exists a tetravalent
one-regular Cayley graph on G if and only if p − 1 is a multiple of 4 and in this case,
there are exactly two nonisomorphic tetravalent one-regular Cayley graphs on G.
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Let X be a connected symmetric graph, and let G ≤ Aut(X) be arc-transitive on
X. For a normal subgroup N of G, the quotient graph XN of X relative to the set of
orbits of N is defined as the graph with vertices the orbits of N in V (X), and with two
orbits adjacent if there is an edge in X between those two orbits. Let X be a tetravalent
connected symmetric graph, and N an elementary Abelian p-group. A classification
of tetravalent connected symmetric graphs was obtained for the case when N has at
most two orbits in [11], and a characterization of such graphs was given for the case
when XN is a cycle in [12]. The following is a ‘reduction’ theorem.

Proposition 2.6 [11, Theorem 1.1] Let X be a tetravalent connected symmetric
graph, and let G ≤ Aut(X) act arc-transitively on X. For each normal subgroup
N of G, one of the following holds:

(1) N is transitive on V (X);
(2) X is bipartite and N acts transitively on each part of the bipartition;
(3) N has r ≥ 3 orbits on V (X), the quotient graph XN is a cycle of length r , and

G induces the full automorphism group D2r on XN ;
(4) N has r ≥ 5 orbits on V (X), N acts semiregularly on V (X), the quotient graph

XN is a tetravalent connected G/N -symmetric graph and X is a topological
cover of XN .

3 Examples

In this section, we introduce some tetravalent one-regular graphs of order 2pq , where
p,q are primes. The first example is the graph C G 2p2 of order 2p2 (p = q), which
was defined by Gardiner and Praeger [11, Definition 4.3].

Example 3.1 Let p be a prime congruent to 1 mod 4, and let ±ε be the two elements
of order 4 in Z

∗
p . The graph C G 2p2 is defined to have vertex set Z2 × (Zp × Zp) with

two vertices (0, (x1, y1)) and (1, (x2, y2)) being adjacent if and only if

(x2, y2) − (x1, y1) ∈ {(1,1), (−1, ε), (1,−1), (−1,−ε)}.
Furthermore, the tetravalent graph C G 2p2 is one-regular.

Clearly, C G 2p2 is independent of the choice of ε. A group of automorphisms of
C G 2p2 was given in [11, Definition 4.3] that is arc-transitive on C G 2p2 , but the full
automorphism group of C G 2p2 was not obtained there. We shall compute the full
automorphism group of C G 2p2 in the following lemma, showing that C G 2p2 is one-
regular.

Lemma 3.2 Let G(2p2) = 〈a, b, c | ap = bp = c2 = 1, cac = a−1, cbc = b−1, ab =
ba〉, the so called generalized dihedral group of order 2p2. Let p be congru-
ent to 1 mod 4, and let ε, −ε be the two elements of order 4 in Z

∗
p . Set

S = {cab, ca−1bε, cab−1, ca−1b−ε}. Then C G 2p2 ∼= Cay(G(2p2), S). Furthermore,
C G 2p2 is one-regular and Aut(C G 2p2) ∼= G(2p2) � Z4.
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Fig. 1 An induced subgraph of C G 2p2

Proof Let G = G(2p2) and X = Cay(G,S). Note that the graph C G 2p2 has vertex set
Z2 × (Zp × Zp) with two vertices (0, (x1, y1)) and (1, (x2, y2)) adjacent if and only
if (x2, y2) − (x1, y1) ∈ {(1,1), (−1, ε), (1,−1), (−1,−ε)}. It is easy to see that the
map defined by (i, (x, y)) �→ ciaxby , (i, (x, y)) ∈ Z2 ×(Zp ×Zp), is an isomorphism
from C G 2p2 to X. Let A = Aut(X), and let A1 be the stabilizer of 1 in A. Since S

generates G, X is connected. The map c �→ c, a �→ a−1 and b �→ bε induces an
automorphism of G, denoted by α, which cyclically permutes the elements in S. This
means R(G) � 〈α〉 ≤ A, so that X is symmetric. To finish the proof, it suffices to
show that A = R(G) � 〈α〉.

For the case p = 5, it can be shown with the help of the computer software package
MAGMA [1] that Aut(X) has order 200, which implies that A = R(G) � 〈α〉.

Now assume p > 5. We depict the subgraph of X induced by the vertices at dis-
tance less than 4 from 1 (see Fig. 1). Let A∗

1 be the subgroup of A1 fixing S pointwise.
From Fig. 1 one may see that passing through cab−1, 1 and cab, there is a 6-cycle
passing through a2b1−ε and another 6-cycle passing through a2b1+ε , but no 6-cycle
passing through b2. This implies that A∗

1 fixes b2, and similarly A∗
1 fixes b−2, b2ε and

b−2ε . Note that b2ε and a2b1+ε have a common neighbor, but b2ε and a2b1−ε have
no common neighbor. It follows that A∗

1 fixes a2b1−ε and a2b1+ε . Thus, one may
show that A∗

1 fixes every vertex at distance 2 from 1 in X. By connectivity of X and
transitivity of A on V (X), we find that A∗

1 fixes every vertex in X and hence A∗
1 = 1.

