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Abstract Let (W,S) be a finite Weyl group and let w ∈ W . It is widely appreciated
that the descent set

D(w) = {s ∈ S | l(ws) < l(w)}
determines a very large and important chapter in the study of Coxeter groups. In
this paper we generalize some of those results to the situation of the Bruhat poset
WJ where J ⊆ S. Our main results here include the identification of a certain subset
SJ ⊆ WJ that convincingly plays the role of S ⊆ W , at least from the point of view
of descent sets and related geometry. The point here is to use this resulting descent
system (WJ ,SJ ) to explicitly encode some of the geometry and combinatorics that is
intrinsic to the poset WJ . In particular, we arrive at the notion of an augmented poset,
and we identify the combinatorially smooth subsets J ⊆ S that have special geometric
significance in terms of a certain corresponding torus embedding X(J ). The theory
of J-irreducible monoids provides an essential tool in arriving at our main results.

Keywords Weyl group · Bruhat poset · Descent system · Augmented poset ·
J-irreducible monoid · Rationally smooth

Introduction

If (W,S) is a Weyl group and w ∈ W , s ∈ S, then either ws < w or else w < ws.
Hence we define

D(w) = {s ∈ S | l(ws) < l(w)},
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the descent set of w ∈ W . This innocuous looking situation is at the heart of many
important results in geometry, combinatorics, group theory and representation theory.

Evidently, the interest in these objects began with Solomon [17], who defines a
certain subalgebra B ⊆ Q[W ], and uses it to help understand the representations of
W. The algebra B is often called the descent algebra since it can be defined in terms
of descent sets. Brown [5] looks at this descent algebra and reconstitutes it as the
semigroup algebra of a certain idempotent (“face”) semigroup associated with the
reflection arrangement of W .

The numbers |D(w)| can be used to calculate the Betti numbers of the associated
torus embedding X(∅) of W . These Betti numbers can be obtained directly from
the h-vector of the associated rational, convex polytope. In [19] Stanley proves that
the h-vector of any simplicial, convex polytope is a symmetric, unimodal sequence.
Stembridge [16] proves that the canonical representation of W on H ∗(X(∅);Q) is a
permutation representation and, with the help of Dolgachev-Lunts [8], he computes
this representation. In [3] Brenti studies these descent polynomials (i.e. the Poincaré
polynomials of X(∅)) as analogues of the Eulerian polynomials. He also looks at the
q-analogues of these polynomials.

In the theory of group embeddings |D(w)| is an important ingredient in the cal-
culation of the Betti numbers of the “wonderful” compactification of a semisimple
group of adjoint type. See [7, 14].

In this paper we expand the entire study to include all Bruhat posets WJ , where
J ⊆ S. In particular, we study the relationship between WJ and a certain torus
embedding X(J ). This leads us to the notion of an augmented poset (WJ ,≤,

{νs}s∈S\J ). This ordering on WJ is not the usual Bruhat order on WJ . It is quan-
tified in terms of a certain “ascent/descent” structure on WJ . Further analysis leads
us to the notion of a descent system (WJ ,SJ ). These descent systems are particu-
larly interesting if X(J ) is quasi-smooth in the sense of Danilov [6]. In the remainder
of this paper we refer to this condition as rationally smooth, which is currently the
accepted terminology. For the convenience of the reader we give a precise definition.

Definition 0.1 Let X be a complex algebraic variety of dimension n. Then X is ra-
tionally smooth at x ∈ X if there is a neighbourhood U of x in the complex topology
such that, for any y ∈ U ,

Hm(X,X \ {y}) = (0)

for m �= 2n and

H 2n(X,X \ {y}) = Q.

Here H ∗(X) denotes the cohomology of X with rational coefficients.

See [4] for a modern account of this key notion, along with some important results
about rationally smooth varieties with torus action.

The main point of this paper is to identify and study the set

{J ⊆ S | X(J ) is rationally smooth}.
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See Theorem 3.2 and Corollary 3.5 below. The descent system (WJ ,SJ ) leads to a
useful combinatorial analogue of the method of Bialynicki-Birula [1]. This allows
us to uncover some of the finer geometry of X(J ). The main results of this paper
could be stated entirely in the language of Weyl groups, root systems and polytopes.
However, we were led to these results by trying to calculate the Betti numbers of
a certain class of projective varieties that arise naturally from the theory of reduc-
tive monoids. It turns out that “step one” of this monoid problem required that we
quantify the Betti numbers of X(J ). This eventually requires that we quantify the
“ascent/descent” structure on WJ for certain J . Reductive monoids are an essential
tool in showing us how to do this.

1 W -invariant polytopes

Let V be a rational vector space and let r : W → GL(V ) be the usual reflec-
tion representation of the Weyl group W . Along with this goes the Weyl chamber
C ⊆ V and the corresponding set of simple reflections S ⊆ W . The Weyl group W

is generated by S, and C is a fundamental domain for the action of W on V . See
Chapter III of [10] for a detailed discussion of Weyl groups.

Let λ ∈ C. In this section we describe the face lattice Fλ of the polytope

Pλ = Conv(W · λ),

the convex hull of W · λ in V . The face lattice Fλ depends only on Wλ = {w ∈
W | w(λ) = λ} = WJ = 〈s | s ∈ J 〉, where J = {s ∈ S | s(λ) = λ}. Thus we describe
Fλ = FJ explicitly in terms of J ⊆ S.

Closely associated with these polytopes is a certain class of reductive, algebraic
monoids. We use what is known about this class of monoids to calculate FJ in terms
of the underlying Dynkin diagram of (W,S).

We now recall some results first recorded in [12]. Throughout the paper we use the
language and techniques of linear algebraic monoids. Unfortunately this theory is not
widely appreciated, but luckily the main results and constructions have recently been
assembled in [15]. See, especially, Chapters 4, 5, 7, and 8 of [15]. Throughout the
paper we work over the field C of complex numbers. That is, all algebraic groups and
monoids are assumed to be algebraic varieties defined over C. Much of what is said
in this paper is valid over any algebraically closed field. Restricting our discussion
to varieties over the complex numbers is required only for the sake of Definition 0.1.
Let M be an irreducible, normal algebraic monoid with reductive unit group G. We
refer to such monoids as reductive. The reader can find any unproved statements
about reductive monoids in [11, 15]. See Solomon’s survey [18] for a less technical
introduction to the subject.

If M is a reductive monoid with unit group G we let B ⊆ G be a Borel subgroup
of G and T ⊆ B a maximal torus of G. We let T denote the Zariski closure of T in
M . By part b) of Theorem 4.5 of [15], T is a normal, affine torus embedding. The set
of idempotents E(T ) of T is defined to be

E(T ) = {e ∈ T | e2 = e}.
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There is exactly one idempotent in each T -orbit on T . In the cases of interest in this
paper, E(T ) \ {0} can be canonically identified (as a poset) with the face lattice Fλ

for appropriate λ ∈ C. It turns out that this poset structure on E(T ) is given by

e ≤ f if ef = e.

