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Abstract. This is a continuation of an article from the previous issue. In this section, we determine
the structure of a thin, irreducible module for the subconstituent algebra of a P- and Q- polynomial
association scheme. Such a module is naturally associated with a Leonard system. The isomorphism
class of the module is determined by this Leonard system, which in turn is determined by four
parameters: the endpoint, the dual endpoint, the diameter, and an additional parameter f. If the
module has sufficiently large dimension, the parameter f takes one of a certain set of values indexed
by a bounded integer parameter e.
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4. The subconstituent algebra of a P- and Q-polynomial scheme

In this section, we determine the structure of a thin, irreducible module for a
subconstituent algebra in a P- and Q-polynomial scheme.

THEOREM 4.1. Let Y = (X,{R;}o<i<p) denote a commutative association scheme
with D > 3. Suppose Y is P-polynomial with respect to the ordering Ag, Ay, ..., Ap
of it’s associate matrices, and Q-polynomial with respect to the ordering Ey, Ey, ...,
Ep of it'’s primitive idempotents. Then

(i)
LS(Y):=
((P1;)0<i.5<D, diag(fo, 81, ..., Op), (g1;)0<ij<ps diag(dy, 61, .-, 6p))

is a Leonard system over R, where (p} j)05i| j<D has i, j entry the intersection number
P j from Definition 3.1, (q'i]-)os:', j<p has i, j entry the Krein parameter g, j from (38),
0; := p1(3) is from (40), and 6} .= q,(3) is from (41).

Fix any ¢ € X, and let E} = E;(z), A} = Al(z)(0 < i < D), T = T(z) be as
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in (51), (56), and Definition 3.3. Let W denote a thin, irreducible T-module,
with endpoint u, dual-endpoint v, and diameter d, as defined in (79), (72), and
Definition 3.5. Then (ii)-(viii) hold:
(ii) Pick a nonzero u € E,W, and a nonzero v € E;W. Then
S:= (B, E 19, ..., Euiqv),
5% = (Eju, By, ...y Bjyqu),
are bases for W.
We call S (resp. S*) a standard basis (resp. dual basis) for W.
(iii)
LS(W) := ([A]s, [Als, [A’]s, [4"]s:)

is a Leonard system over R, where A = Aj, A* = Aj, and where [«]s denotes the
matrix representing o with respect to the basis 5. LS(W) is uniquely determined by
W (once the orderings of the associate matrices and the primitive idempotents are

fixed).
(iv)
[A]S = dlag (eju 9u+1» ey 9y+d),
[A's = diag (6, 6)v1s - Biva):
Consequently, LS(W), LS(Y') are related as follows if d > 1:
Case 1
LS(Y) = LS, q, h, h*, r{, 12, 8, 8%, 69, 6y, D)

(> g if 58" # 0,7 =12, 172 = 85°g
LS(W) = LS(, ¢, hg™, h*q™", f1g"**, f¢"*", s¢**, s°¢*, 6,, 6, d),

D+1)
)

(fif2 = ss’g™). (82)
Case IA
LS(Y) = LS(IA, g, h*, 7, 8, b, 65, D),
LS(W) = LS(IA, ¢, h*q7", fq¢", sq", 6,, 6, d). (83)
Case 11

LS(Y)= LS(I, h, h*, r1, r3, s, 8%, 6, 65, D)
(rmxzr,rn+r=s+s+D+1),

LSW)=LS{I, h, b*, fi+p+v, o+ p+v, s+ 2u, s +2,6,,6,, d),
(it h=s+s +d+1) (84)



THE SUBCONSTITUENT ALGEBRA QF AN ASSOCIATION SCHEME (PART II) 75

Case IIA

LS(Y) = LS(lIA, h, r, s, 8%, 6y, 63, D),

LSW)=LS(IA, h, f + p+ v, s + 24, §*, 8, 6}, d). (85)
Case IIB

LS(Y)= LS(lIB, h*, r, s, s*, 6y, 63, D),

LS(W)=LS(IB, h*, f + p+ v, 5, 8" + 2v, b,, 6;, d). (86)
Case IIC

LS(Y) = LS{IC, r, s, 8*, 6y, 63, D),

LS(W) = LS(IC, f, s, 8, 6, 6;, d). 87
Case 111

LS(Y)= LS(lII, h, h*, 1, r2, s, s*, 8, 65, D)
(mx=nifDisodd,ry+r,=—-8~-3s"+D+1),
LS(W) = LS(III, h(-1)*, R*(-1)", i+ p+ v, o+ p+v,s—2p,
8 ~20,0,,68,d), (fi+t+fh=-s—-5+d+1). (88)
(V) Ifd=0set f =coandif d > 1let f be as in part (iv) above, where we interpret
f = (f1, f2) (unordered pair) in Cases I, II, and Case IlI(d odd), and f = (f1, f2)
(ordered pair) in Case I1I(d even). Then f is uniquely determined by LS(W). We

refer to the 4-tuple (u, v, d, f) as the data sequence of W (with respect to the given
orderings of the associate matrices and primitive idempotents).

(vi) The statements
d=D,u=0,v=0,W = M2 LS(W) = LSY)

are all equivalent, where M is the Bose-Mesner algebra of Y.
If p is some object associated with LS(W), we will occasionally write p(W) to
distinguish it from the corresponding object associated with LS(Y).

(vii)
2 BWEW) -, (W) ,
IEwl (W) (W) - - ci_, (W) | Euvll 89)
(‘UEE;W, [.l-_<_2$p,+d),
(viii)
jEulp = RO bt () g 2 ©0)

a(W)er (W) -+ - ci_ (W)
(we E,W, v<i<v+d).
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Note 42. ply = 1,4}, = 1,p% =0, ¢ = 0 by (31), (39), and these equations
give relationships among the constants g, h, h*, 71, 72, ... that appear in part (iv)
above. However, we make no use of these relationships until Corollary 4.12.

Proof of Theorem 4.1. 1t is convenient to prove the parts in the order (ii), (iii),

i), (@), (iv), (v), (vii), (viii).
Proof of (ii). This is immediate from parts (ii) and (v) of Lemmas 3.9 and 3.12.

