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Abstract. We describe a straightening algorithm for the action of Sn on a certain graded ring Ru.
The ring Ru, appears in the work of C. de Concini and C. Procesi [2] and T. Tanisaki [8], and
more recently in the work of A. Garsia and C. Procesi [4]. This ring is a graded version of the
permutation representation resulting from the action of Sn on the left cosets of a Young subgroup.
As a corollary of our straightening algorithm we obtain a combinatorial proof of the fact that the
top degree component of Ru affords the irreducible representation of Sn indexed by u.

Keywords: graded permutation representation, straightening algorithm, Young's natural representa-
tion, symmetric group

It is well known ([9]) that pu contains the irreducible character xp (in the Young-
Frobenius indexation) with multiplicity 1. It follows by combining the results of
[6] and [2] that 7Ru yields a graded version of this representation. In particular
its graded character is given by a polynomial pu(q), which reduces to pu for q = 1.
We refer to [4] for an elementary presentation of the background material. It
was conjectured by H. Kraft in [6] that xu is given by the top degree component
of pu(q). This conjecture was first proved by de Concini and Procesi in their 1981
paper [2]. Another proof can be found in the 1991 paper of Garsia and Procesi
[4]. In this paper the authors describe the graded character pu(q) as a linear
combination of irreducibles XA with coefficients equal to the cocharge version of
the Kostka-Foulkes polynomials Klu(q) [7]. Garsia and Procesi also construct a
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Introduction

This paper is concerned with certain graded Sn-modules Ru studied by H. Kraft
in [6], C. de Concini and C. Procesi in [2], and more recently by A. Garsia and
C. Procesi in [4].

Given u = (u1, ...,uk) a partition of n let pu denote the character of the
permutation representation resulting from the action of Sn on the left cosets of
the Young subgroup
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homogeneous basis Bu for the ring Ru, and one of their questions was to know
if the action of Sn on the homogeneous component of highest degree of Bu

naturally yields the irreducible representation of Sn indexed by u. Our objective
in this paper is to answer this question by developing a straightening law for the
action of Sn on the basis of Btop of Rtop, the homogeneous component of highest
degree of Ru. As a corollary we obtain an alternative, direct combinatorial proof
of Kraft's conjecture.

One way to obtain the irreducible representation of Sn indexed by u is
through the action of Sn on Young's natural set of units {ETi,T1}i=1 (where Ti for
i = 1, ...nu are the standard tableaux of shape u). More precisely, one obtains
the matrices of the representation by finding the images aETi,T1 for each of the
permutations a of Sn. For a given standard tableau Ti let

We shall show that the action of Sn on a basis Btop of Rtop (the homogeneous
component of highest degree of Ru) is an action identical to the one on Young's
natural units. For this we shall calculate the images of the elements of Btop

under the action of the permutations of Sn. As we shall see in Section 1 the
elements m(Ti) of Btop are monomials indexed by the set of standard tableaux
of shape u. Thus if we let

our result will be that

for all i and j.
This paper is divided into four sections. In Section 1 we give the description

of the ring Ru as a quotient of the polynomial ring Q[x1 , x2, . . . , xn]. We also
describe the basis Btop. These results are due to T. Tanisaki, A. Garsia, and
C. Procesi. In Section 2 we develop some of the congruence relations that will
be needed for working on the quotient right Ru. Section 3 is devoted to the
construction of a straightening algorithm. More precisely we give a rule for
finding the coefficients b j(T i) in the expansion am(Ti) = Ej=1bj(Ti)m(Tj). In
Section 4 we show that this is the same as Young's straightening law.

1. The ring Ru

Some of the results we need have been recently described in a paper of A.
Garsia and C. Procesi [4]. Here we shall adopt their notation. The partitions of
n will be represented by n-vectors:

6
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Figure 1. Ferrers diagrams.

or by their corresponding Ferrers diagrams drawn according to the French
notation. Figure 1(a) gives the Ferrers diagram associated to the partition
At = (0, 0, 1, 2, 2).