We note that e ≤ f if and only if eT ⊆ f T . We let E1 = E1(T ) = {e ∈ E(T ) |
dim(T e) = 1}. In the above-mentioned identification, E1 is identified with the ver-
tices of Fλ. We shall see that the combinatorial structure of E1 is much richer because
T comes from the reductive monoid M .

The G × G-orbits of M are particularly important throughout this paper. Let

� = {e ∈ T | eB = eBe}
be the cross section lattice of M relative to T and B . See Chapter 9 of [11]. It is a
basic fact that

M =
⊔

e∈�

GeG,

where GeG ⊆ Gf G if and only if ef = e. See Theorem 4.5 of [15].
As above we let S ⊆ W be the set of simple involutions of W relative to T and

B . We can regard S as the set of vertices of a graph with edges {(s, t) | st �= ts}. Thus
we may speak of the connected components of any subset of S.

A reductive monoid M with 0 ∈ M is called J-irreducible if M\{0} has exactly
one minimal G × G-orbit. See [12], or Section 7.3 of [15] for a systematic discus-
sion of this important class of reductive monoids, and for a proof of the following
Theorem.

Theorem 1.1 Let M be a reductive monoid. The following are equivalent.

1. M is J-irreducible.
2. There is an irreducible rational representation ρ : M → End(V ) which is finite

as a morphism of algebraic varieties.
3. If T ⊆ M is the Zariski closure in M of a maximal torus T ⊆ G then the Weyl

group W of T acts transitively on the set of minimal nonzero idempotents of T .

Notice in particular that one can construct, up to finite morphism, all J-irreducible
monoids from irreducible representations of a semisimple group. Indeed, let G0
be semisimple and let ρ : G0 → End(V ) be an irreducible representation. Define
M1 ⊆ End(V ) to be the Zariski closure of C∗ρ(G0) where C∗ ⊆ End(V ) is the set
of homotheties. Finally let M(ρ) be the normalization of M1. Then, according to
Theorem 1.1, M(ρ) is J-irreducible.

By the results of Section 4 of [12], if M is J-irreducible, there is a unique, min-
imal, nonzero idempotent e1 ∈ E(T ) such that e1B = e1Be1, where B is the given
Borel subgroup containing T . If M is J-irreducible we say that M is J-irreducible
of type J if, for this idempotent e1,

J = {s ∈ S | se1 = e1s},
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where S is the set of simple involutions relative to T and B . The set J can be de-
termined in terms of any irreducible representation satisfying condition 2 of Theo-
rem 1.1. Indeed, let λ ∈ X(T )+ be any highest weight such that {s ∈ S | s(λ) = λ } =
J . Then M(ρλ) is J-irreducible of type J where ρλ is the irreducible representation
of G0 with highest weight λ. The representation ρλ determines a representation of
M(ρλ) on V . Furthermore, any two J-irreducible monoids with a finite, dominant
morphism between them are of the same type. If e1 is the above-mentioned mini-
mal idempotent then B−e1 = e1B

−e1, where B− is the Borel subgroup opposite B .
We observe that e1Me1 is a reductive monoid with idempotent set {0, e1} and thus
dim(e1Me1) = 1. Hence e1B

−e1 is also one-dimensional. Thus there exists a char-
acter χ : B− → C∗ such that be1 = e1be1 = χ(b)e1 for all b ∈ B−. It follows that
B− acts on e1(V ) by the rule

ρλ(b)(v) = ρλ(b)(ρλ(e1)(v)) = χ(b)ρλ(e1)(v) = χ(b)v.

Therefore L = e(V ) ⊆ V is the unique one-dimensional ρλ(B
−)-stable subspace of

V with weight λ. In particular, χ |T = λ and P = {g ∈ G0 | ρλ(g)(L) = L } is a
parabolic subgroup of G0 of type J .

We now describe the G × G-orbit structure of a J-irreducible monoid of type
J ⊆ S. The following result was first recorded in [12].

Theorem 1.2 Let M be a J-irreducible monoid of type J ⊆ S.

1. There is a canonical one-to-one order-preserving correspondence between the set
of G × G-orbits acting on M and the set of W -orbits acting on the set of idempo-
tents of T . This set is canonically identified with � = {e ∈ E(T ) | eB = eBe}.

2. � \ {0} ∼= {I ⊆ S | no connected component of I is contained entirely in J } in
such a way that e corresponds to I ⊆ S if I = {s ∈ S | se = es �= e}. If we let
�2 = {e ∈ � | dim(T e) = 2} then this bijection identifies �2 with S \ J .

3. If e ∈ �\{0} corresponds to I , as in 2 above, then CW(e) = WK where K =
I ∪ {s ∈ J | st = ts for all t ∈ I }.

It is worthwhile to pause and notice that � is completely determined by J . See
[15] for a systematic discussion of J-irreducible monoids, in particular Lemma 7.8
of [15]. Notice also that part 1 of Theorem 1.2 is true for any reductive monoid. See
Theorem 4.5 of [15] for more of those details.

Let M be a J-irreducible monoid of type J ⊆ S and assume that ρ : M → End(V )

is an irreducible representation which is finite as a morphism. Let G be the unit
group of M with maximal torus T ⊂ G. Then let G0 be the semisimple part of G

with maximal torus T0 = G0 ∩ T , and let ρλ = ρ|G0, with highest weight λ ∈ C, the
rational Weyl chamber of G0. Then, as above, J = {s ∈ S | s(λ) = λ }. Recall the
polytope Pλ = Conv(W · λ), which is the convex hull of W · λ in X(T0) ⊗ Q, where
X(T0) is the set of characters of T0. The following corollary of Theorem 1.2 above
describes the face lattice of Pλ in terms of the Weyl group (W,S).

Corollary 1.3 Let W be a Weyl group and let r : W → GL(V ) be the usual re-
flection representation of W . Let C ⊆ V be the rational Weyl chamber and let
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λ ∈ C. Assume that J = {s ∈ S | s(λ) = λ}. Then the set of orbits of W act-
ing on the face lattice Fλ of Pλ is in one-to-one correspondence with {I ⊆ S |
no connected component of I is contained entirely in J }.

The subset I ⊆ S corresponds to the unique face F ∈ Fλ with I = {s ∈ S | s(F ) =
F and s|F �= id} whose relative interior F 0 has nonempty intersection with C. See
section 7.2 of [15] for a detailed discussion of the relationship between � and the
Weyl chamber.

Let M be a J-irreducible monoid of type J ⊆ S and let T be the closure in M of
a maximal torus T of G. By part b) of Theorem 5.4 of [15], T is a normal variety.
Define

X(J ) = [T \{0}]/C∗.

The terminology is justified since X(J ) depends only on J and not on M or λ. The set
of distinct, normal J-irreducible monoids associated with X(J ) can be identified with
the set CJ = {λ ∈ C | CS(λ) = J }. In the case J = ∅, X(J ) is the torus embedding
studied in [3, 8, 16].