It follows that A1 ∼= AS
1 ≤ S4 and |A| ≤ 48p2.
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Set P = 〈R(a),R(b)〉. Then P is a Sylow p-subgroup of A. Since α ∈
Aut(G(2p2)), one has xα−1R(aibj )α = (xα−1

aibj )α = xaiαbjα = xR(a−i bjε) for any
x ∈ G. Thus, α−1R(aibj )α ∈ P , that is, α normalizes P . Similarly, one may show
that αR(c) = R(c)α. Since R(c) normalizes P , |NA(P )| is divisible by 8p2. By Sy-
low theorem, the number of Sylow p-subgroups is kp + 1 = |A : NA(P )| and is a
divisor of 6. This forces k = 0 because p > 5 and hence P is normal in A.

Suppose that A1 
= 〈α〉. Take β ∈ A1\〈α〉. Since 〈α〉 ∼= Z4 and A1 ∼= AS
1 ≤ S4, one

has 〈α,β〉 ∼= D8 or S4. Since α permutes the elements in S = {cab, ca−1bε, cab−1,

ca−1b−ε} cyclicly, there exists an involution γ ∈ A1\〈α〉 such that γ fixes cab and
cab−1 and interchanges ca−1bε and ca−1b−ε . Note that there is no 6-cycle passing
through cab−1, 1, cab and b2. Then γ fixes b2. On the other hand, since γ normalizes
P , for any x, y ∈ 〈a, b〉 one has (xy)γ = 1R(xy)γ = 1γ −1(R(x)R(y))γ = 1R(x)γ R(y)γ =
R(x)γ R(y)γ = 1R(x)γ 1R(y)γ = xγ yγ , that is, γ induces an automorphism on 〈a, b〉.
Thus, γ fixes 〈b2〉 pointwise. In particular, γ fixes b2ε . Since ca−1bε is the unique
common neighbor of 1 and b2ε in X, γ fixes ca−1bε , a contradiction. This means
that A1 = 〈α〉, that is, A = R(G(2p2)) � 〈α〉. �

Xu [37, Theorems 2 and 3] classified all tetravalent one-regular circulant graphs,
and one may deduce the following example.

Example 3.3 Let p and q be odd primes. Assume p = q . Then Z
∗
2pq has a unique

subgroup of order 4, say H0, when p ≡ 1(mod 4). Assume p 
= q . Then Z
∗
2pq has

a unique non-cyclic subgroup of order 4, say H1, and if both p − 1 and q − 1 are
divisible by 4, then Z

∗
2pq has exactly two cyclic subgroups of order 4 containing −1,

say H2 and H3. Let G = 〈a〉 ∼= Z2pq and define C Ci
2pq = Cay(G,aHi ), i = 0,1,2,3.

Note that C C 0
2pq = C C 0

2p2 . The graphs C Ci
2pq (i = 0,1,2,3) are pairwise nonisomor-

phic tetravalent one-regular circulant graphs of order 2pq and Aut(C Ci
2pq) ∼= G�Hi .

The following example follows from [36, Theorem 3.3 and Proposition 3.3(iv)].

Example 3.4 Let p be a prime congruent to 1 mod 4, and w an element of order 4
in Z

∗
p with 1 ≤ w ≤ p − 1. Let G = 〈a〉 × 〈b〉 ∼= Z2p × Z2. Then the Cayley graphs

C A0
4p = Cay(G, {a, a−1, aw2

b, a−w2
b}) and C A1

4p = Cay(G, {a, a−1, awb, a−wb})
are nonisomorphic tetravalent one-regular graphs. Furthermore, Aut(C A0

4p) ∼= G �

(Z2 × Z2) and Aut(C A1
4p) ∼= G � Z4.

Since 0 ≤ w ≤ p − 1, the graphs C A0
4p and C A1

4p are independent of the choice
of w. The following example is a special part of [16, Theorem 3.1].

Example 3.5 Let p and q be odd primes with p > q , and let D2pq = 〈a, b | apq =
b2 = 1, bab = a−1〉.
(1) Let p ≡ 1(mod 4) and pq 
= 15. Then there is exactly one subgroup of order

4, say 〈s0〉, in Z
∗
pq such that s2

0 + 1 ≡ 0 (mod p) and s0 + 1 ≡ 0 (mod q). Let

C D0
2pq = Cay(D2pq, {b, ab, as0+1b, as2

0+s0+1b}).
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(2) Let q ≡ 1 (mod 4). Then there is exactly one subgroup of order 4, say 〈s1〉, in Z
∗
pq

such that s1 + 1 ≡ 0 (mod p) and s2
1 + 1 ≡ 0 (mod q). Let C D1

2pq = Cay(D2pq,

{b, ab, as1+1b, as2
1+s1+1b}).