Proof of (iii). First, we show the 4-tuple LS(W) is a Leonard system over
C. Certainly the matrices B := [A]g., B* := [A*]s are tridiagonal, and have
nonzero entries directly above and below the main diagonal, by parts (i)-(iii)
of Lemmas 3.9, 3.12. The matrices H := [A]g, H* := [A*]s. are diagonal,
for indeed H = diag(d,, 6,41, ..., Ou+a) and H* = diag(6;, 8, ,, ..., 0,,,) by
construction. Also, H, H* each has distinct entries on the main diagonal by
part (iii) of Lemmas 3.8, 3.11. So far we have (4)-(7). Now let @ denote the
transition matrix from the basis S to the basis S*, that is, the matrix whose
columns represent the elements of S with respect to S*. Then by linear algebra

Q'BQ=H,

Q'H'Q=DB".
Note by (53) and part (ii) of the present theorem that the sum of the elements
of S* is a scalar multiple of the first element in S. It follows that the entries
in the leftmost column of Q are all equal. Replacing (@, S, 5*) by (@7}, §*, 5)
in the above argument, we find the entries in the leftmost column of Q! are
all equal. Now conditions (8)-(11) of Theorem 2.1 are satisfied, so LS(W) is a
Leonard system over C. In fact LS(W) is over R. Certainly H € Maty,(R) by

part (iii) of Lemma 3.8, so consider the entries a;(W), b;(W), and ¢;(W) of B.
We have

a(W)eR (0<i<d), 1)

since this is an eigenvalue of the real symmetric matrix E;, JAE;, . From (12),
we find

bi(W) + ci(W) = 6, — a;(W)
eR (0<iga),

where co(W) = bgy(W) = 0. In particular by(W) € R, and
c(W)eR-(W)eR (1<i<d-1).
But also

bi(W)cii(W)eR  (0<i<d-1), (92)
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for this is an eigenvalue of the real symmetric matrix E}, AE! Now

itv+l
b(W)eR—-cy(W)eR (0<i<d-1),
since the product in (92) is never 0. Combining the above implications we find

bi_i(W), ci(W) e R (1 <1< d), so Be Maty, (R) in view of (91). A similar
argument shows H*, B* € Maty,(R), so LS(W) is over R.

AE},

v

Proof of (vi). It is immediate from (72), (79), and Definition 3.5 that
0<u,v<D-d<D. (93)

Combining this with Lemma 3.6, we find the first four statements of (vi) are
equivalent. Certainly the last statement implies the first and, hence, the first
four, so now suppose W = M2. Observe by (68), (69), and part (ii) of the
present theorem, that

S:=(E%, E%, ..., Ep®) 94)
= |X|71(A}6, AlS, ..., ApS) (95)
is a standard basis for W, and that
§* .= (Eyé, EqS, ..., Epd) (96)
= (A¢2, Ai2, ..., Ap®) 97

is a dual basis for W. Now [A]s- = (p} ;jJo<i j<p by (30), (97), [A]s = diag (o,
6y, ..., Op) by (46), (94), [4*]s = (q;'j)ogi,jsp by (61), (95), and [A*]s- = diag(6;,
67,..., 6p) by (60), (96), so the 4-tuples LS(W), LS(Y) are indentical.

Proof of (i). The two 4-tuples LS(Y), LS(M#) are identical by part (vi) of the
present theorem, and the 4-tuple LS(MZ%) is a Leonard system over R by part
(iii) of the present theorem.

Proof of (iv). The first statement is immediate from part (iii) of the present
theorem. Now let LS’ denote the Leonard system on the right side of (82)-(88).
Then one may readily verify using the data in Theorem 2.1 that LS’ has eigenvalue
sequence 6, 8,41, ..., O,+q4 and dual eigenvalue sequence 63,67, ,,..., 6,4 It
follows from Lemma 2.4 that LS(W) = LS’ for a suitable choice of the f

parameters.
Proof of (v). This is immediate from Lemma 2.4.

Proof of (vii). We may assume v # 0. Then since A* is real symmetric, and

since the basis § := (E,v, E 41, ..., E,iqv) of W is orthogonal, it follows from
linear algebra that
diag(| Buv [, Byl -.s | Eurav DA%

= [A']; diag (|EwI?, |1Burrvl?, ... 1 Busavl?).
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[A*]s is real by part (iii) of the present theorem, so we may eliminate the complex
conjugate. Now computing the entries just above the main diagonal in the above
products we find

1B |P6_ (W) = | BivrvlPei_si (W) (p<i<p+d)

The result is immediate from this and induction,
Proof of (viii). Similar to the proof of (vii). ]

LEMMA 4.3. Let Y be as in Theorem 4.1, pick any x € X, and let W, W' denote
any thin irreducible T(z)-modules. Then the following are equivalent.

(i) W, W' are isomorphic as T(x)-modules.
(ii) LS(W) = LS(W").
(iii) W, W’ have the same data sequence.

Proof. Write E} = E}(z) (0 <i< D), A* = Al(z), T = T(z).

(i) — (ii). Let ¢ : W — W’ denote an isomorphism of T-modules, and
let § (resp. S*) denote a standard basis (resp. dual basis) for W. Since
oE; = E,0,0E} = E}o (0 < i< D) by (3), we find oS (resp. ¢8*) is a standard
basis (resp. dual basis) for W’. But now

LS(W) = ([Als-, [Als) [A’]s, [A%)s+)
= (040 o5+, [0407 o5, [0 A0 Los, [0 A0 ]os:)
= ([A]GS" [A]051 [A*]a& [A‘]GS‘)
= LS(W').

(ii)) — (i). Let S, S’ denote standard bases for W, W', respectively, and define
the linear transformation o : W — W’ so that ¢S = §’. Then for B € {A, A*},

[Bls = [Bls
= [Blos
= [a"]Ba]s,

s0 0A — Ao, 0A* — A*o vanish on W. But A, A* generate T by part (ii) of
Lemmas 3.8, 3.11, so oa — ac vanishes on W for every a € T. Now o is an
isomorphism of T-modules by (3).

(if) — (iii). The diameter of W is determined by the sizes of the matrices in
LS5(W). The endpoint of W is determined by the eigenvalue sequence of LS(W),
and the dual endpoint of W is determined by the dual eigenvalue sequence of
LS(W). The parameter f in the data sequence of W is determined by LS(W)
according to part (v) of Theorem 4.1.
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(iif) — (ii). This is immediate from part (iv) of Theorem 4.1. =]

In Theorem 4.10 we will show that if the parameters y, v, d in a data sequence
satisfy certain general inequalities, then the parameter f in the data sequence
takes the following special form.