The number of positive components of u is the height of u and is denoted by
h(u). The conjugate of a partition u is the partition u' = (u'1, u'2, ..., u'n) whose
Ferrers diagram is the transpose of the diagram of u. In our previous example
h(u) = 3, and u' = (0, 0, 0, 2, 3) (see Figure l(b)). Let Xn = {x1 , x2, ..., xn}
be an ordered set of commuting variables. For any integer r(< n) and for any
subset S C Xn such that r < \S\, let er(S) be the rth elementary symmetric
function of the variables of S, that is

Define dk(u) = Ei=1u'i for all k = 1, ..., n. Let Q[x1, x2, ..., xn] be the ring
of polynomials in the variables X 1 , . . . X n with rational coefficients. Let Iu be
the ideal (in Q[X1, x2,..., xn]) generated by the collection of partial elementary
symmetric functions:

For example when u = (0, 0, 1, 2, 2) we have u' = (0, 0, 0, 2, 3), while (d1(u), ...,
dn(u)) = (0, 0, 0, 2, 5) and (1 - d1(u), ..., 5 - d5(u) = (1, 2, 3, 2, 0). Schemati-
cally we can represent the pairs (k, r) satisfying the condition k - dk(u) <r <k
by the diagram of Figure 2.

The squares with coordinates given by (k, k - dk(u)) for k = 1, ... ,n are
marked with an X. From (1) it is easy to see that the partial elementary

7

The following presentation of the rings Ru is due to T. Tanisaki (see [8]). For a
given u, the ring Ru is given by the quotient
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Figure 2. Schematic representation of pairs (k, r).

symmetric functions er(S) belonging to Cu are the ones for which the points
(|S|, r) are given by the coordinates of all the squares above the one marked
with an X. Thus in our example, I122 is generated by the following 15 partial
elementary symmetric functions:

It is easy to see that there is, in general, redundancy among the generators
of Iu. For example, consider

Note that each of the monomials of the right-hand side of equation (2) is also
included in Iu. Thus it is unnecessary to add e4(X5). We have studied which
partial elementary symmetric functions are sufficient to generate the ideals Iu.
But before we summarize these results in the next two lemmas, observe first
that:

Remark. For any partition u of n it is always true that n - dn(u) = 0; thus, for
all i = 1, ..., n, e i (X n ) will always belong to Cu.

LEMMA 1.1. Let u be a partition of n and let 1 < k < n(k = n) and r + 1 < k.
Any ideal Iu, containing er(S) for all proper subsets S c Xn of cardinality k, also
contains the partial elementary symmetric functions

for all subsets S of cardinality k.
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Proof. Let 5 = {x s 1 , xs2, . . . ,x s k} . Since k is strictly less than n there exists a
variable, say x*, that belongs to Xn but not to S. Define Si to be the set obtained
from 5 by removing the variable xs i, and define 5* to be the one obtained from
S by replacing the variable xsi by the variable x». We shall prove that for any
5 satisfying the conditions of the lemma the following equation holds:

Note that the left-hand side of (3) is by definition

On the other hand, the right-hand side of (3) is equal to:

A moment of thought reveals that in (4) the terms containing x* cancel out,
leaving

which is precisely (r + l)e(r+1)(S). This completes the proof of the lemma since
for all i = 1, ..., k we have that er(S*) belongs to Iu. D

LEMMA 1.2. Let u be a partition of n, and let r < k < n. Any ideal Iu containing
er(S) for all subsets S c Xn of cardinality k-1, also contains the partial elementary
symmetric functions

for all subsets S+ C Xn of cardinality k.

Proof. For any given set S+, of cardinality k, let {Sj}j=1 be the collection of all
subsets of S+ of cardinality k - 1. The proof follows from the fact that:
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Indeed it is easy to see that every monomial xsi ... xsir of e r(S+) appears exactly
(k - r) times on the right-hand side of equation (5). Thus, since each er(Sj)
belongs to Iu so does er(S+). D

We remark that a similar argument shows that if for all S C Xn of cardinality
k, er(S) e Iu then er+1(S') € Iu for all S' C Xn of cardinality k + 1. Note
that this also follows from the two previous lemmas, except for the case where
r = k = n — 1.