2 The augmented poset

In this section we define the augmented poset (WJ ,≤, {νs}) associated with the
subset J of S. Recall that WJ ⊆ W is the set of minimal length coset representatives
of WJ in W , and ≤ is the usual Bruhat ordering on WJ .

To achieve our objective we use some techniques from the theory of linear alge-
braic monoids. We use this theory to obtain some important results relating WJ to
a certain finite, partially ordered set E1 of idempotents. That done, we obtain the
desired “ascent/descent” structure on the poset WJ . See Proposition 2.17. Our con-
struction has a fundamental relationship with the extremely important descent sys-
tems as discussed in Theorem 2.23 and Section 4. The reader who does not want
to engage the monoids might be able to find his own proofs of Proposition 2.17 and
Theorem 2.23 using his favorite techniques. See the table in Remark 2.24 for a handy
translation between the monoid jargon and the Bruhat poset jargon. The theory of
reductive monoids serves as an ideal method to help quantify the combinatorics of
WJ in geometric terms.

Let M be a reductive, algebraic monoid with unit group G. Let B ⊆ G be a Borel
subgroup of G and let T ⊆ B be a maximal torus of B . As before E(T ) = {e ∈ T |
e2 = e} and E1(T ) = {e ∈ T | e2 = e and dim(T e) = 1}. As usual, W is the Weyl
group of G relative to T . The next three technical results will allow us to find our
way to the all-important Theorem 2.12.

Lemma 2.1 Let e ∈ E1(T ). Then

eB \ {0} =
⋃

τ∈X

eτB

where X = {τ ∈ W | eBτ−1e �= 0}.
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Proof We first show that eB\{0} ⊆ ⋃
τ∈W eτB . To this end, first recall e1 ∈

E1(T ), the unique rank-one idempotent such that e1B = e1Be1. Then e1G =⊔
w∈W e1BwB = ∪w∈We1wB , since e1B = e1Be1 = C∗e1. Thus, if e = γ e1γ

−1 ∈
E1, one sees that

eG = γ e1G =
⋃

w∈W

γ e1BwB =
⋃

w∈W

γ e1wB =
⋃

τ∈W

eτB.

Hence eB \ {0} ⊆ eG ⊆ ⋃
τ∈W eτB .

Thus it suffices to show that X = {τ ∈ W | eτ ∈ eB}. Suppose then, that eτ ∈
eB . Then 0 �= eττ−1eτ ∈ eBτ−1eτ . Thus eBτ−1eτ �= 0. Conversely, suppose that
eBτ−1eτ �= 0. Then there exists b ∈ B such that 0 �= x = ebτ−1eτ . Then 0 �= x =
ex = xτ−1eτ ∈ eBτ−1eτ . Thus eτ ∈ C∗eτ ⊆ eMτ−1eτ = eBτ−1eτ ⊆ eB since
Bτ−1eτ ⊆ B . �

Corollary 2.2 Let e ∈ E1(T ) and let f ∈ E(T ). Then

eBf = {0} ∪ (
⋃

τ∈X

eτBf ).

Proposition 2.3 The following are equivalent.

1. ef = e, and for all τ ∈ X with τ−1eτ �= e, eτBf = 0.
2. eBf = eBe.

Proof Assume 1. Then, by Corollary 2.2,

eBf = {0} ∪ (
⋃

τ∈X

eτBf ).

But, by assumption, eτBf = 0 whenever τ−1eτ �= e. Hence eBf = {0} ∪
(
⋃

τ∈Z eτBf ), where Z = {τ ∈ X | τ−1eτ = e}. However, if τ−1eτ = e then eτ = e.
Thus eBf = {0} ∪ eBf = {0} ∪ ef Bf , and this a closed subset of M . Using part (ii)
of Corollary 7.2 of [11], we get ef Bf = eCB(f ). Thus eBf = eCB(f ) ∪ {0}, and
hence eBf is the union of two right CB(f )-orbits, eCB(f ) and {0}. By part (i) of
Theorem 6.16 of [11], CB(e) is a connected group. But it is also a solvable group.
Thus, by Theorem 3.1 of [9], dim(eBf ) = 1 since there exists h ∈ C[eBf ] such that
{0} = h−1(0). Since eBe ⊆ eBf , it follows that eBe = eBf .

Conversely, assume 2. Thus eBf = eBe = {0} ∪ eBe. But from Lemma 2.1
eBf = {0} ∪ (

⋃
τ∈X eτBf ). Assume that eτBf �= 0. Then we have

∅ �= eτBf \{0} ⊆ eBe\{0} = eBe = C∗e.

Thus,

e ∈ eτBf ⊆ eτBf B ⊆ eτB

since Bf B ⊆ B . But eτB ⊆ eB and thus eτB = eB . Hence eτ = e and finally
τ−1eτ = e. �
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Definition 2.4 Let e, e′ ∈ E1(T ). We say that e < e′ if eBe′ �= 0 and e �= e′.

We shall see in Proposition 2.10 that e < e′ if and only if BeG � Be′G. Then,
in Theorem 2.12, we relate this to the Bruhat ordering on WJ , where WJ is the
centralizer in W of e1.

Theorem 2.5 Let e ∈ E1 and let f ∈ E. The following are equivalent.

1. eBf = eBe.
2. (a) ef = e.

(b) If e < e′ then e′Bf = 0.
3. (a) ef = e.

(b) If e < e′ then e′f = 0.

Proof The equivalence of 1 and 2 is a reformulation of Proposition 2.3, taking into
account Definition 2.4. That 2 implies 3 is obvious. So we assume 3 and then de-
duce 1. By Lemma 2.1

eB\{0} =
⋃

τ∈X

eτB

where X = {τ ∈ W | eBτ−1e �= 0}. Now ef = e so that eBf = ef Bf . Thus eBf =
ef Bf = eCf , where C = CB(f ). (Again using part(ii) of Corollary 7.2 of [11].)
Thus, again by Proposition 2.3,

eCf \{0} =
⋃

γ∈Y

eγCf

where Y = {γ ∈ W | eCγ −1eγ �= 0}. But if eCe′ �= 0 then eBe′ �= 0 and then, by
assumption, e′f = 0 as long as e′ �= e. Hence eγf = 0 if γ −1eγ �= e, and thus
eγCf = eγf C = 0 for γ ∈ Y . Thus eBf = {0} ∪ eCf , which (as in the proof of
Proposition 2.3) is one-dimensional. Thus eBf = eBe. �

Notice how Theorem 2.5 allows us to describe the relationship of B and E in terms
of the ordering < on E1.

Definition 2.6 Let e ∈ E1. Define

Ce = {f ∈ E(T ) | f e = e and f e′ = 0 for all e′ > e}.

From Theorem 2.5

E(T ) \ {0} =
⊔

e∈E1

Ce.

The reader is encouraged to think of Ce ⊆ E(T ) \ {0} as the combinatorial analogue
of a BB-cell [1].
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We recall now the Gauss-Jordan elements of M . First let R = {x ∈ M | T x =
xT }/T . By the results of [13], R is a finite inverse monoid. Furthermore, there is a
disjoint union decomposition

M =
⊔

r∈R

BrB.