Definition 4.4. Let the scheme Y = (X, {Ri}oci<p) be as in Theorem 4.1. Pick
any z € X, and let W denote a thin irreducible T'(z)-module, with data sequence
(p, v, d, f). Then W is said to be strong whenever d > 1, and there exists an
integer e satisfying

e+d+Deven, |e|]<2u—D+d, |e|]<2v—-D+d, (98)
such that, [referring to part (iv) of Theorem 4.1},

Case 1 f1, fo is a permutation of
rig 5, rg (99)
Case IA
f = rg" ¥ (100)
Case II fi, f2 is a permutation of
r1+———d—§+e,r2+———d_g_e (101)
Case 1IA, 1IB
j=r+d2=t (102)
Case IIC
f=r (103)
Case 111 fi, f is a permutation of
(d odd)
- d-D+e o+ d—-D-e
1 ) s 12 2 )
with u+ v + d_—]z)——e even (104)
Case 111
(d even)
d—D+ d—D-—e
f1=7‘1+-—£, fi=rp+ ———
2 2
G p+ v+ 227 i even), (105)

2
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d-D-e d-D+e
fizsnt—F— fi=n+—7F

i+ v+ 2227 56 odd). (106)

2

The parameter e may not be unique.
If W is strong, the awxiliary parameter of W is the integer e with

le + 1/2| minimal (107)

subject to (98)—(106). (The auxiliary parameter is unique by the first condition
of (98).)

On our way toward Theorem 4.10, our next task is to consider how the
data sequences of the various modules are related. Theorems 4.6, 4.9 are our
main results on this subject. They are preceeded by the technical lemmas 4.5,
4.8. Recall nonempty subsets W, W’ of the standard module V are said to be
orthogonal whenever (w, w’) = 0 for all w € W and all w' € W',

LEMMA 4.5. Let the scheme Y = (X, {Ri}o<i<p) be as in Theorem 4.1. Pick any
z, y € X, any thin irreducible T(x)-module W, and any thin irreducible T(y)-module
W', such that W, W' are not orthogonal. Let v, V' denote the dual endpoints of
W, W', respectively, and pick nonzero v € E}(2)W, v' € E.(y)W'. Then there exist
nonzero polynomials 4, v € C[)] such that

(Bw, By = |EwlPw(6) ] 6:-6) (0<i<D), (108)
(eWAW,
=EvIP¥' ) I G:i-6) (©<i<D), (109)
(eWA\W,
and
degpy < p—-v+ V- |W\WJ, (110)
deg ¥/ <p—v' +v - |W,\W,, (111)

where (z, y) € R, (The supports W,, W, are from Definition 3.5.)
Proof. This will consist of two claims.

Claim 1. There exist nonzero polynomials ¢, ¢’ € C[A] such that

degp<p-v+, (112)
deg o' <p-v' +,
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and
projy v’ = @(A)v, (113)
projyw = (A,

where A = A, is the first associate matrix of Y and projza denotes the orthogonal
projection of a onto 5.

Proof of Claim 1. By symmetry, it suffices to show there exists a nonzero
polynomial ¢ € C[)] satisfying (112) and (113). To do this, it suffices to
show projy, v’ is nonzero and contained in Span{v, Av, ..., 4°"**'v}. Now by
assumption, there exist w € W, v’ € W’ with (w, w’) # 0, and by (74) we may
write w' = aqv’ for some element a of the Bose-Mesner algebra M. Since a is
symmetric we obtain

(aw, V') = (w, av')
= (w, v')
#0,
and since aw € W, we observe projyv’ # 0. Now write
Projwv’ = vy + vpyr + 0 ¥ Upsq, (114)

where d denotes the diameter of W, and where v; € E}(z)W (v <i < v+ d).
We will now show

v=0 (p+V <igv+d). (115)
To see this, note
luill? = (vs, v')
=0 (p+vV<i<v+d),
since
v; € E](2)V (v<i<v+d),
v € Ey(y)V,

(V = standard module), and E;(z)V, E.(y)V are orthogonal whenever p, =
0 (0 <7< D). Now by (74), (114), and (115) we have

Proju v’ = v, + vy oo F Vpup
€ Span{v, Av, ..., A”_"“/v},

as desired. This proves Claim 1.

Claim 2.
(Ewv, En') = |Ev|*0(6:) (0<i< D) (116)
= |Ev'IP0'(6) (0<i< D). (117)
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In particular, the polynomial

A — 0, divides ¢ for each ¢ € W,\W,, (118)
A — 6, divides ¢’ for each ( € W\W,. (119)

Proof of Claim 2. By symmetry it suffices to prove (116) and (118). But since
v/ — proj, v’ is orthogonal to W, we have, for each integer i (0 <: < D),

0= (Ejv,v' — proj,v’)
= (B, v' - p(A))
= (Ev, Ei(v' - p(A)v))
= (E, Ev') - o(6;)| Ewl?,
which gives (116). Now pick any £ € W, \W, , so that E;v # 0, Egv’ = 0. Then
from (116) and (117) we find
e(0¢) = || Bgv|| 2l Bev'[*¢'(6¢)
= 0,
so A — 6, divides ¢. Thus (118) holds, and we have proved Claim 2.

Now set
= [ (A-6)7, (120)
EEWAW!
Y=y H (A -6)7". (121)
CeEWNW,

Observe v, ¥’ are nonzero by Claim 1, and contained in C[A] by (118) and (119).
They satisfy (108) and (109) by (116) and (117), and (110) and (111) by Claim 1.
This proves Lemma 4.5. a

THEOREM 4.6. Let the scheme Y = (X, {Ri}o<i<p) be as in Theorem 4.1. Pick
any z, y € X, any thin irreducible T(x)-module W, and any thin irreducible T(y)-
module W', such that W, W' are not orthogonal. Let (u,v,d, f), (W, V', d, f)
denote the data sequences of W, W', respectively, and suppose (z, y) € R, for some
(0 < p < D). Then the following statements (i)-(v) hold.

(i) WonW, # 0, where we recall W, = {u, p+1,...,p+d}, W)= {¢/, ' +1,
vy @+ d'}
(i)

p—pl+lp-—p +d-d|+2w-v)+d-d|<2p. (122)

(iii) Assume |W,UW]| > 2p+2 Then d, d > 1. Furthermore, there exists an integer
€ satisfying
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e+d+d even, |e|<2p—|p-W|-|lp-p+d-d|,
such that [referring to part (iv) of Theorem 4.1]

Case I  f1, f2 is a permutation of

f{qt?“, £ F,

Case IA
f=fq
Case II  f, f, is a permutation of
d— d’ +e d-d -«
peiodtre padodoc
Case IIA, IIB
, d—-d —¢
R
Case 1IC
f=f
Case 11
d— d’ +¢ -d —¢
I h
and
—— ’—
u—p’+u—u’+d—% is even,
or
d d-—d +¢
fl f2 A fZ = f] —2',
and
—-— I—
u-u’+u—u’+d——%—£+d is odd

(iv) Suppose

p<v-V.
Then

O0<pu—py <d-d<2(v-v)=2p
(v) Suppose W' is strong, and that

83

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)
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v—v =p<d/2, v<p. (132)
Then W is strong.