Applying these two lemmas to our previous example one realizes that among
the 15 partial elementary symmetric functions needed to generate I122, 8 of
them are superfluous. More precisely, the following seven partial elementary
symmetric functions are necessary and sufficient to generate I122:

The ideals Iu are generated by homogeneous polynomials, thereby inducing
a natural grading on each ring Ru. The symmetric group Sn acts naturally
on Q[X1, . . . , xn] by simply permuting the variables. That is, for each a =
(o1, o2), ..., on) € Sn and each polynomial P(x1 , . . . , xn) e Q[x 1 , x2, ..., xn] we
have:

where ai is the image of the integer i under a. Clearly this action leaves each
of the ideals Iu invariant. Thus, one can define an action of Sn on each of the
quotient rings Ru. One also observes that the natural grading of Ru is preserved
by this action of Sn. As we mentioned in the introduction we shall be concerned
here with the action of Sn on the homogeneous component of highest degree
of a given Ru. A. Garsia and C. Procesi showed in [4] that each ring Ru has
a basis of homogeneous monomials that can be constructed as follows. First,
recall that there is a Ferrers diagram associated to any partition u of n. If one
fills the diagram using all the integers 1 to n the resulting diagram is called an
injective tableau. If the integers in each row and column of an injective tableau
are in increasing order (from left to right, and from bottom to top) the tableau
is said to be standard. Since we are only concerned here with injective tableaux
we shall (by abuse of language) use the term tableau for injective tableau. Given
a partition u, for each tableau T of shape u we shall associate the following
monomial:

where h(i, T) denotes the height of the letter i in T. (Recall that we draw the
tableaux according to the French notation.) Let Bu be the lower order ideal of
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monomials whose maximal elements are the monomials of the standard tableaux
of shape u. Combining Theorem 3.1 and Proposition 4.2 of [4] one obtains that
indeed the monomials of Bu form a basis for the corresponding ring Ru. In
particular the standard tableau monomials {m(T)|T is a standard tableau of shape
u} are a basis for the homogeneous component of highest degree, namely, v
defined by:

where for convenience we let u = (u1, ..., uh(u)) with u1> u2 > • • • > uh(u) > 0.
Denote the highest homogeneous component of Ru by Rtop. In our previous
example a basis for Rtop is given by

Observe that the number of elements of Btop is equal to the number of standard
tableaux of shape u denoted by nu. We claim (Theorem 4.1) that the matrices
obtained by acting with the permutations of Sn on Btop are the same as the
matrices of Young's natural representation. In order to prove this result we have
to express an arbitrary element of the module Rtop as a linear combination of
the elements of the basis Btop. The next section is devoted to the construction of
a straightening algorithm that will (step-by-step) express an arbitrary monomial
in Rtop as a linear combination of the monomials in Btop.

2. Congruence relations in Ru

We first need to determine which monomials of a given ring Ru are congruent
to zero modulo Iu. The following result can be found in a paper by A. Garsia
and N. Bergeron [3]. Let u be a partition of n, and let X = {x1, ...,xn}. For
any sequence of n integers p1, ..., pn let xp = xp1 • • • xpn. Define xp < xq if and
only if pi < qi for all i = 1, ..., n.

LEMMA 2.1. [3, Proposition 4.5]. In Ru a monomial xp is not congruent to zero
(modulo the ideal Iu) if any only if there exists an injective tableau T (of shape u)
such that xp < m(T).

We should mention here that this is an equivalent form of Proposition 4.5 of
[3]. Indeed that proposition states that a monomial in Ru is not congruent to
zero if and only if it is an Sn-image of an element of Bu. Here is a schematic
interpretation of this result that will be useful later on. For any tableau T of
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Figure 3. Sequence of exponents of m(T).

Figure 4. Tableaux T1 and T2.

shape u = (u1, ..., uk) with uk > • • • > u2 > u1 > 0, (u h n, k = h(u)), we shall
represent the sequence of exponents of m(T) by the diagram of Figure 3.

With this in mind, one can reformulate Lemma 2.1 as follows: Any monomial
xp of Ru whose sequence of powers (p 1 , ..., pn) fills at least one of the corner
marked with a circle, is congruent to zero modulo Iu. (One should also realize
that if a monomial of Ru has uk-1 variables of degree 1, uk-2 variables of degree
2, ..., u1 variables of degree h(u) - 1, it is not congruent to zero (and indeed
belongs to Rtop).) Note that two distinct tableaux T1 and T2 can yield the
same monomial m(T). For example if T1 and T2 are as given in Figure 4,
then m(T1) = m(T2) = x3x4x5. Therefore, we shall only consider row-increasing
tableaux. (That is, the ones for which the rows are in increasing order from left
to right). A few more observations are needed before we can give a description
of our straightening algorithm. For this we shall look at an example. Let T be
the following tableau of shape u = (3, 3, 3):