This monoid Bruhat decomposition is discussed in detail in Chapter 8 of [15]. It
results in a perfect analogue, for reductive monoids, of the much-studied Bruhat de-
composition of algebraic groups.

Definition 2.7 The set of Gauss-Jordan elements of R is defined to be

GJ = {r ∈ R | rB ⊆ Br}.
The following crucial properties of GJ are discussed in [13].

1. GJ · W = R.
2. For each x ∈ R, GJ ∩ xW is a singleton.
3. GJ is a submonoid of R.
4. M = ⊔

r∈GJ BrG.

The reader should think of the set of Gauss-Jordan elements of R as providing a com-
binatorial structure to the (generalized) Gauss-Jordan column-reduction algorithm. If
M is the reductive monoid of n × n matrices then one can check that, (relative to T

and B the diagonal and upper-triangular matrices, respectively) GJ can be identified
with the set of 0 − 1 matrices, in reduced column echelon form, with at most one non
zero entry in each row and column. See Section 8.3 of [15] for a detailed discussion
of Gauss-Jordan elements for reductive monoids.

Proposition 2.8 The following are equivalent for r, s ∈ GJ .

1. BrG ⊆ BsG.
2. Br ⊆ Bs.

Proof The case “2 implies 1” is clear. To prove “1 implies 2” we shall use the fact that
B\G is a complete variety. Since s ∈ GJ we have that BsB = Bs. Thus BsB = Bs.
But then, by a result of Steinberg, BsG = BsG since B\G is a complete variety.
Thus the assumption of 1 is equivalent to saying that BrG ⊆ BsG. Thus we can
write r = yg−1 where y ∈ Bs and g ∈ G. Hence rg ∈ Bs. Thus BrgB ⊆ Bs. But
BrgB = BrBgB = BrBwB for some w ∈ W . But 1 ∈ BwB , and consequently
BrB ⊆ BrBwB . We conclude that BrB ⊆ Bs. �

Recall that, for J ⊆ S,

WJ = {t ∈ W | t has minimal length in tWJ }.
Define also

J W = {t ∈ W | t has minimal length in WJ t}.
These will be required in the proof of the following theorem.
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Theorem 2.9 Let r = ve1, s = we1 where v,w ∈ WJ . The following are equivalent.

1. r ≤ s (i.e. BrB ⊂ BsB).
2. w ≤ v (i.e. BwB ⊂ BvB).

Proof We apply Corollary 8.35 of [15]. But we notice first that, in that setup, � is
{e ∈ E(T ) | Be = eBe} while in the present discussion, � is {e ∈ E(T ) | eB = eBe}.
To eliminate any potential confusion we shall first restate Corollary 8.35 using � =
{e ∈ E(T ) | eB = eBe}.

If e, f ∈ � we write

WI1 = {w ∈ W | we = ew = e} and WI2 = {w ∈ W | we = ew},
and

WJ1 = {w ∈ W | wf = f w = f } and WJ2 = {w ∈ W | wf = f w}.
Let a, b ∈ R. Then a = y−1ex and b = t−1f u where x ∈I1 W , y ∈I2 W , u ∈J1 W

and t ∈J1 W (here I1, I2, J1, J2 ⊆ S). This is the normal form for the elements of
R as in Definition 8.34 of [15]. Then (from Corollary 8.35 of [15]) the following are
equivalent.

i) a ≤ b.
ii) ef = e, and there exists w ∈ WI1WJ2 such that x ≤ wu and wt ≤ y.

In our situation WI1 = WI2 = WJ1 = WJ2 , x = u = 1 and e = f = e1. So condition
ii) becomes

ii)’ There exists w ∈ WI1 such that 1 ≤ w and wt ≤ y.

which is equivalent to

ii)” t ≤ y

since t ≤ wt for all w ∈ WI1 . Now observe that t ≤ y if and only if t−1 ≤ y−1, while
(IW)−1 = WI . Thus the result follows with v = y−1 and w = t−1. �

Notice that this might appear counterintuitive. Think of e1 as “large as possible on
the left” and that, multiplication by some w on the left makes the result smaller “on
the left”. Thus, if w is less than v, then ve1 is less than we1.

Proposition 2.10 The following are equivalent for e, f ∈ E1.

1. e < e′ (in the ordering of Definition 2.4 on E1.).
2. BeG ⊂ Be′G.

Proof If BeG ⊂ Be′G we first observe that e ∈ eBeG �= 0. But eBeG ⊂ Be′G, and
thus eBe′G �= 0. Hence eBe′ �= 0.

Conversely, if eBe′ �= 0 then eBe′G �= 0, and thus eBe′G �= 0. But eM = eG∪{0}
since e ∈ E1. Thus e ∈ eBe′G = eM . But eBe′G ⊂ Be′G since eB ⊂ B . Thus e ∈
Be′G and finally BeG ⊂ Be′G. �
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Remark 2.11 Notice that BeG = BrG for r ∈ We1 ∩ eW = {r}. (See Section 8.3
of [15].) Similarly for e′ and s ∈ We1 ∩ e′W = {s}. Thus an equivalent statement is
“BrG ⊂ BsG” for these r, s ∈ GJ .

The following theorem is the “bridge” between the monoid geometry and the
Bruhat combinatorics.

Theorem 2.12 The following are equivalent for v,w ∈ WJ .

1. e = ve1v
−1 < e′ = we1w

−1 in (E1,<).
2. w < v in (WJ ,<), the Bruhat ordering on WJ .

Proof By Proposition 2.10, e < e′ if and only if BeG ⊂ Be′G. As in Remark 2.11,
let BeG = BrG and Be′G = BsG where r, s ∈ GJ .

By Proposition 2.8, BrG ⊂ BsG if and only if Br ⊆ Bs. Then by Theorem 2.9,
Br ⊆ Bs if and only if w < v, where r = ev = ve1, s = e′w = we1 and v,w ∈ WJ . �

For e ∈ E1(T ) we let

	(e) = {g ∈ E2(T ) | ge = e, and ge′ = 0 for all e′ > e}.

Corollary 2.13 Let g ∈ E2(T ). Suppose that e, f ∈ E1(T ) and that e �= f . Assume
that ge = e and gf = f . Then either e > f or else f > e. In particular

	(e) = {g ∈ E2(T ) | ge = e, and ge′ = e′ for some e′ < e}.

Proof Suppose that e �> f . Recall Definition 2.6. Then g ∈ Cf , since we have that
ge′ = 0 for any e′ > f . In particular, g �∈ Ce. Thus there exists e′ > e such that ge′ =
e′. But then e′ = f since g ∈ E2. Thus f > e. �

Remark 2.14 If we think of ≤ as a relation on E1 then Corollary 2.13 says that we
can regard E2 as a subrelation of ≤. Notice, in particular, that

E2 =
⊔

e∈E1

	(e).

In general we can identify E1 and E2 with the vertices and edges, respectively, of a
certain polytope. See Remark 2.24 for a detailed explanation of how this works in the
case of a J-irreducible monoid.