The Cayley graphs C D0
2pq and C D1

2pq are independent of the choice of s0 and s1
respectively, and nonisomorphic tetravalent one-regular graphs. For i = 0 or 1, let
αi be the automorphism of D2pq induced by the map a �→ asi and b �→ ab. Then
Aut(C D0

2pq) = R(D2pq) � 〈α0〉 and Aut(C D1
2pq) = R(D2pq) � 〈α1〉.

The proof of uniqueness of 〈s0〉 or 〈s1〉 is straightforward (also this can be proved
by the equation (2) in the proof of Lemma 3.1 in [20], which claims that for each
u ∈ Zp and v ∈ Zq the equation |(u + Q) ∩ (v + P)| = 1 holds in Zpq where Q =
{kq | k ∈ Zpq} and P = {kp | k ∈ Zpq}). There are two elements of order 4 in 〈s0〉,
that is, s0 and s3

0 . Since the automorphism of D2pq induced by a �→ a−s0, b �→ b maps

{b, ab, as0+1b, as2
0+s0+1b} to {b, ab, a−s2

0−s0b, a−s0b} = {b, ab, as3
0+1b, as6

0+s3
0+1b},

the graph C D0
2pq is independent of the choice of s0 and similarly, the graph C D1

2pq

is independent of the choice of s1. Let p and q be primes congruent to 1 mod 4.
By Proposition 2.3, the Cayley graphs C D0

2pq and C D1
2pq are normal and one-regular,

implying that Aut(C D0
2pq) = R(D2pq) � 〈α0〉 and Aut(C D1

2pq) = R(D2pq) � 〈α1〉.
Clearly, Aut(C D0

2pq) and Aut(C D1
2pq) have unique normal Sylow p-subgroups, say

P0 and P1. The group of automorphisms of P0 induced by the conjugacy action of
elements in Aut(C D0

2pq) is isomorphic to Z4, but the group of automorphisms of P1

induced by the conjugacy action of elements in Aut(C D1
2pq) is isomorphic to Z2.

Thus, Aut(C D0
2pq) 
∼= Aut(C D1

2pq), and hence C D0
2pq and C D1

2pq are nonisomorphic.

Example 3.6 Let A5 and S5 be the alternating group and the symmetric group of
degree 5, respectively. Let G = A5 × 〈x〉 with 〈x〉 ∼= Z2.

(1) Set H = 〈(1 2)(3 4), (1 3)(2 4)x〉 and D = H(1 3)(2 5)H . Then Cos(G,H,D)

is a tetravalent one-regular graph of order 30 with girth 5, denoted by N C 0
30, and

Aut(N C 0
30) = G.

(2) Set H = 〈(1 2)(3 4), (1 3)(2 4)x〉 and D = H(1 3)(2 5)xH . Then Cos(G,H,D)

is a tetravalent one-regular graph of order 30 with girth 3, denoted by N C 1
30, and

Aut(N C 1
30) = G.

(3) Set H = 〈(1 2)(3 4), (1 2)〉 and D = H(1 3)(2 5)H . Then Cos(S5,H,D) is a
tetravalent one-regular graph of order 30 with girth 4, denoted by N C 2

30, and
Aut(N C 2

30) = S5.

For the first case, Aut(N C 0
30) contains G as a subgroup because HG = 1, which

acts regularly on arcs of the graph. With the help of MAGMA [1], we can show
that Aut(N C 0

30) has order 120, implying that Cos(G,H,D) is one-regular and
Aut(N C 0

30) = G. One may have a similar proof for the second and the third cases.

Remark Guo [14] classified symmetric graphs of order 30, but the graphs given in
Example 3.6 are missing from his classification.
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Example 3.7 Let A4 = 〈a, b | a3 = b3 = (ab)2 = 1〉. Then the tetravalent Cayley
graph C12 = Cay(A4, {a, b, a−1, b−1}) is normal and one-regular with automorphism
group isomorphic to R(A4) � (Z2 × Z2).

Clearly, (ab)2 = 1 if and only if (ba)2 = 1. Thus, the map α induced by a �→ b,
b �→ a, and the map β induced by a �→ a−1, b �→ b−1 are automorphisms of A4. Set
S = {a, b, a−1, b−1}. Then α,β ∈ Aut(G,S), and hence C12 is arc-transitive. Again
with the help of MAGMA [1], Aut(C12) has order 48, implying that Aut(C12) ∼=
R(A4) � (Z2 × Z2) (also this can be obtained by [25, p.1114]).

Lemma 3.8 The graphs defined in Examples 3.1-3.7 are pairwise nonisomorphic.