Proof of (i). W,nW, # 0, for otherwise at least one of E;W, E;W’ is zero for
each integer ¢ (0 < 7 < D), contradicting the assumption that W, W’ are not
orthogonal.

To simplify the notation for the rest of the proof, set

T = max{y, p'}, (133)

m=p—v+v - |W\W,], (134)

n=p—-v +v—-|W\W,, (135)
and note

m-n=200-v)+d -d, (136)

mtn=2p—|p-p|-|p—y+d-d| (137)

Proof of (ii). Observe m, n are nonnegative by (110) and (111), so using (136)
and (137) we find
0 £2 min{m, n}
=m+n—|m-n|
=2p—|lp-pl-lp-p+d-d|-2w-V)+d-d|
Proof of (iii). Combining (134), (135), and the assumption |W,UW}| > 2p + 2,
we have
(Wa N W,| = W, UW,| - [W\W,| - [W\W,|
>m+n+2 (138)
22,

so d,d > 1. Let v, v 9,9y’ be as in Lemma 4.5. Then, comparing the right
sides of (108) and (109), we find

oip(8) = ¥'(8) (GeW,nW), (139)
where
_ lEwl* 6 — NN ' ’
= 15op Ll G=0 II G:-807" Gew.nw).
LW N\W] CEWNW,

We observe ¢; # 0 for all i € W, nW..

Claim 1. Assume Case I (ss* # 0). Then
a’g®>™™*" = bede (140)
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and

(bv C, d’ €, q)i—-‘r
(aq/b, aq/c, aq/d, aq/e; )i~

¢i = ¢rqm MO (GewW,nW), (141)

where

(a, b, c,d, e) = (sg™*", frg™***!, fog™™* sq M £, sg T £ (142)

Proof of Claim 1. From (82) we find

fifa = ss*¢**!,

fify = ss*g™,
SO

fif2 = £if384 (143)
Evaluating this using (142), we obtain (140). To obtain (141), it suffices to show

¢/¢ _ qm_"(l - bqi-—r—l)(l - cqi—r-l)(l - dqi—r—l)(l _ eqi—r—l)
YT (- e B)(1 ~ ag™T/e)(1 - agT/d)(1 — ag 7 /e)
(i-1,ieW,nW)). (144)

By (139) and (89) and the definition of W,, W, we find

i/ is = |E:v|? |Ei1v'|® II (9—95) 11 (61 = 6¢)

2R V- S ) ceivnw, =00
b_#_l(W) c;_“,(W) H (6; ——0€) (6; — 6¢)
C_ (W) b* - I(WI)”<E<“( );L'+d'<f<y+d( 0{)

x ] (9"”9‘) I1 (i1 = 69 (i-1,ieW,nW).

w<{<p '. - C) prd<({sp’ +d ( U GC)
To evaluate this, we use the following notation. Set
1 fa=8=0

aff  fB#0 (e, BEC).
undefined if «a # 0, 8=0
Then

(ENE)-(@) s

N

N

™[R

N—

~—
|
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as long as ((o/B)), ((B/v)) are defined. Evaluating the data in Case I of
Theorem 2.1 using (82), we find that for all i (i —1,i € W, nW,):

1- i+u
i) = ((7505))
x h*q_u(l - qi—u—d—l)(l - fqu-V)(l - f2qi+u), (146)

1 - s¢¥
_ 1-— 8q2i—1
* nN-1 _
o= (252
1- 3q2i
- - - , 147
X h*q""(l - ql—[t'—d'—l)(l - f{q1+u’)(1 — féql‘i'l/) ( )
. 1 — ggiti+d+1
u = (S 25))
(e — g1 - sg™ /(A - sg Y/ fy) (148)
1— sqg% ’
B 1- sq2i+1
* 1 -
(W)™ = ((lquW_““"))
anli
1= s (149)

X ; : : )
hrstq+1(1 — ¢ =#)(1 — s¢"/ f1)(1 - 8¢~/ f2)
where the (( )) expressions in (146)-(149) are all defined. From (15) we also

have
(6; — 6¢) (6i-1 — ;)
1 (61— 0¢) 1 (6 - 6;)

pl<y wi<p
_(({1=sg"*\\ ¢ ¥ (1 - gi*)
- (( — )) e (150)

(6i — 6¢) (i1 — ;)
II (6i-1 — 6¢) 1 6: - 8;)

pd<t<u+d ptd<{<p' +d

_ anitptd+l w—ptd-deq -y —d~1
_ ((1 8q )) g (-4 ) (151)

1 — sgiti/+d+ 1 — gi-u-d-1

where the (( )) expressions in (150) and (151) are defined. Now using (145), we
find the product of the (( )) expressions in (146)—(151) is 1. Multiplying together
the remaining factors in (146)-(151), we find

q2(u'—u)+d'~d(1 _ f](]“'")(l - fzqi+u)
(1 - fig*)(A - f¢*Y)
(=g~ /1)1 = 54 /1))
(1-5¢7/f)(1 - s¢"/ f2)

bi/ i1 =

E-1,ie W,nW,). (152)
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But (152) equals (144) upon applying (136) and (142).
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To complete the proof of Theorem 4.6, we will need the following identity.

See the given reference for a proof.

LEMMA 4.7. (Terwilliger [68]). Let m, n denote any nonnegative integers with

m < n, and pick any nonzero scalars a, b, ¢, d, e, ¢ € C such that

a’g* ™" = bede.

Then
(8 ¢ o fmena )
¢0 "90 ¢1 191 see ¢m+n+10m+n+1
det ¢3. 1_9(71" ¢ih‘_?’ln M ¢:1+ﬂi-lz9z+n+l
?0 ?1 ce _ m+n+1
¢o do ¢1 191 te ¢m+n+119m+n+1
\ ¢6198 ¢l-19'1’ i ¢;t+n+10?n+n+l )
= ¢gdf - dndydy by det (Fogijem det (%, ., ogi,jn
y ﬁ (aqm+k+1 aqk—m+1 aqk—m+l aqk—m+1;q)
¥ 1) y
k=0 be bd be m+n+1-2k
x b(m+l)(n+l)q(m+n)(m+l)(n+1),
where
Y% =gq " +aqd 0<i<m+n+1),
¢F = q™(b, c, d, € q);i O0<i<sm+n+1),

#;7 = ¢"(aq/b, ag/c, ag/d, ag/e;q)i (0<i<m+n+1).