We now return to the case of a J-irreducible monoid. This is the case that is
relevant to the discussion of descent systems. Recall that, in the general case, �2 =
{e ∈ E2 | eB = eBe}. But if M is J-irreducible, it follows from part 2 of Theorem 1.2
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that, there is a canonical bijection

�2 ∼= S \ J.

This bijection is defined by

s � gs,

where gs ∈ �2 is the unique idempotent such that

1. sgs = gss �= gs .
2. gsB ⊆ Bgs .

See Theorem 4.13 of [12] for the detailed proof.
Since each g ∈ 	(e) is conjugate to one and only one gs ∈ �2 we can write

	(e) =
⊔

s∈S\J
	s(e),

where

	s(e) = {g ∈ 	(e) | g = vgsv
−1 for some v ∈ W }.

We now translate what we have learned from the monoids into results about Bruhat
posets. Theorem 2.12 is the main result here that makes this possible. The following
definition is the key ingredient that unifies our discussion.

Definition 2.15 Let (W,S) be a Weyl group and let J ⊆ S be a proper subset. Define

SJ = (WJ (S \ J )WJ ) ∩ WJ .

We refer to (WJ ,SJ ) as the descent system associated with J ⊆ S.

Proposition 2.16 There is a canonical identification SJ ∼= {g ∈ E2 | ge1 = e1}.

Proof We first define

ϕ : WJ (S \ J )WJ → E1

by ϕ(w) = we1w
−1. Then ϕ(w) = ϕ(v) if and only if wWJ = vWJ . Hence ϕ induces

an injection ϕ : SJ → E1. We now identify the image of ϕ. Let

N(e1) = {e ∈ E1 | ge = e �= e1 and ge1 = e1 for some g ∈ E2}
and let e ∈ E1(e1). Then there exists a unique g ∈ E2 such that ge = e and ge1 = e1.
By Proposition 6.27 of [11] and Theorem 4.13 of [12] there exists u ∈ WJ such that

g = ugsu
−1

for some unique s ∈ S \ J . But then use1su
−1 = e, since gf = f for exactly two

rank-one idempotents f . It follows that

image(ϕ) = N(e1).
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The sought-after identification, θ : SJ ∼= {g ∈ E2 | ge1 = e1}, is defined by

θ(w) = [e1, ϕ(w)],

where, by definition, [e1, ϕ(w)] is the unique rank-two idempotent g such that ge1 =
e1 and gϕ(w) = ϕ(w). �

Proposition 2.17 Let u,v ∈ WJ be such that u−1v ∈ SJ WJ . In particular, u �= v.
Then either u < v or v < u in the Bruhat order < on WJ .

Proof If u,v ∈ WJ with v = urc, r ∈ SJ , c ∈ WJ , consider as in Proposition 2.16,
gr ∈ E2(e1). Then let g = ugru

−1. Then g is the unique rank-two idempotent such
that gue1u

−1 = ue1u
−1 and gve1v

−1 = ve1v
−1.

Recall from Theorem 2.12 that, for u,v ∈ WJ

ue1u
−1 > ve1v

−1 if and only if u < v.

But from Corollary 2.13, for g ∈ E2 with gei = ei , i = 2,3, either e2 > e3 or else
e3 > e2. The conclusion follows. �

We let

SJ
s = WJ sWJ ∩ WJ .

Remark 2.18 Notice that

SJ =
⊔

s∈S\J
SJ

s .

Indeed, by the proof of Proposition 2.16, θ : SJ ∼= {g ∈ E2 | ge1 = e1}. Under this
correspondence SJ

s corresponds to {g ∈ E2 | ge1 = e1 and g = wgsw
−1 for some

w ∈ WJ }.

Definition 2.19 Let w ∈ WJ . Define

1. DJ
s (w) = {r ∈ SJ

s | wrc < w for some c ∈ WJ }, and
2. AJ

s (w) = {r ∈ SJ
s | w < wr}.

We refer to DJ (w) = �s∈S\J DJ
s (w) as the descent set of w relative to J , and

AJ (w) = �s∈S\J AJ
s (w) as the ascent set of w relative to J .

By Proposition 2.17, for any w ∈ WJ , SJ = DJ (w) � AJ (w).

Remark 2.20 Notice that wrc < w for some c ∈ WJ if and only if (wr)0 < w, where
(wr)0 ∈ wrWJ is the element of minimal length in wrWJ . See Example 4.3 for a
revealing illustration of the fact that SJ = DJ (w) � AJ (w).
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Definition 2.21 For each v ∈ WJ and each s ∈ S \ J define νs(v) = |AJ
s (v)|. We

refer to (WJ ,≤, {νs}) as the augmented poset of J . For convenience we let

ν(v) =
∑

s∈S\J
νs(v).

Example 2.22 Let (W,S) be the Weyl group of type A3, so that W = S4 and S =
{s1, s2, s3}. Let J = φ and write νi for νsi . To keep track of all the numbers {νi(w) |
w ∈ W } define

H(t1, t2, t3) =
∑

w∈W

t
ν1(w)
1 t

ν2(w)
2 t

ν3(w)
3 .

A straightforward calculation yields

H(t1, t2, t3) = 1 + (3t1 + 5t2 + 3t3) + (3t2t3 + 5t1t3 + 3t1t2) + t1t2t3.

See Examples 4.3 and 4.4 below for a better illustration of how it works if J �= ∅.

Theorem 2.23 Let J ⊂ S be any proper subset. For e = ue1u
−1, u ∈ W , we write

e = eu.

1. E2 ∼= {(u, v) ∈ WJ × WJ | u < v and u−1v ∈ SJ WJ }.
2. Let u ∈ WJ and eu = ueu−1 ∈ E1. Then

E2(eu) ∼= {v ∈ WJ | u−1v ∈ SJ WJ }.
3. Let u ∈ WJ and eu = ueu−1 ∈ E1. Then

	(eu) ∼= {v ∈ WJ | u < v and u−1v ∈ SJ WJ } ∼= AJ (u).
4. Let u ∈ WJ and eu = ueu−1 ∈ E1. Then

	s(eu) ∼= {v ∈ WJ | u < v and u−1v ∈ SJ
s WJ } ∼= AJ

s (u).
5. If w ∈ WJ and s ∈ S \ J then νs(u) = |	s(eu)|.

Proof This follows from Proposition 2.16 and Proposition 2.17. �

Remark 2.24 The following table provides the reader with a summary-translation
between the monoid jargon and the Bruhat poset jargon. Let M be a J-irreducible
monoid of type J , and let T be the closure in M of a maximal torus. Let E = E(T )

be the set of idempotents of T and let Ei = {f ∈ E | dim(f T ) = i} ⊂ E. As above,
we let e1 ∈ E1 = E1(T ) be the unique element such that e1B = e1Be1. For e, e′ ∈ E1

let v,w ∈ WJ be the unique elements such that e = ve1v
−1 and e′ = we1w

−1. We
write e = ev and e′ = ew . For e, f ∈ E we write e ∼ f if there exists w ∈ W such that
wew−1 = f . If s ∈ S \ J let gs ∈ E2 be the unique idempotent such that gss = sgs

and gsB = gsBgs . Let �× = {I ⊂ S | no component of I is contained in J } and for
I ∈ �× let I ∗ = I ∪ {t ∈ J | ts = st for all s ∈ I }.