Proof The graphs C G 2p2 and C C 0
2p2 , defined in Examples 3.1 and 3.3, are not iso-

morphic because a Sylow p-subgroup of Aut(C G 2p2) is elementary Abelian, and a

Sylow p-subgroup of Aut(C C 2p2) is cyclic. The graphs C Ci
2pq , C D0

2pq and C D1
2pq ,

defined in Examples 3.3 and 3.5, are not isomorphic one another because there is
an involution in the center of Aut(C Ci

2pq) (0 ≤ i ≤ 4), but neither Aut(C D0
2pq) nor

Aut(C D1
2pq) has such an involution. In fact, if there was an involution in the cen-

ter of Aut(C D0
2pq), say γ , then P = 〈γ 〉 × 〈α0〉 would be a Sylow 2-subgroup of

Aut(C D0
2pq). Recall that Aut(C D0

2pq) = R(D2pq)� 〈α0〉, and that α0 is the automor-

phism of D2pq induced by the map a �→ as0 and b �→ ab, where s2
0 + 1 ≡ 0 (mod p)

and s0 + 1 ≡ 0 (mod q). Clearly, |P ∩ R(D2pq)| = 2. Assume that P ∩ R(D2pq) =
〈R(aib)〉 for some 0 ≤ i ≤ pq −1. Then P = 〈R(aib)〉×〈α0〉, and hence γ = R(aib)

or R(aib)α2
0 . Since R(a)R(aib) = R(a)−1, one has γ = R(aib)α2

0 . Thus, for any x ∈
D2pq , xR(a) = xγR(a)γ = xR(aib)α2

0R(a)α2
0R(aib) = ((xaib)α

2
0 a)α

2
0 aib = xaibas2

0 aib =
xR(a

−s2
0 ). It follows that R(a) = R(a−s2

0 ), implying s2
0 + 1 ≡ 0 (mod pq) and hence

s2
0 + 1 ≡ 0 (mod q). Since s0 + 1 ≡ 0 (mod q), one has q = 2, a contradiction. Simi-

larly, one may show that there is no involution in the center of Aut(C D1
2pq). �

4 Classification

In this section, we shall classify tetravalent one-regular graphs of order 2pq , where
p and q are primes. First we consider the case where the automorphism group is
nonsolvable.

Lemma 4.1 Let p and q be primes. Then a tetravalent one-regular graph X of order
2pq has a nonsolvable automorphism group if and only if X ∼= N Ci

30, i = 0,1,2.

Proof By Example 3.6 the graphs N Ci
30, i = 0,1,2, are one-regular with nonsolv-

able automorphism groups and the sufficiency follows. To prove the necessity, let
X be a tetravalent one-regular graph of order 2pq with G = Aut(X) a nonsolvable
group. By the definition of coset graph, one may let X = Cos(G,H,HdH), where
H is the stabilizer of v ∈ V (X) in G, and d interchanges v and one of its neighbors.
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Then d2 = 1 because of the one-regularity of X. As |V (X)| = 2pq , one further has
|G| = 8pq , and hence |H | = 4. It follows that H ∩ Hd = 1 because X has valency
4. The connectivity of X implies 〈HdH 〉 = G. To finish the proof, it suffices to show
that X ∼= N Ci

30, i = 0,1,2.
Since G is nonsolvable, G has a nonsolvable composition factor, say G1/G2,

which is a non-Abelian simple group. Since |G| = 8pq , by [13, P.12-14] one has
G1/G2 ∼= A5 or PSL(2,7). If G1/G2 ∼= PSL(2,7), then G = PSL(2,7) because
|G| = 8pq . However, by using MAGMA [1], we find that there is no tetravalent
one-regular graph with G = PSL(2,7) as full automorphism group, a contradiction.

Thus, G1/G2 ∼= A5. In this case, X has order 30 and G has order 120. By elemen-
tary group theory, up to isomorphism, there are three nonsolvable groups of order
120 which are SL(2,5), A5 × Z2 and S5. Suppose G = SL(2,5). Then, by [15, The-
orem 8.10], G has a unique involution, say a. This means that a ∈ H ∩ Hd , contrary
to Hd ∩ H = 1. It follows that G = A5 × Z2 or S5.

Let G = A5 × Z2 = A5 × 〈x〉. Then, G = A5 × 〈x〉 ≤ S5 × 〈x〉 (A5 ≤ S5). Since
|H | = 4, one has either H ≤ A5 or H ∩A5 ∼= Z2. For the former, by MAGMA [1], we
can show that Cos(G,H,HdH) is not tetravalent one-regular for any involution d ∈
G. Thus, H ∩ A5 ∼= Z2. Since all involutions of A5 are conjugate and Hd ∩ H = 1,
one may assume H ∩A5 = 〈(1 2)(3 4)〉 and H = 〈(1 2)(3 4), zx〉 for some involution
z ∈ A5. Since both zx and x commute with (1 2)(3 4), z commutes with (1 2)(3 4),
which implies that H = {(1), (1 2)(3 4), (1 3)(2 4)x, (1 4)(2 3)x}. Clearly, d = y or
yx for some involution y ∈ A5. By using MAGMA [1], there are 8 such y’s such
that Cos(G,H,HdH) is tetravalent and one-regular. Furthermore, all such y’s are
conjugate under NS5(H). By Example 3.6, one may assume that y = (1 3)(2 5), and
hence X ∼= N C 0

30 or N C 1
30, corresponding to d = y or yx, respectively.