Figure 5. Ribbon delimiting position (2, 3).
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Since T is not a standard tableau, its corresponding monomial m(T) =
X2x6x8x4x5x9 belongs to Rtop but not to the basis Btop. Thus, we shall expand
m(T) as a linear combination of monomials of Btop. For this, notice that the
first break of standardness occurs in position (2, 3). We shall draw a ribbon as in
Figure 5, delimiting the position (2, 3). Let X = {x1 , ..., x9}, A = {x4, x5}, and
B = {x 6 , x8}. The first step of our algorithm will be to transform the monomial
m(T) into a new monomial m'(T) as follows:

1. Subtract one from all the exponents of the variables of m(T) belonging to the
set A.

This yields the new monomial m'(T) = X2x6x8x4x5x9 . The second step consists
of multiplying m'(T) by e2(A U B), to get a polynomial:

If e2(A U B) belonged to €333 we would be done. Indeed we would then have
that

But (6) would simply mean that in R333 we have:

Now looking at the right-hand side of equation (7) one sees that each of the
monomials corresponds to a standard tableau of shape (3, 3, 3). Thus we have
expressed X 2 X 6 x 8 x 4 x 5 x 9 as a linear combination of the elements of the basis B333.
Unfortunately e2(A U B) does not belong to C333, as one can easily see from
Figure 6, which depicts the admissible pairs (\S\, r).

On the other hand, according to our remark of Section 1, e2(X) and e 1 ( X )
are certainly present in C333. We claim here that:

But the left-hand side of (8) is certainly congruent to zero in R333, therefore
yielding (6) and consequently (7). We shall prove this assertion in two steps.
First observe that the sequence of exponents of a monomial corresponding to
any tableau of shape (3, 3, 3) is given by Figure 7(a).

Thus for any i e {1, 3, 7, 9} we have that

Indeed, it is clear that the corresponding sequence of exponents for these
monomials will fill at least one of the forbidden squares introduced in Lemma 2.1
(see Figure 7(b) for the case X 2 X 6 x 8 x 4 x 5 x 9 x 3 ) . Thus, we now have that



14 BARCELO

Figure 6. Admissible pairs (\S\, r).

Figure 7. Sequences of exponents.

where S = {x2, x4, x5, x6, x8}. One realizes that S differs from the set A U B
only in the variable x2. Therefore our next step is to eliminate x2 of S. For this
notice that 62(5) - x 2e 1 (S) has the double effect of removing all pairs x2x j (for
j = 4, 5, 6, 8) from e2(S) and of adding to it the monomial -x\. Thus

But clearly

We are therefore left with

which yields (8) as desired. Observe that it is not always the case that one
application of steps 1 and 2 yields a set of standard monomials (monomials
corresponding to standard tableaux). But as we shall show in Theorem 3.1 a
recursive application of these two steps will eventually lead to a set of standard
monomials. We are now ready to generalize this construction.
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Figure 8. Elements of rows i and i + 1.

Let T be a (row-increasing) tableau where the first break of standardness
occurs in position k of its (i + l)th row. More precisely, reading the entries of
T from left to right and from bottom to top, we are looking for the first integer
of a column which is smaller than the integer immediately below it in that same
column. We shall depict the elements of rows i and i + 1 as in Figure 8.

Let D be the set of variables corresponding to the entries of the first (i-1) rows,
together with Xak+1 , ..., xas and together with the set of variables corresponding
to the entries of rows (i + 2), (i + 3), ..., h(u). Let m(D) be the monomial
obtained from m(T) by removing all the variables not belonging to D. Let
A = {xa1,...., xak}, B = {x b k , . . . , xbm} and C = {xb1,..., xbk-1}. (See Figure 8).

To avoid confusion with indices denote the height of the ith row by h. With
this notation m(T) is given by:

As in the previous example define a new monomial m'(T) by subtracting one
from all the exponents of the variables of m(T) belonging to A. More precisely:

Now using the principle of inclusion-exclusion we define the polynomial p(T) as
follows:
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where xj1• • • xji = 1 when i - 0. Observe that p(T) is congruent to zero in
Ru. The next proposition is the last step we shall need before we give the final
version of our straightening law.

2.

PROPOSITION 2.2.