J Algebr Comb (2009) 29: 413–435 427

Reductive Monoid Jargon Bruhat Order Jargon
e1 ∈ �1 = {e1} 1 ∈ WJ

e = ev ∈ E1 The v ∈ WJ with e = ve1v
−1

ev ≤ ew in E1, i.e. evBew �= 0 w ≤ v in WJ

(u, v) ∈ WJ × WJ such that
E2 = {g ∈ E | dim(gT ) = 2} u < v and u−1v ∈ SJ WJ

{g ∈ E2 | gB = gBg} S \ J

{g ∈ E2 | ge1 = e1 } SJ = (WJ (S \ J )WJ ) ∩ WJ

{g ∈ E2 | ge1 = e1, g ∼ gs} SJ
s = (WJ sWJ ) ∩ WJ

E2(ew) = {g ∈ E2 | gew = ew} {v ∈ WJ | w−1v ∈ SJ WJ }
	(ew) = {g ∈ E2(ew) | ge′ = e′ AJ (w) = {r ∈ SJ | w < wr}

for some e′ < ew}
	s(ew) = 	(ew) ∩ {g ∈ E2 | g ∼ gs } AJ

s (w) = {r ∈ SJ
s | w < wr}

E(T ) \ {0} {(w, I) | I ∈ �×, w < ws if s ∈ I ∗}

The “picture” here is this. The subset WJ ⊆ W is canonically identified with the set
of vertices of the rational polytope Pλ. On the other hand there is a canonical ordering
on E1 = E1(T ) coming from the associated reductive monoid. Evidently (E1,≤) and
(WJ ,≤) are anti-isomorphic as posets. Furthermore the set of edges Edg(Pλ) of Pλ

is canonically identified with E2 = E2(T ). If g(v,w) = g(w,v) ∈ Edg(Pλ) is the
edge of Pλ joining the distinct vertices v,w ∈ WJ then either v < w or else w < v.
Given v ∈ WJ , with edges Edg(v) = {g ∈ E2 | g = g(v,w) for some w ∈ WJ }, the
question of whether v < w or w < v is coded in the “descent system” (WJ ,SJ ).

3 Bruhat posets and simple polytopes

Recall that if λ ∈ C, then the rational polytope Pλ records the combinatorial prop-
erties of the orbit structure of T on T . In this section we characterize, in terms of
J ⊆ S, the conditions under which Pλ is a simple polytope. A polytope P is called
simple if each vertex figure of P is a simplex, or equivalently, each vertex is the
endpoint of exactly m edges P , where m is the dimension of P . An equivalent for-
mulation is the following. Recall that X(J ) = [T \ {0}]/C∗, where T is as above,
with J = {s ∈ S | s(λ) = λ}. Then Pλ is a simple polytope if and only if X(J ) is
rationally smooth.

Definition 3.1 We refer to J as combinatorially smooth if Pλ is a simple polytope.

As usual we let e1 ∈ E1 be the unique rank-one idempotent such that e1B =
e1Be1. If J ⊆ S we let π0(J ) denote the set of connected components of J . To be
more precise, let s, t ∈ J . Then s and t are in the same connected component of J if
there exist s1, . . . , sk ∈ J such that ss1 �= s1s, s1s2 �= s2s1, . . . , sk−1sk �= sksk−1, and
skt �= tsk .
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The following theorem indicates exactly how to detect the very interesting condi-
tion of Definition 3.1. We use, without mention, the natural correspondence between
the face lattice of Pλ and the set of idempotents of T . See Remark 2.24.

Theorem 3.2 Let λ ∈ C. The following are equivalent.

1. Pλ is a simple polytope.
2. There are exactly |S| edges of Pλ meeting at λ.
3. J = {s ∈ S | s(λ) = λ} has the properties

(a) If s ∈ S\J , and J �⊆ CW(s), then there is a unique t ∈ J such that st �= ts. If
C ∈ π0(J ) is the unique connected component of J with t ∈ C then C\{t} ⊆ C

is a setup of type Al−1 ⊆ Al .
(b) For each C ∈ π0(J ) there is a unique s ∈ S\J such that st �= ts for some

t ∈ C.

Proof 1 and 2 are equivalent by standard results about polytopes.
Assume that 3 holds. We now deduce from this that 2 holds. This is equivalent

to the statement |{f ∈ E2(T ) | f e1 = e1}| = |S|. Let �2 = {f ∈ � | dim(f T ) = 2},
and recall that

�2 ∼= S\J
via the correspondence f = fs if sf = f s �= f . See Theorem 4.16 of [12]. So we
write

�2 = {fs | s ∈ S\J }.
Then from part (iii) of Proposition 6.27 of [11]

{f ∈ E2(T ) | f e1 = e1} =
⋃

w∈WJ

w�2w
−1 =

⊔

s∈S\J
ClWJ

(fs)

where ClWJ
(fs) is the WJ -conjugacy class of fs . Let s ∈ S\J .

Case 1: st = ts for all t ∈ J .
Then fsw = wfs for all w ∈ WJ . In this case ClWJ

(fs) = {fs}.
Case 2: ts �= st for some unique t ∈ J . Let C be that unique connected component of
J with t ∈ C. Thus CWJ

(fs) = WJ\{t} and, consequently, ClWJ
(fs) ∼= WJ /WJ\{t}.

But, by part (a) of the assumption,

WJ /WJ\{t} ∼= WC/WC\{t} ∼= Sm+1/Sm,

where |C| = m and Sm is the symmetric group on m letters. Thus

|ClWJ
(fs)| = |Sm+1/Sm| = (m + 1)!

m! = m + 1.

Since, by assumption, each C occurs for exactly one t ∈ S\J , we conclude that

|{f ∈ E2(T ) | f e1 = e1}| =
[ ∑

C∈π0(J )

(|C| + 1)

]
+ |{s ∈ S\J | st = ts for all t ∈ J }|.
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But
∑

C∈π0(J )(|C| + 1) = |J | + |π0(J )| while |{s ∈ S\J | st = ts for all t ∈ J }| =
|S\J | − |π0(J )|. Thus, |{f ∈ E2(T ) | f e1 = e1}| = |S|.

Assume 2, and let s ∈ S\J . As above,

{f ∈ E2(T ) | f e1 = e1} =
⊔

s∈S\J
ClWJ

(fs).

If s ∈ S \ J there are two cases.
Case 1: st = ts for all t ∈ J .
In this case ClWJ

(fs) = {fs}.
Case 2: st �= ts for some t ∈ J .
For each such t there is a unique C ∈ π0(J ) such that t ∈ C. This is because the
connected components of J are disjoint.