We now return to the proof of Theorem 4.6.
Claim 2. Suppose m < n. Then

( ¢r ¢-r+l e ¢r+m+n+l
¢rar ¢-r+10'r+1 vee ¢r+m+n+lor+m+n+l
det ¢1’9;" ¢r+19’1"+1 “e ¢r+m+n+10:-n+m+n+1
1 1 1
0r 6‘r+1 soe a‘r+m+n+]
n n n
\ 0" o-r+1 er+m+u+l /

(153)

(154)

(155)
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= Grbrat + Pram det (6], )oci jem det (8, ., . 1 o<i j<nB0d *+ Am, (156)

where A (0 < k < m) is given as follows:

Case I (ss8* # 0)

A, = (sqr—u’+m+1)m+n+1—2k(8q2r+m+2+k, stq2u+d+l—n+k;q)m+n+1_2k
(fé)m+n+1-—2k(8qr—u+1+Ic/f1’ sqr-u+1+k/f2; Q)m+n+1—2k
x (féql/—v—m-f-k/f]’ féql/—u_m..-k/fZ; Q)m+n+1—2k (157)
(f]lqr+u'+1+k’ féq‘r+u’+l+k; q)m+n+1—2k
CaseI (s=fi=f]=0)
* - R e -k
- (3 q2U+d+1 n+k’ Q)m+n+1—2k H;:;t:—-m+k(f2 - féqn)

Ag

(FHa 1 Qnins1-2k H;:g;l:ﬁ_,_m_n(fz — 5*q")

Case I (8* = f; = f{ = 0)

V- -k
(qur+m+2+k; Dman+1-2k Hn-;t:—mu(ﬁ - f-jq”)

Ay = - -
Ba 1% Qmansr2k oot oo (f2 = 897)
Case IA
A = (sqr—u'+711+1)m+n+1—2k(flqv'—u—m+k/f; Q)m+n+1—-2k
(fl)m+n+1—2k(sqr—v+l+k/f; q)m+n+1—2k
Case Il
A = (—2r-m-8-2-k,n-20—d—1—-38" —k)psn+1-2
. (i—s—1+v-1-k fr—s—7+v—1-E)pnin+1-2
x(fl ~fhrv=vVitm-k fi-fi+v—v +m=E)mnins1-2
(—V'— 1 _T_f{ ~-k - -1 _'r_fé "k)m+n+l-2k
Case IIA
A = (-2r—-m-s-2-k f—f+v—v +m—E)nens1-2%
T U st tu—1-k V=17 J = F)mens12k
Case IIB
A = (" +2w+d+1+m—k f-f+v—v+m—=Kk)pinsi-2
¢ (3‘—f+u+d_7""k’_VI_I—T"f,—k)m+n+l—2k
Case IIC

AL = (f — frymtn+l-Th(ggrymnti-2k
k (f - ssv«)m+n+1—2k(f/)m+n+1_2k




THE SUBCONSTITUENT ALGEBRA OF AN ASSOCIATION SCHEME (PART II) 89

Case 11
2r4+2min+2—k 2vtd+1+m—k
Hr]=2r+m+2+k (7’ - 8) nnu=2u+d+l-n+k (7' - 8')
Ap = neven neven
T-v+men+l-k —v+m+n+l-k
I1 n:T—V+l+k (n—fi-9) H77=ur—':+1n+k (n-fa-3s)
p+v+n+deven pHv+nodd
l-Iv'—v+n—k ; + V—vin—k ’
=V —-v-m+k (-f2 - fl 17) n n=v-v-m+k (f2 - f2 + 77)
% p—p +v—v' +n+dodd p—py' +v—v +neven
T+ 4+m+n+l-k T+ +m+n+l-k
I mrivrier (m+ M rsrviex (m+ f3)
n—w —v+d even n—u' - odd

Proof of Claim 2. First assume Case I (ss* # 0), and consider the matrix in
Lemma 4.7, where (a, b, ¢, d, ¢, ¢) are from (142). Note the determinant formula
in that lemma remains valid if we replace ¥; by a¥; + 8, (0 <i < m+n + 1),
where a, 3 are any complex numbers. Choose

a=hqgT, B =8y — h(1 + s¢q),
and observe by (14), (142) that

ad; + f=hq"7(¢7" + ag’) + 60 — h(1 + sq)

= hg (g +3¢""*!*7) + 60 — h(1 + 39)

= 00 + h(l - qz‘+r)(1 _ qu+r+l)q—i—r

=04, (0<Li<m+n+l)
Thus the determinant formula in Lemma 4.7 remains valid if we replace 9; by
Givr, (0 £ i < m+n+1). But after this replacement, the matrix (155) is obtained
from the matrix (154) by dividing column i by ¢;(0 < i < m + n +1). Now
the determinant (155) can be readily determined from Lemma 4.7. In Case I
(ss* = 0), IA, II, IIA, IIB, IIC, III, the determinant (155) is obtained by taking

limits as indicated in Note 2.6.
Claim 3. There exists an integer n such that

V—v-m<n<v —v+n, (158)

and such that

Case I f1, f> is a permutation of

i, f1q (159)
Case IA

f=rd (160)

Case Il f1, f2 is a permutation of
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fitd—d—-n f+n (161)
Case 1IA, IIB

f=f+n (162)
Case IIC

f=f (163)
Case 111

fi=fitd-d -9 f,=f+n,
and (164)
p—p +v—v +nqis even,

or
fi=fitn fr=fi+td-d-n,

and (165)
p—p +v—-v +n+dis odd.

Proof of Claim 3. Interchanging the roles of W, W', if necessary, we may assume
m < n. Also observe by (133) and (138) that

nT+1,..,T+m+n+leW,nNnW,.

Now the rows of the matrix (155) are linearily dependent by (139), (110), and
(111), so the determinant (156) of that matrix is 0. We have observed the
constants ¢,, ¢,41, ..., Pr+m are nonzero, and the Vandermonde determinants
in (156) are nonzero, so A; = 0 for some integer k (0 < k < m). Now assume
Case I (ss* # 0), and consider the factors in the numerator of (157). The first
two factors s, g are assumed to be nonzero. The next factor is

[T - sqb), (166)
where the product is over all integers £ such that
2r+m+2+k<E<2r+2m+n+2-k (167)

Recall by (17) that s¢® # 1 (2 < ¢ < 2D). Therefore, the product (166) is
nonzero if we can show

2<2r+m+2+k (168)
and

2r+2m+n+2~k<2D. (169)
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The bound (168) is immediate, since 7, m, k are nonnegative by (133) and (110),
and the definition of k. To see (169), observe by (111) and (138), that

2r+2m+n+2-k<22r+m+n+1)
<2+ |W,NnW!|-1)
=2min{p + d, p' + d'}
<2D.