Let G = S5. Then P = 〈(1 3 2 4), (1 2)〉 is a Sylow 2-subgroup of G. Since Sylow
2-subgroups of G are conjugate, one may assume H ≤ P , implying H = 〈(1 3 2 4)〉,
〈(1 2)(3 4), (1 3)(2 4)〉 or 〈(1 2)(3 4), (1 2)〉. If H = 〈(1 2)(3 4), (1 3)(2 4)〉
or 〈(1 3 2 4)〉, then by using MAGMA [1], there is no involution d such that
Cos(G,H,HdH) is tetravalent and one-regular. Thus, H = 〈(1 2)(3 4), (1 2)〉. Again
by using MAGMA [1], there are 8 such d’s such that Cos(G,H,HdH) is tetravalent
and one-regular. Furthermore, all such d’s are conjugate under NG(H). By Exam-
ple 3.6, one may assume that d = (1 3)(2 5), and hence X ∼= N C 2

30. �

Let X and Y be two graphs. The lexicographic product X[Y ] is defined as the
graph with vertex set V (X[Y ]) = V (X) × V (Y ) such that for any two vertices u =
(x1, y1) and v = (x2, y2) in V (X[Y ]), u is adjacent to v in X[Y ] whenever {x1, x2} ∈
E(X) or x1 = x2 and {y1, y2} ∈ E(Y). The following is the main result of this paper.

Theorem 4.2 Let p and q be primes. A tetravalent graph X of order 2pq is one-
regular if and only if it is isomorphic to one of the graphs in Table 1. Furthermore,
all the graphs in Table 1 are pairwise nonisomorphic.

Proof By Examples 3.1-3.7 and Lemmas 3.2 and 3.8, all graphs in Table 1 are pair-
wise nonisomorphic tetravalent one-regular graphs. Let X be a tetravalent one-regular
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Table 1 Tetravalent one-regular graphs of order 2pq

X |X| Aut(X) References

C G 2p2 2p2,p ≡ 1(mod 4) G(2p2) � Z4 Example 3.1

C C 0
2p2 2p2,p ≡ 1(mod 4) Z2p2 � Z4 Example 3.3

C C 1
2pq

2pq,p > q > 2 Z2pq � (Z2
2) Example 3.3

C C 2
2pq

2pq,p ≡ 1(mod 4) Z2pq � Z4 Example 3.3

q ≡ 1(mod 4),p > q

C C 3
2pq

2pq,p ≡ 1(mod 4) and Z2pq � Z4 Example 3.3

q ≡ 1(mod 4),p > q

C A0
4p

4p,p ≡ 1(mod 4) (Z2p × Z2) � (Z2
2) Example 3.4

C A1
4p

4p,p ≡ 1(mod 4) (Z2p × Z2) � Z4 Example 3.4

C D0
2pq

2pq,p ≡ 1(mod 4), D2pq � Z4 Example 3.5

p > q > 2 and pq 
= 15

C D1
2pq

2pq,q ≡ 1(mod 4), D2pq � Z4 Example 3.5

p > q > 2

C12 12 A4 � (Z2
2) Example 3.7

N C 0
30 30 A5 × Z2 Example 3.6

N C 1
30 30 A5 × Z2 Example 3.6

N C 2
30 30 S5 Example 3.6

graph of order 2pq . To finish the proof, it suffices to show that X is one of the graphs
listed in Table 1. Set A = Aut(X), and let Av be the stabilizer of v ∈ V (X) in A. By
the one-regularity of X, |A| = 8pq . If A is nonsolvable, then by Lemma 4.1, one has
X ∼= N Ci

30, i = 0,1,2, which correspond to the last three rows in Table 1. Thus, we
assume that A is solvable. Set n = pq and let B be a normal subgroup of A. First we
prove three claims.

Claim 1 If n is odd and B is a 2-subgroup, then |B| = 2.

Consider the quotient graph XB of X relative to the set of orbits of B . Then each
orbit of B on V (X) has length 2, and |XB | = n > 2. By Proposition 2.6, XB has
valency 2 or 4. If XB has valency 2, then X is isomorphic to Cn[2K1] which is not
one-regular, a contradiction. Thus, XB has valency 4, and by Proposition 2.6, B ∼= Z2.