Proof. Observe first that

Thus p(T) is nothing more than:

Therefore we have that,

It is not too difficult to realize that in the right-hand side of equation (10)
the coefficients of tk involving variables in D or C will give rise to monomials

where e0(C) = 1. On the other hand, we have that
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Figure 9. Permissible and non-permissible squares for the exponents of p(T),

congruent to zero in Ru. Indeed the corresponding sequence of exponents will
be outside the permissible squares of the diagram of Lemma 2.1. See Figure 9,
where A' corresponds to the set of variables which had their exponent diminished
by one.

Thus, we are left with

As we observed earlier on, p(T) = 0 in Ru. Thus

We can now finalize the straightening algorithm.

3. Straightening algorithm in Rtop

We first need a total order on the set of row-increasing tableaux. Define the row
word w(T) of a tableau T, to be the word obtained by reading the successive
rows of T from left to right and from bottom to top. This given, order all
the row-increasing tableaux of shape u according to the lexicographic order of
their corresponding row words. For a given partition u of n let {T1,..., Tnu}
be the set of standard tableaux of that shape, and let {m(Ti)}i=1 be the set of
corresponding monomials. As we saw in Section 1, a basis for Rtop is given by:
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Let T be a nonstandard injective tableau, filled with the integers 1 to n. The
monomial m(T) associated to this tableau is an element of Rtop, and we want to
express it as a linear combination of the elements of Btop. For this we shall give
an algorithm (straightening algorithm) that will explicitly produce the coefficients
ai(T) in the expansion of m(T):

This algorithm is, in its essence, similar to Young's straightening law. For more
details the reader can consult the original work of A. Young, [9, QSA II, p. 95,
QSA III, p. 356] or the more recent work of A. Garsia and M. Wachs [5,
Proposition 2.2]. We shall adopt here the same notation as in [5]. Consider the
set of row words of all the row-increasing tableaux of shape u, ordered according
to the lexicographic order of their corresponding row words. Clearly the first
row word in this ordered set is the one corresponding to the super standard
tableau of shape u. A super standard tableau is a tableau obtained by filling its
rows (from bottom to top and from left to right), with the consecutive integers
1, 2, ...,n. For this super-standard tableau T* (12) reduces to

i.e., ai(T) = 0, for all i = 1 and 01 = 1. Therefore we shall proceed by
induction on this order, and assume that T is the first row-increasing tableau
for which (12) has not yet been established. Assume that the first break of
standardness in T occurs in position k of the (i + l)th row where the element
in this position is smaller (rather than larger) than the element directly below
it. Let A = {ai, ..., ak} and B = {bk, ..., bm} and let SAUB be the symmetric
group over the integers a1, ...ak, bk, ...,bm. Observe that all the letters of A
are smaller than any letter of B. We claim that:

where the sum is over all permutations T (distinct from the identity) in SAUB

where the first \A\ letters and the next \B\ letters are in increasing order. In
two-line notation, this simply means that T has the form:

with TA, TB a pair of subsets (such that \A\ = \TA\, and \B\ = \TB\) partitioning
A U B. Observe first that upon proving (13) our argument will be completed.
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Indeed each monomial on the right-hand side of (13) corresponds to a tableau
TT whose row word is lexicographically smaller than the row word of T. To see
this, one should observe the following two facts:

1. The elements of rows 1, 2, ...i - 1 have not changed.
2. Acting with any of the permutations T(T = e) on T will bring at least one

of the a's down to the ith row. But as we observed earlier, all of the a's
are smaller than all of the b's. This makes the row word w(rT) of rT,
lexicographically smaller than w(T).

We shall now prove (13). First, for any set of integers E we will use the notation
ek(E) to simply represent the elementary symmetric function over the variables
whose indices are given by the set E. Using the construction introduced in
Section 2, let

where m'(T) is the monomial obtained from m(T) by subtracting one from the
exponents of all the variables of m(T) belonging to A. By Proposition 2.2 we
have that:

Observe that p(T) is a sum of monomials, among which we find m(T). Indeed
in

choosing the k elements a1, ..., ak of A, yields that the monomial m'(T)xa1 • • • xak e
p(T). But this monomial is precisely m(T). Thus (11) yields that

where e'k(A U B) = ek(A U B) - xa1 • • • xak. We claim that

Indeed a moment of thought reveals that for each choice of k variables xi1 < •• • <
xik among AUB, the corresponding monomial m'(T)xi1 ... xik of m'(T)ek(AUB)
is precisely m(rT) where TA = {x i1, ..., xik} and TB = {AUB}\{x i1, ..., xik}. D

We have now shown:

THEOREM 3.1. (Straightening algorithm). For any (injective) tableau T of shape
u the coefficients ai(T), described in the algorithm above, satisfy:
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in Rtop where the sum is over all standard tableaux of shape u, ordered according
to the lexicographic order of their corresponding row words.