The next factor in the numerator of (157) is

[T -5, (170)
where the product is over all integers ¢ such that
wt+d+l-n+k<(<2v+d+1+m-k

Just as above, by (17) we have s*¢* # 1 (2 < ¢ < 2D). Therefore, the product
(170) is nonzero if we can show

2<2v+d+1-n+k (171)
and
2v+d+1+m—-k<2D. (172)

Line (171) holds, since n < d — 1 by (138) and v, k are nonnegative. To see
(172), observe

+d+l+m—-k<v+d+m+n+l
Sw+d+ |W,NnW]| -1

<2v +d)
<2D.
The remaining factor in the numerator of (157) is
[1Q - 59"/ £0)1 - £/ £2), (173)
where the product is over all integers n such that
V-v-m+k<ngv-v+n-k (174)
The product (173) must be 0 since A is 0, so
fi=fid" or o= f¢" (175)

for some integer 7 that satisfies (174). Now (158) holds since k is nonnegative,
and line (159) follows from (175) and (143). We have now proved Claim 3 for
Case I (ss* # 0). The remaining cases are very similar.

Now set

e=d-d -2, (176)
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where 7 is from Claim 3. Let us check that ¢ satisfies (123). Certainly ¢ +d + d'
is even. Also, by (136), (158)

e<d—d +2(v-v)+2m
=m+n, a7

and

e>2d—d +2(v—-v)-2n

=—m—n, (178)
$O
el <m+n
=2p—|u—p|-lp—u +d-d| (179)
by (137), (177) and (178). Thus (123) holds. Solving (176) for 5, we find
g=dzdze (180)

Now (124)—(130) are obtained upon evaluating the data in Claim 3 using (180).
This proves (iii).

Proof of (iv). Assuming p <v - in (122), we find

2v=-v)22p (181)
2lp-wl+lp—w+d-d|+2(v-V)+d-d] (182)
>p-p)+W-p+d -+ Q2v-2V"+d-d) (183)
=2(v - ),

so equality holds in (181)-(183). From (181) we find p = v — v'. Comparing
(181) and (183), we see the three terms in parenthesis in (183) are equal to their
absolute value, and are, hence, nonnegative. This implies (131).
Proof of (v). Note W, C W} by (131), so
W, uW,| = [W,|
=d +1
22p+2,

and part (iii) of the present theorem applies. Let the integer ¢ be from that
part, let ¢’ denote the auxiliary parameter of W’, and set

d-D-¢
! — g, if Case III, p' + v/ + ————— odd,
e={e © prv 7 ° (184)

e +¢,  otherwise.
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To show W is strong, it suffices to show e satisfies (98)~(106). First consider (98).
Certainly e + d + D is even by (184), since ¢ + &' + D is even by Definition 4.4
and € + d + d' is even by (123). By Definition 4.4, (123), (131), (132), and (184)
we also have

le] < || + e|
S@'-D+d)+Qp-lp-¥|-lp-¥+d-d|)
=Qu-2p-D+d)+ 2o+ -p+p-py +d-d)
=2v-D+d
<2u—-D+d,

so (98) holds. Now for the moment assume Case I. Then by (124), f,, f2 is a
permutation of

A e F,
where we may assume
fi=rd™, g =gt

by Definition 4.4. Combining this information, we obtain (99). Lines (100)—(106)
are obtained in a similar manner. This proves (v), and the theorem.

We now give “dual” versions of Lemma 4.5 and Theorem 4.6.

LEMMA 4.8. Let the scheme Y = (X, {Ri}o<i<p) be as in Theorem 4.1. Pick any
z, y € X, any thin irreducible T(x)-modules W, W', and suppose W, Ay(y)W' are
not orthogonal for some integer p (0 < p < D). Let u, 1’ denote the endpoints
of W, W', respectively, and pick nonzero vectors v € E,\W, v’ € E,W'. Write

= E}(z) (0 < i £ D). Then there exist nonzero polynomials y*, ¥*' € C[\A] such
that

(Eju, A,)E;Y) = |Eul®y*6}) J] 6i-6) (©<i<D), (185)

LeW,\W,
= BP0 J[ (61-6) (0<i<D), (186)
CeW\W,
and
deg " <p—p+ ' ~ |W,\Wy|, (187)
deg v < p~ i + p— |WI\W,|. (188)

Proof. Write A* = Aj(z), and observe A*, Ef (0 < i < D) commute with A7(y).
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Claim 1. There exist nonzero polynomials ¢*, ¢*' € C[A] such that
deg ¢' <p—p+ 4, (189)
deg ©*’' <p— '+ p,
and
projy A;(y)u' = @(A*)u, (190)
Projy A5 (y)u = ™' (A",
Proof of Claim 1. By symmetry, it suffices to show (189) and (190). To do this,
it suffices to show projw A} (y)v’ is a nonzero and contained in Span{u, A*y, ...,
(A*)P~#+Wy}.  Now by assumption, there exists w € W, w' € W’ such that

(w, Ay(y)w') # 0, and by (81) we may write w’ = au’ for some element a of

the dual Bose-Mesner algebra M*(z). Since a is symmetric and commutes with
Aj(y), we obtain

(@w, A (y)v') = (w, a4 (y)v)
= (w, A,(y)v)
# 0,
and since aw € W, we observe projw Aj(y)u’ # 0. Now write

Projw AL (y)u' = uy + uper + o + Ui, (191)
where d denotes the diameter of W, and where u; € E;W (u <i < p+d). Then

wu=0 (p+pu <i<p+d), (192)
since

lwill? = (wi, A(w)u)
=0 (p+u<igpu+d
by (65). Now by (81), (191), and (192), we have
Projy A5 (Wu' = uy + uper + o0+ uppp
€ Span{u, Ay, ..., (4*)P~** ¥y},

as desired. This proves Claim 1.