Claim 2 If B is an Abelian group of odd order n, then there is an involution α ∈
Aut(X) such that 〈B,α〉 acts regularly on V (X) with bα = b−1 for each b ∈ B .

Clearly, B acts semiregularly on V (X) with two orbits, say � and �′. Set
� = {�(b) | b ∈ B} and �′ = {�′(b) | b ∈ B}. One may assume that the actions
of B on � and �′ are just by right multiplication, that is, �(b)g = �(bg) and
�′(b)g = �′(bg) for any b,g ∈ B . By symmetry of X, there is no edge in � and
�′, implying that X is bipartite. Let the neighbors of �(1) be �′(b1), �′(b2), �′(b3)

and �′(b4), where b1, b2, b3, b4 ∈ B . Note that B is Abelian. Then for any b ∈ B ,
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the neighbors of �(b) are �′(bb1), �′(bb2), �′(bb3) and �′(bb4), and furthermore,
the neighbors of �′(b) are �(bb−1

1 ), �(bb−1
2 ), �(bb−1

3 ) and �(bb−1
4 ). The map

α defined by �(b) �→ �′(b−1), �′(b) �→ �(b−1) for any b ∈ B , is an automor-
phism of X of order 2. For any b′, b ∈ B , one has �(b′)αbα = �(b′b−1) = �(b′)b−1

and �′(b′)αbα = �′(b′b−1) = �′(b′)b−1
, implying that bα = b−1. It follows that

|〈B,α〉| = 2pq and hence 〈B,α〉 acts regularly on V (X).

Claim 3 If p > q > 2, then A contains a cyclic normal subgroup of order n = pq .

Let T be a minimal normal subgroup of A. By solvability of A, T is elementary
Abelian, and by Claim 1, T ∼= Z2, Zp or Zq . Assume T ∼= Z2 and let L/T be a
minimal normal subgroup of A/T . Again by Claim 1, L/T ∼= Zp or Zq . The Sylow
p- or q-subgroup of L is normal and so characteristic in L. By the normality of L in
A, A has a normal subgroup of order p or q . Thus, A always has a normal subgroup
of order p or q , say N . Then |N | = p or q . Set C = CA(N). Clearly, C � A and
N ≤ C. Furthermore, A/C is isomorphic to a subgroup of Aut(N) ∼= Zp−1 or Zq−1.

Assume N ∼= Zp . Let XN be the quotient graph of X relative to the set of orbits
of N , and K the kernel of A acting on V (XN). Then N ≤ K . Suppose that A/N

is Abelian. Then its quotient A/K is Abelian, and by Proposition 2.1, A/K acts
regularly on V (XN), which is impossible because the arc-transitivity of A on X im-
plies that A/K is arc-transitive on XN . Thus, A/N is non-Abelian. Since N ≤ C

and A/C is Abelian, N is a proper subgroup of C. Let M/N be a minimal normal
subgroup of A/N contained in C/N . Then M/N ∼= Zq or M/N is a 2-group. For
the former, M ∼= Zpq is a cyclic normal subgroup of order pq , as claimed. For the
latter, M = N × R, where R is a Sylow 2-subgroup of M . It follows that R � A.
By Claim 1, R ∼= Z2, and hence M ∼= Z2p . If CA(M) = M , then A/M is isomorphic
to a subgroup of Aut(M) ∼= Zp−1. Since M/N ∼= Z2 is normal in A/N , M/N is in
the center of A/N , and since (A/N)/(M/N) ∼= A/M is cyclic, A/N is Abelian, a
contradiction. It follows that M < CA(M). Let T/M be a minimal normal subgroup
of A/M contained in CA(M)/M . Then T/M is a 2-group or q-group. If T/M is a
2-group, then Sylow 2-subgroups of T have orders greater than 2, which are normal
in A, contrary to Claim 1. Thus, T/M ∼= Zq and hence T ∼= Z2pq . It follows that T

has a cyclic subgroup of order pq which is normal in A, as claimed.
Assume N ∼= Zq . Since p > q , one has p | |C|, and hence N < C. Let M/N be a

minimal normal subgroup of A/N contained in C/N . Then M/N ∼= Zp or M/N is
a 2-subgroup. For the former, M ∼= Zpq is a cyclic normal subgroup of order pq , as
claimed. For the latter, M = N × R, where R ∼= Z2 by Claim 1. Thus, R � A. Let P

be a Sylow p-subgroup of C. Then R and N normalize P , implying |NA(P )| ≥ 2pq

and |A : NA(P )| ≤ 4. Note that P is also a Sylow p-subgroup of A. The number of
Sylow p-subgroups of A is kp + 1 = |A : NA(P )| ≤ 4, forcing k = 0, that is, P � A.
Thus, A has a cyclic normal subgroup PN of order pq , as claimed.