One then checks that,

CWC
(fs) = WC\{t},

where t ∈ C is the unique element such that st �= ts. (t is unique since S is a tree).
But WJ = �C∈π0(J )WC and CWJ

(fs) = �C∈π0(J )CWC
(fs). Hence

ClWJ
(fs) = �C∈Vs ClWC

(fs)

where Vs = {C ∈ π0(J ) | st �= ts for some t ∈ C}.
Hence, for this s ∈ S \ J ,

|ClWJ
(fs)| = �C∈Vs |ClWC

(fs)|.
Thus

|ClWJ
(fs)| = �C∈Vs |WC/WC\{t (s,C)}|,

where t (s,C) is the unique element of C that fails to commute with s ∈ S \ J .
Combining Case 1 and Case 2, we obtain that

|{f ∈ E2(T ) | f e1 = e1}| = |Int (S \ J )| +
∑

s∈Bd(S\J )

�C∈Vs |WC/WC\{t (s,C)}| (1)

where Int (S \ J ) = {v ∈ S \ J | vt = tv for all t ∈ J } and Bd(S \ J ) = {v ∈ S \ J |
vt �= tv for some t ∈ J }. Notice that

π0(J ) =
⋃

s∈Bd(S\J )

Vs

since any connected component C of J contains at least one element that fails to
commute with something in S \ J . Also it is a basic fact about Weyl groups that, if
C ⊆ S is connected and t ∈ C then |WC/WC\{t}| ≥ |C| + 1, with equality if and only
if C\{t} ⊆ C is a setup of type Al−1 ⊆ Al .

One checks that if the right-hand-side of this equation is equal to |S| then all of the
following must hold (since failure of any of them would make the RHS of (1) larger
than |S|).
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1. For each s ∈ Bd(S \ J ), and for any C ∈ Vs , C\{t (s,C)} ⊆ C is a setup of type
Al−1 ⊆ Al .

2. For each s ∈ Bd(S \ J ), Vs contains exactly one element.
3. For distinct elements r, s ∈ S \ J , Vs ∩ Vr = ∅.

It then follows easily from this, that 3 holds. �

In the next two examples one can use Equation 1 to calculate |{f ∈ E2(T ) | f e1 =
e1}|.

Example 3.3 Let (W,S) be a Weyl group of type A3, so that S = {r, s, t} with rs �= sr

and st �= ts.

(a) If J = {r, t} then |{f ∈ E2(T ) | f e1 = e1}| = 4. In this example Vs = {{r}, {t}},
which violates condition 2. at the end of the proof of Theorem 3.2.

(b) If J = {s} then |{f ∈ E2(T ) | f e1 = e1}| = 4. In this example Vr = Vt = {{s}}
which violates condition 3. at the end of the proof of Theorem 3.2.

(c) If J = ∅, {r}, or {r, s} then |{f ∈ E2(T ) | f e1 = e1}| = 3. So these ones are
combinatorially smooth.

Example 3.4 Let (W,S) be a Weyl group of type C3, so that S = {r, s, t} with rs �=
sr and st �= ts, and t corresponds to a short root. If J = {s, t} then |{f ∈ E2(T ) |
f e1 = e1}| = 4. In this example {t} ⊆ {s, t} is a setup of type A1 ⊆ C2 which violates
condition 1. at the end of the proof of Theorem 3.2.

Notice in particular, if (W,S) is an irreducible Weyl group and J ⊆ S is a combi-
natorially smooth subset, then each connected component of J contains exactly one
end-node of S.

Corollary 3.5 For each irreducible Dynkin diagram we obtain the following calcu-
lation for {J ⊆ S | J is combinatorially smooth}. For each type the list is grouped
into the different cases depending on which of the end-nodes are elements of J .

1. A1.
(a) J = φ.
An, n ≥ 2. Let S = {s1, . . . , sn}.
(a) J = φ.
(b) J = {s1, . . . , si}, 1 ≤ i < n.
(c) J = {sj , . . . , sn}, 1 < j ≤ n.
(d) J = {s1, . . . , si , sj , . . . , sn}, 1 ≤ i, i ≤ j − 3 and j ≤ n.

2. B2.
(a) J = φ.
(b) J = {s1}.
(c) J = {s2}.
Bn, n ≥ 3. Let S = {s1, . . . , sn}, αn short.
(a) J = φ.
(b) J = {s1, . . . , si}, 1 ≤ i < n.
(c) J = {sn}.
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(d) J = {s1, . . . , si , sn}, 1 ≤ i and i ≤ n − 3.
3. Cn, n ≥ 3. Let S = {s1, . . . , sn}, αn long.

(a) J = φ.
(b) J = {s1, . . . , si}, 1 ≤ i < n.
(c) J = {sn}.
(d) J = {s1, . . . , si , sn}, 1 ≤ i and i ≤ n − 3.

4. Dn, n ≥ 4. Let S = {s1, . . . , sn−2, sn−1, sn}.
(a) J = φ.
(b) J = {s1, . . . , si}, i ≤ n − 3.
(c) J = {sn−1}.
(d) J = {sn}.
(e) J = {s1, . . . , si , sn−1}, i ≤ n − 4.
(f) J = {s1, . . . , si , sn}, i ≤ n − 4.

5. E6. Let S = {s1, s2, s3, s4, s5, s6}.
(a) J = φ.
(b) J = {s1} or {s1, s2}.
(c) J = {s5} or {s4, s5}.
(d) J = {s6}.
(e) J = {s1, s5}, {s1, s2, s5} or {s1, s4, s5}.
(f) J = {s1, s6}.
(g) J = {s5, s6}
(h) J = {s1, s5, s6}.

6. E7. Let S = {s1, s2, s3, s4, s5, s6, s7}.
(a) J = φ.
(b) J = {s1}, {s1, s2} or {s1, s2, s3}.
(c) J = {s6} or {s5, s6}.
(d) J = {s7}.
(e) J = {s1, s6}, {s1, s2, s6}, {s1, s2, s3, s6}, {s1, s5, s6}, or {s1, s2, s5, s6}.
(f) J = {s6, s7}.
(g) J = {s1, s7} or {s1, s2, s7}.
(h) J = {s1, s6, s7}, {s1, s2, s6, s7}.

7. E8. Let S = {s1, s2, s3, s4, s5, s6, s7, s8}.
(a) J = φ.
(b) J = {s1}, {s1, s2}, {s1, s2, s3} or {s1, s2, s3, s4}.
(c) J = {s7} or {s6, s7}.
(d) J = {s8}.
(e) J = {s1, s7}, {s1, s2, s7}, {s1, s2, s3, s7}, {s1, s2, s3, s4, s7},

{s1, s6, s7}, {s1, s2, s6, s7}, {s1, s2, s3, s6, s7} or {s1, s2, s5, s6}.
(f) J = {s7, s8}.
(g) J = {s1, s8}, {s1, s2, s8} or {s1, s2, s3, s8}.
(h) J = {s1, s7, s8}, {s1, s2, s7, s8}.