Claim 2.
(Efu, AJ()B{v) = | E{ul’¢’(6}) (0<i< D) (193)
= |Biv|?¢7(6)) (0<i< D). (194)
In particular

A —6; divides " for each £ € W,\W,, (195)
A —6; divides ¢* for each ¢ € W,\W,. (196)
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Proof of Claim 2. Since Aj(y)u' — projy A5(y)u' is orthogonal to W, we have, for
each integer ¢ (0 <i < D),

0 = (E}u, A (u)v — projy Ay(y)v)
= (Efu, Ay(y)' — ¢ (A")u)
= (Eju, E}(A)(y)u - ¢* (A )u))
= (Eju, A(y)Ejv') — 0"(6])| E}ul?,

which gives (193). The remaining assertions of the claim are obtained as in
Claim 2 of Theorem 4.6.

Now set
Y= H (A-6)7", (197)
EEW\W,
wtl:= ‘P“ H ()\_02)—1
CEWIN\W,

Observe 9*, ¢*' are nonzero by Claim 1, and contained in C[)A] by (195) and
(196). They satisfy (185) and (186) by (193) and (194), and satisfy (187) and
(188) by Claim 1. This proves Lemma 4.8. |

THEOREM 4.9. Let the scheme Y = (X, {Ri}o<i<p) be as in Theorem 4.1. Pick
any z, y € X, any thin irreducible T(z)-modules W, W’, and suppose A;(y)W’', W
are not orthogonal for some integer p (0 < p < D). Let (p, v, d, f), (¢, V', d, )
denote the data sequences of W, W', respectively. Then the following statements
(i)-(v) hold.

(i) Wo W, # 0, where we recall W, = {v, v+ 1, ..., v +d},
Wo={V,v+1,...,vV +d}.
(i)

v—=vi+lv=v +d-d|+|2(u-p)+d-d|<2p. (198)

(iii) Assume |W, UW.| > 2p+ 2 Then d,d > 1. Furthermore, there exists an
integer ¢ satisfying

e+d+d even, |g|<2p—|v—-V|-|v-V +d-d]|, (199)
such that

Case I  fy, f2 is a permutation of

d=d'+c d=d'—¢

fle T he T (200)
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Case IA
f=flg=F
Case I  f, f» is a permutation of
d-d +¢ d-d —-¢
pedore padofos
Case 1IA, IIB
d-—d -¢
Y}
f=f+ 5=
Case 1IC
f=rf
Case HI
, d=d +¢ ,  d—d ¢
fl=f1+—'—2_"’ .f2=f2+—'2_'—a
and
pu—pu +rv-v+ d—:—(-;-—_-f is even,
or
d—-d -« d—d +¢
fi=fh+t——, L=f+—7F
2 2
and
— ’ —
u—u’+v—u’+d——§——€+dis odd.
(iv) Suppose
pSu—u.
Then
0sv—vV<d-d<2(pu—-4) =2 (201)
(v) Suppose W' is strong, and that
p—-pg=p<d/f2, p<uv (202)
Then W is strong.
Proof. Similar to the proof of Theorem 4.6. m|

THEOREM 4.10. Let the scheme Y = (X, {Ri}o<i<p) be as in Theorem 4.1. Pick
any € X, and let W denote a thin irreducible T(x)-module, with some endpoint
W dual endpoint v, and diameter d (0 < p, v < D —d < D). Then

(i) W is strong whenever
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p<D/2 or v<DJ2 (203)
(ii)

D-d)/2< p, v (204)
(iii) Suppose Y is thin. Then W is strong whenever

p<DJ/2 or v<DJ/2 or d2>3.

Proof of (i). Assume (203). Then one of the following (a)-(c) holds.

@
p=0 or v=0, (205)

(®)
O<v<y, v < D/2,

(c)
O<pu<y, u< D/f2.

First suppose (a), so that W = M# by part (viy of Theorem 4.1. Then, using
Definition 4.4 one may readily check that M# is strong (with auxiliary parameter
e = (), so we are done in this case. Next suppose (b), and set W’ = M, where
y is any element in X with (z, y) € R,, such that § is not orthogonal to W (y
exists by the definition of v). Then W' is a thin irreducible T(y)-module by
Lemma 3.6, W’ is strong by case (a) above, and W, W’ are not orthogonal by
construction. Now W, W’ satisfy the conditions of part (v) of Theorem 4.6 (with
p=vv =0,d = D), so W is strong. Next assume (c), and set W’ = M®%,
Then W' is a thin, irreducible T(x)-module, and strong by part (a) above. Also,
there exists y € X such that W, A;(y)W’ are not orthogonal, since the all 1s
vector § € W', A, (y)6 = |X|E,§ by (69), and Span {E,§ |y € X} = E,V is not
orthogonal to W by the definition of u. Now W, W', and y satisfy the conditions
of part (v) of Theorem 4.9 (with y' = 0,d = D, and p = p), so W is strong.
Thus W is strong in general, and we are done.

Proof of (ii). Suppose u < (D—d)/2 or v < (D —d)/2. Then (203) holds, so W is
strong. But then 24— D +d, 2v — D + d are nonnegative by (98), a contradiction.
This proves (ii).

Proof of (iii). In view of part (i) above, it suffices to prove W is strong under
the assumption d > 3. The proof is by induction on u + v.

First assume v < pu. Pick any 3’ € X such that (z, ') € R,, and such that
§ is not orthogonal to W. Now pick any y € X such that (z, y) € R, and
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(v, ¥') € R,_y. Now E}_,(y)V contains ¥, and is therefore not orthogonal to
W. But now there exists a (thin) irreducible T(y)-module W’, with endpoint
v < v -1, that is not orthogonal to W. Applying part (iv) of Theorem 4.6 to
W, W' with p = 1, we find by (131) that p/ < g, d' > d, and V' = v — 1, where
¢, d are, respectively, the endpoint and diameter of W’. In particular d' > 3
and p' + v < p+ v, so W is strong by induction. But now W, W’ satisfy the
conditions of part (v) of Theorem 4.6, so W is strong. Next assume u < v.
Since E,V is contained in the column space of F; o E,_; by (38), there exists
y € X such that Aj(y)E,_,1¥ is not orthogonal to W. But then there exists a
(thin) irreducible T(z)-module W’, with endpoint p' < p— 1, such that Aj(y)W’
is not orthogonal to W. Applying part (iv) of Theorem 4.9 to W, W’ with p = 1,
we find v/ < v,d’ > d, and ¢ = p—1, where v/ and d are, respectively, the
dual endpoint and diameter of W’. In particular &' >3 and p' + v/ < p + v, 50
W’ is strong by induction. But now W, W’ satisfy the conditions of part (v) of
Theorem 4.9, so W is strong, O