In what follows we consider three cases: p = q , p > q = 2 and p > q > 2, respec-
tively.
Case 1: p = q

By [25, p.1111–1112, p.1144–1146], there exist no tetravalent one-regular graphs
of orders 8 and 18. Thus, p > 3. Let P be a Sylow p-subgroup of A. Then
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|P | = p2 and hence P is Abelian. Suppose that P is not normal in A. Remem-
ber that |A| = 8p2. By Sylow theorem, the number of Sylow p-subgroups of A is
kp + 1 = |A : NA(P )| that divides 8. Since p > 3, one has p = 7 and k = 1, that
is, |A : NA(P )| = 8. Thus, CA(P ) = P = NA(P ) and by Proposition 2.2, A has a
normal Sylow 2-subgroup, contrary to Claim 1. It follows that P is normal in A.
Since |P | = p2, one has P ∼= Zp × Zp or Zp2 . If P ∼= Zp × Zp , then X ∼= C G 2p2 by
[11, Theorem 1.3] and Lemma 3.2, which corresponds to the second row in Table 1.
If P ∼= Zp2 , then by Claim 2, there exists an α ∈ Aut(X) such that G = 〈P,α〉 acts
regularly on V (X). Thus, A = GAv , where Av is the stabilizer of v ∈ V (X) in X.
Let Q be a Sylow 2-subgroup of A such that Av ≤ Q. Then Q = Av � (Q ∩ G),
implying that Q is not cyclic. If P = CA(P ), then Q ∼= A/P , which is isomorphic to
a subgroup of Aut(P ) ∼= Zp(p−1), a contradiction. It follows that P < CA(P ) and by
Claim 1, CA(P ) ∼= Z2p2 . It is easy to see that CA(P ) acts regularly on V (X), that is,
X is a tetravalent one-regular circulant graph of order 2p2. By Proposition 2.4 and
Example 3.3, X ∼= C C 0

2p2 , which corresponds to the third row in Table 1.
Case 2: p > q = 2

In this case, |A| = 16p. If p = 3, then |X| = 12 and by [25, P.1114], there is a
unique tetravalent one-regular graph of order 12, implying X ∼= C12 by Example 3.7,
which corresponds to the eleventh row in Table 1. Now assume p > 3. Let N =
O2(A) be the largest normal 2-subgroup of A and P a Sylow p-subgroup of A.
We shall prove that P � A. Since |A| = 16p, A/N has a unique minimal normal
subgroup, that is, PN/N . Thus, PN � A. Consider the quotient graph XN of X

relative to the set of orbits of N , and let K be the kernel of A acting on V (XN).
Then N ≤ K and A/K is arc-transitive on XN , forcing 2 | |A/K|. It follows that
|N | | 8. If |N | | 4, then by Sylow theorem, P is normal in PN because p ≥ 5.
Then P is characteristic in PN and so normal in A. Similarly, P is normal in A

when |N | = 8 and p 
= 7. Now assume |N | = 8 and p = 7. Then N ∼= D8, Q8 (the
quaternion group), Z8, Z4 × Z2 or Z

3
2. Let C = CA(N). Then, C � A and A/C is

isomorphic to a subgroup of Aut(N). If N 
∼= Z
3
2, then 7 � |Aut(N)| and hence 7 | |C|,

implying P ≤ C. It follows that P is characteristic in PN and hence normal in A.
If N ∼= Z

3
2, then N ≤ C and Aut(N) ∼= PSL(2,7). Note that |A/N | = 14. By [15,

II,Theorem 8.27], Aut(N) has no subgroups of order 14, implying C 
= N . Since
|N | = |O2(A)| = 8, one has |C| 
= 16. Thus, 7 | |C|. It follows that P ≤ C and P �A.

Let XP be the quotient graph of X relative to the set of orbits of P , and K the ker-
nel of A acting on V (XP ). Then |V (XP )| = 4, P ≤ K and A/K acts arc-transitively
on XP . By Proposition 2.6, XP

∼= C4 and hence A/K ∼= D8, forcing |K| = 2p. It fol-
lows that A/P is non-Abelian because A/K is a quotient group of A/P . Moreover,
K is not semiregular on V (X) because |K| = 2p. Let v ∈ V (X). Then Kv

∼= Z2. Set
C = CA(P ). Then, C � A and A/C is isomorphic to a subgroup of Aut(P ) ∼= Zp−1,
and since A/P is non-Abelian, P is a proper subgroup of C. If C ∩ K 
= P , then
C ∩ K = K (|K| = 2p). Since Kv is a Sylow 2-subgroup of K , Kv is characteristic
in K and so normal in A, implying that Kv = 1, a contradiction. Thus, C ∩ K = P

and 1 
= C/P = C/(C ∩ K) ∼= CK/K � A/K ∼= D8. If C/P ∼= Z2, then C/P is
in the center of A/P and since (A/P )/(C/P ) ∼= A/C is cyclic, A/P is Abelian, a
contradiction. It follows that |C/P | = 4 or 8, and hence C/P has a characteristic sub-
group of order 4, say H/P . Thus, |H | = 4p and H/P �A/P , implying H �A. And
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H is Abelian because H ≤ C = CA(P ). Clearly, |Hv| = 4, 2 or 1. Suppose |Hv| = 4.
Then Hv is a Sylow 2-subgroup of H , implying Hv is characteristic in H . The nor-
mality of H in A implies that Hv � A, forcing that Hv = 1, a contradiction. Suppose
|Hv| = 2. Let Q be a Sylow 2-subgroup of H . Then Q � A and Qv = Hv . Consider
the quotient graph XQ of X relative to the set of orbits of Q. Since |Q| = 4 and
Qv