4. Action of Sn on Rtop

Let n = (u1, ..., uk) be a partition of n. As we mentioned earlier (Section 1),
there is a natural action of the symmetric group Sn on Ru which preserves the
natural grading of Ru. Briefly, for any polynomial P(x1 , ...,xn) of Ru and for
any permutation o of Sn

We want to discuss here the action of Sn on Rtop via its basis Btop. More
precisely for any monomials m(T) of Btop we are interested in finding its image
under the action of a permutation a of Sn. It is not difficult to see that the
images am(T) can be obtained by acting directly with a on the standard tableaux
T themselves: replace every entry i of T by its image a(i). In this manner for
any given standard tableau T of shape u,

We shall show that the matrices obtained from the action of Sn on the elements
of Btop are exactly the same ones resulting from the action of Sn on the so-called
Young's natural units.

We shall first recall the definition of Young's natural units. Again we will use
the notation found in [5]. For a set A of integers define [A] to be the formal
sum of all permutations of A. That is,

if SA denotes the symmetric group of A. Also let [A'] be given by:

Note that [A] and [A'] can be interpreted as elements of the group algebra of
Sn, denoted here by A(Sn). For a given tableau T of shape u, let R1,..., Rk

denote the rows of T (ordered from bottom to top) and C1 , . . . , Ch denote the
columns of T (ordered from left to right). In A(Sn), define the row group of T
to be
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and the signed column group of T:

Next, let E(T) = P(T)N(T) and for any two tableaux T1 and T2 of the same
shape, define

where aT1,r2 is the permutation which sends T2 to T1. Let T1, ..., Tnu be the
standard tableaux of shape u ordered according to the lexicographic order of
their row words (see Section 3). A. Young showed that for any given partition
u of n, and for each s = 1, 2, ..., nu the elements (now called Young's natural
units)

span a subspace of the group algebra A(Sn), which is invariant under left
multiplication. Moreover the matrices expressing this action in terms of this
basis are the same for each a and they give the irreducible representation of Sn

usually indexed by u. From now on set s = 1. We plan to show that for any
given shape u, the matrices resulting from the action of Sn on Btop are exactly
the same as the one resulting from the action of Sn on

ET1,T1, ET2,T1,..., ETnu,T1

Thus for any a e Sn, we shall express aETi1Tl as a linear combination of the
elements of the set {ET1,T1, ET2,T1,..., ETnu,T1}. For this we shall need a few
relations between ETi,T1 and E(T) (for more details see [5, eq. (2.3)]). Given
any two tableaux T1, T2 of shape u, one has

Therefore aETi,T1 becomes:

where T* is the tableau aTi. The reason for replacing aETi,T1 with E(T*)aT*,T1, is
that Young also give an algorithm for expanding any element E(T) (for any injec-
tive tableau T) as a linear combination of elements of {ET i , T , ET2T, • • •, ETnu,T}.
More precisely, this procedure, called Young's straightening formula, is stated as
follows in [5, Proposition 2.2].

LEMMA 4.1. Young's straightening algorithm. For any (injective) tableau T of
shape u there are some coefficients ai(T) giving



22 BARCELO

First observe that using (15) together with (16) we get

Therefore in order to expand aETi,T1 as a linear combination of Young's natural
units {ETi,T1}i=1, we need only to find the coefficients ai(T*) in the expansion of
E(T*) given in (15). The remarkable fact is that Young's proof of Lemma 4.1 is
algorithmic and analogous to our own straightening algorithm given in the proof
of Theorem 3.1. But thanks to A. Garsia and M. Wachs, Young's straightening
algorithm has been eloquently reproduced (as well as generalized to skew-shaped
tableaux) in [5, Proposition 2.2]. Thus, a glance at the proof of Proposition 2.2
of [5] will convince the reader that the coefficients ai(T) of (15) are precisely the
same ones appearing in our previous (12). Thus, keeping in mind the remark
following the definitions of Young's natural units we have proved:

THEOREM 4.2. The action of Sn on the basis Btop of Rtop yields the same matrices
as the action of Sn on Young's basis of natural units for the irreducible representation
indexed by u.
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