COROLLARY 4.11. Let the scheme Y = (X,{R;}u<i<p) be as in Theorem 4.1, and
pick any x € X. Pick any integers p,v,d (0 < u, v < D — d < D), and assume
# < D/2o0rv < D/2. Then the number of pairwise nonisomorphic, thin, irreducible
T(z)-modules with

(i) endpoint u, dual endpoint v, diameter d
(ii) endpoint u, dual endpoint v
(iii) endpoint u

(iv) dual endpoint v

is at most
(i)
(2u D+d+1 (Gf 4 < v), (206)
(2” D*‘”l) (if v < ). (207)
(ii)
(2“ “VEZ) Gt u<), (208)
(2" I 2) (if v < ). (209)
(iii)

(4p® + 1842 + 28u + 15 + (~1)*)/16  (if u < D/2), (210)
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(v)
(40° + 1807 + 28v + 15 + (=1)")/16  (if v < D/2). (211)

(In (206)-(209), interpret (‘5) =0ifa<p)
Proof of (i). Immediate from Lemma 4.3, Definition 4.4, and (203).

Proof of (ii). To obtain (208), sum (206) over all integers d (D —2p < d < D—v).
To obtain (209), sum (207) over all integers d (D —2v < d < D — p).

Proof of (iii). Line (210) is the sum of (208) over all integers v (u/2 < v < p),
plus the sum of (209) over all integers v (u < v < 2p).

Proof of (iv). Similar to (ii). m]

COROLLARY 4.12. Let the scheme Y = (X, {R;}o<i<p) be as in Theorem 4.1. Pick
any z € X, pick any integer i (0 < i < D), and write E} = E!(z), T = T(z).
(Observe E}!AE} : E!V — E!V is the adjacency map for the undirected graph
with vertex set X N E}V, and edge set {(y, z) | (y, 2) € Ry, y, 2 € XN E;!V}.) Let
W denote an irreducible T-module with E}W # 0. Then the following statements
(1)-(5) hold.

(1) E;W is an E} AE;-invariant subspace of E:V.
(2) Suppose W is thin. Then E!W is a (one-dimensional) eigenspace of E}AE.
The eigenvalue is )\ := a;_, (W), where v is the dual endpoint of W.

An E} AE}-eigenvalue of this form will be said to be of thin type.

(3) E;V is an orthogonal direct sum E;Wo+ E;Wi+ .-+ E;W,, where Wy, Wy, ...,
W, are irreducible T-modules that intersect E;V nontrivially. In particular, if Y is
thin with respect to z then every eigenvalue of E}AE} : E:V — E!V is of thin type.
(4) Suppose i < D/2, and that W is thin. Then there are at most o; ways to choose
W up to isomorphism of T(x)-modules, where

o; = (24* + 168> + 4842 + 64i + 31 + (—1)7)/32.
In particular, E} AE! has at most o; distinct eigenvalues of thin type.
We note o = 1,01 =5,0, =16, 03 = 39,...

(5) Suppose i = 1, and that W is thin, with some endpoint p, diameter d, and
auxiliary parameter e. Then (p, v, d, €), X is given in one of (i)-(v) below (here we
use the notation of part (iv) of Theorem 4.1).
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(i) (u v, d, e)=(0,0,D,0), X=p},.

(ii) (u, v,d,e)=(1,1,D-1,1), A equals
Case I(s* # 0)

8*(1 —72¢°)(1 — ¢! P)(1 ~ 5°¢%)

-1-
(r2 — s*q}(g7 1P — s*q)(1 — 8*¢*)

Case I(s* =7 =0) -1

Case IA -1

Case II

_1- (r2 4+ 2)(D - 1)(s* + 2)

(r2 —s* —1)(D + s* + 2)(s* + 4)

Case 1IA -1

Case IIB

(r+2)(D-1)(s*+2)
T (r—s—1)(D + s +2)(s* +4)

Case IIC  does not occur
Case III(D even)  does not occur

Case III(D odd)

(D-1)(s*-2)

T TN T}

(iii) (p,v,d,e) = (1,1, D -1, -1), A equals
Case I(s* #0)

(1 -rg®)(1 - ¢ 2)(1 - s*¢)
(r1 —8*q)(q7 1P - s*q)(1 - s*¢*)
Case I(s* =1 = ()

__n-4"%)
8 —rq7D

TERWILLIGER
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Case IA
1_1-¢"")
q(1 -q)
Case I
~1- (r1 +2)(D-1)(s*+2)
(r1—8 —1)(D + s +2)(s* +4)
Case 1IA
D-1
I IT5STD
Case IIB
1 (D-1)(s* +2)
(D+ s +2)(s*+4)
Case IIC -1

Case III(D even)

(r1 +2)(s* = 2)
T (#-D-2(r -4

Case III(D odd)

(D-1)(s*-2)
(a*+r —-1)(s*—-4)

() (u,v,d,e) = (1,1, D -2, 0), A equals

-1+

Case I(s* # 0)
_1_ £ =)~ ng’)(1 - 8'¢)
(r1 - 8*q)(r2 — 8°q)(1 - 5*¢)
Case I(8* =r; = 0)

-1— 1—ra¢?
5¢P*! —ryq
Case IA
-1-r¢P(g-1)
Case 11

3 (r + 2)(r2 + 2)(s* +2)
(r1—s* =1)(r2 —s* = 1)(s* + 4)
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r+2
r—s—D

(r+2)(s* +2)
(r—s —-1)(s*+4)

Case IIC
—5-2
Case III(D even)

(it -2
(r2 + 8* = 1)(s* — 4)

Case lII(D odd)  does not occur

V) (v, dye)=(2,1,D-2,0), X equals

Case I(s* # 0)

-5
1-s*¢4
Case I(s* = r = 0)
-1—-g¢
Case IA
-1-g¢
Case 11
.8 +2
s*+4
Case 1A is -2
Case IIB
8 +2
st +4

Case IIC is =2

TERWILLIGER
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Case II1
2
s -4
Proof of (1). Immediate.

Proof of (2). Immediate from Theorem 2.1.

Proof of (3). Immediate from Lemma 3.4,

Proof of (4). o; is the sum of (211) over v =0, 1, ..., 1.

Proof of (S). The given values for (g, v, d, €) represent all the integer solutions
to (93) and (98) that satisfy v < 1. In case (i), we have A = pl, by parts (i) and
(vi) of Theorem 4.1. In case (ii)—(v), A = ao(W) is computed using Theorem 2.1
and Note 4.2. a
Acknowledgments

This research was partially supported by NSF grant DMS-880-0764.