∼= Z2, Proposition 2.6 implies that XQ
∼= C2p and hence X ∼= C2p[2K1], contrary

to the one-regularity of X. Thus, Hv = 1 and since |H | = 4p, H is regular on V (X).
It follows that X is a Cayley graph on the Abelian group H . By Proposition 2.4,
there is no tetravalent one-regular Cayley graph on Z4p . Thus, H ∼= Z2p × Z2, and
by Proposition 2.5 and Example 3.4, X ∼= C A0

4p or C A1
4p , which correspond to the

seventh and eighth rows in Table 1.
Case 3: p > q > 2

By Claim 3, A has a cyclic normal subgroup of order pq , say M . Clearly,
M ≤ CA(M). If M < CA(M), then a Sylow 2-subgroup of CA(M) is character-
istic in CA(M) and hence normal in A. By Claim 1, CA(M) ∼= Z2pq . It is easy
to see that CA(M) acts regularly on V (X), that is, X is a tetravalent one-regular
Cayley graph on Z2pq . By Proposition 2.4 and Example 3.3, X is isomorphic to
one of the graphs C Ci

2pq for 1 ≤ i ≤ 3, which correspond to the fourth, fifth and
sixth rows in Table 1. Thus, in what follows we assume M = CA(M). By Claim 2,
there exists an involution α ∈ Aut(X) such that 〈M,α〉 acts regularly on V (X)

and mα = m−1 for each m ∈ M . Thus, 〈M,α〉 is dihedral, and one may assume
X = Cay(G,S), where G = 〈a, b | apq = b2 = 1, bab = a−1〉. One may further
assume that 〈M,α〉 = R(G) and M = 〈R(a)〉. Recall that A = R(G)A1. Since
A/M = A/CA(M) ≤ Aut(M) ∼= Zp−1 × Zq−1, R(G)/M is normal in A/M and
hence R(G) is normal in A, i.e., Cay(G,S) is normal. Let P be a Sylow 2-subgroup
of A such that A1 ≤ P . Then P ∼= A/M ≤ Zp−1 × Zq−1 and hence P ∼= Z4 × Z2 or
Z8. Noting that P = P ∩A = P ∩R(G)A1 = A1 ×(P ∩R(G)), one has P ∼= Z4 ×Z2

and A1 ∼= Z4. By Proposition 2.3, one may assume S = {b, ab, a�+1b, a�2+�+1b} for
some pair (pq, �) such that �3 + �2 + � + 1 ≡ 0 (mod pq), �2 − 1 
= 0 (mod pq)

and (pq, �) 
= (15,2), (15,8). Note that the conditions �3 + �2 + �+ 1 ≡ 0 (mod pq)

and (pq, �) 
= (15,2), (15,8) imply that pq 
= 15. Let β be the automorphism of G

induced by a �→ a� and b �→ ab. Then β permutes the elements in {b, ab, a�+1b,

a�2+�+1b} cyclicly, and by the normality of X, A1 = 〈β〉 and A = R(G) � A1. From
�3 + �2 + � + 1 ≡ 0 (mod pq) it follows that (�2 + 1)(� + 1) ≡ 0 (mod pq). Since
�2 − 1 
= 0 (mod pq), one of the following holds:

(1) �2 + 1 ≡ 0 (mod pq),

(2) �2 + 1 ≡ 0 (mod p), � + 1 ≡ 0 (mod q),

(3) � + 1 ≡ 0 (mod p), �2 + 1 ≡ 0 (mod q).

Suppose (1) holds. Then aβ2 = a−1 and bβ2 = a�+1b. For any x ∈ G, one
may compute xβ2R(a)β2 = (xβ2

a)β
2 = xβ4

a−1 = xa−1 = xR(a−1), that is, R(a)β
2 =

R(a−1). Since R(a)R(b) = R(bab) = R(a−1), one has R(a)β
2R(b) = R(a−1)R(b) =

R(a). This implies that β2R(b) ∈ CA(M), contrary to the fact that M = CA(M).
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Thus, (2) and (3) hold and by Example 3.5, one has X ∼= C D0
2pq or C D1

2pq , which
correspond to the ninth and tenth rows in Table 1. �
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