8. F4. Let S = {s1, s2, s3, s4}.
(a) J = φ.
(b) J = {s1} or {s1, s2}.
(c) J = {s4} or {s3, s4}.
(d) J = {s1, s4}.
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9. G2. Let S = {s1, s2}.
(a) J = φ.
(b) J = {s1}.
(c) J = {s2}.

Proof This is an elementary calculation with Dynkin diagrams using Theorem 3.2.
The numbering of the elements of S is as follows. For types An,Bn,Cn,F4, and G2 it
is the usual numbering. In these cases the end nodes are s1 and sn. For type E6 the end
nodes are s1, s5 and s6 with s3s6 �= s6s3. For type E7 the end nodes are s1, s6 and s7
with s4s7 �= s7s4. For type E8 the end nodes are s1, s7 and s8 with s5s8 �= s8s5. In each
case of type En, the nodes corresponding to s1, s2, . . . , sn−1 determine the unique
subdiagram of type An−1. For type Dn the end nodes are s1, sn−1 and sn. The two
subdiagrams of Dn, of type An−1, correspond to the subsets {s1, s2, . . . , sn−2, sn−1}
and {s1, s2, . . . , sn−2, sn} of S. �

Remark 3.6 It is easy to check that J ⊆ S is combinatorially smooth if and only if
X(J ) is rationally smooth. Indeed, this follows directly from Corollary 2 on page 136
of [4].

4 The descent system (WJ ,SJ )

Let (W,S) be a finite Weyl group and let w ∈ W . It is widely appreciated [2, 3, 17]
that the descent set

D(w) = {s ∈ S | l(ws) < l(w)}
determines a very large and important chapter in the study of Coxeter groups. In this
section we interpret the results of Sections 2 and 3 solely in the language of Coxeter
groups applied to W , WJ , J ⊆ S and the Bruhat ordering on WJ . Our main result
here is the explicit identification of the subset SJ ⊆ WJ .

Recall, from Definition 2.15, that

SJ = (WJ (S \ J )WJ ) ∩ WJ .

We refer to (WJ ,SJ ) as the descent system associated with J ⊆ S.

Proposition 4.1 Let (WJ ,SJ ) be the descent system associated with J ⊆ S. The
following are equivalent.

1. J is combinatorially smooth.
2. |SJ | = |S|.
3. X(J ) is rationally smooth.

Proof The equivalence of 1 and 2 follows from Proposition 2.16 using part 2 of
Theorem 3.2. The equivalence of 1 and 3 follows from Remark 3.6. �

Assume that J ⊆ S is combinatorially smooth. Recall that, for s ∈ S \ J ,

SJ
s = (WJ sWJ ) ∩ WJ .
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Recall now, that for s ∈ S \ J , there is a unique gs ∈ �2 such that {s} = {t ∈ S | tgs =
gst �= gs}. Furthermore, s � gs determines a bijection between S \ J and �2. Each
g ∈ E2(T ) is conjugate to a unique gs , s ∈ S \ J . See part 2 of Theorem 1.2.

Theorem 4.2 Assume that J ⊆ S is combinatorially smooth. Then

1. SJ = ⊔
s∈S\J SJ

s .

2. Let s ∈ S \ J . In case st = ts for all t ∈ J , SJ
s = {s}. Otherwise, SJ

s =
{s, t1s, t2t1s, . . . , tm · · · t2t1s} where C = Cs = {t1, t2, . . . , tm}, st1 �= t1s and
ti ti+1 �= ti+1ti for i = 1, . . . ,m − 1.

3. SJ
s

∼= {g ∈ E2 | ge1 = e1 and cgc−1 = gs for some c ∈ WJ }.

Proof Part 1 follows from Remark 2.18. Part 2 follows from well-known information
about the standard inclusion of symmetric groups Sn ⊆ Sn+1. See Theorem 3.2 above.
Part 3 follows from Remark 2.18. See also the proof of Proposition 2.16. �

Example 4.3 Let

W =< s1, . . . , sn >

be the Weyl group of type An (so that W ∼= Sn+1), and let

J = {s2, . . . , sn} ⊆ S = {s1, . . . , sn}.
Then J ⊆ S is combinatorially smooth. One checks, using Theorem 4.2, that

WJ = {1, s1, s2s1, s3s2s1, . . . , snsn−1 · · · s2s1}.
Notice that

1 < s1 < s2s1 < · · · < snsn−1 · · · s1.

In this very special example we obtain that SJ = WJ \ {1}. Furthermore,

AJ (w) = AJ
s1

(w)

for each w ∈ WJ , since S \ J = {s1}. Finally we obtain, by calculation, that

(sj · · · s1)(s1) = [sj · · · s2],
(sj · · · s1)(si · · · s1) = (si−1 · · · s1)[sj · · · s2] if 1 < i ≤ j , and
(sj · · · s1)(si · · · s1) = (si · · · s1)[sj+1 · · · s2] if i > j ≥ 1.

We conclude from this that

AJ (sj · · · s1) = {sm · · · s1 | m > j}.
Let us write aj = sj · · · s1 if we think of sj · · · s1 ∈ WJ , and rj = sj · · · s1 if we think
of sj · · · s1 ∈ SJ . Also, if w ∈ W , we write w0 for the element of minimal length in
wWJ . By the calculation above we obtain that

(aj ri)0 = 1 < aj if 1 = i ≤ j ,
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(aj ri)0 = ai−1 < aj if 1 < i ≤ j , and
(aj ri)0 = ai > aj if i > j .

Example 4.4 Let

W =< s1, . . . , sn >

be the Weyl group of type An (so that W ∼= Sn+1), and let

J = {s3, . . . , sn} ⊆ S.

Notice that J ⊆ S is combinatorially smooth.
If w ∈ WJ then w = ap , w = bq , or else w = apbq . Here ap = sp · · · s1 (1 ≤

p ≤ n) and bq = sq · · · s2 (2 ≤ q ≤ n). If we adopt the useful convention a0 = 1 and
b1 = 1, then we can write

WJ = {apbq | 0 ≤ p ≤ n and 1 ≤ q ≤ n}
with uniqueness of decomposition. Let w = apbq ∈ WJ . After some tedious calcula-
tion with braid relations and reflections, we obtain that

a) AJ
s1

(apbq) = {s1} if p < q .
AJ

s1
(apbq) = ∅ if q ≤ p.

Thus νs1(apbq) = 1 if p < q and νs1(apbq) = 0 if q ≤ p.
b) AJ

s2
(apbq) = {sm · · · sn | m > q} if q < n.

AJ
s2

(apbq) = ∅ if q = n.
Thus νs2(apbq) = n − q .

It is interesting to compute the two-parameter “Euler polynomial”

H(t1, t2) =
∑

w∈WJ

t
ν1(w)
1 t

ν2(w)
2

of the augmented poset (WJ ,≤, {ν1, ν2}) (where we write νi for νsi ). A simple cal-
culation yields

H(t1, t2) =
n∑

k=1

[kt1 + (n + 1 − k)]tn−k
2 .
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