Combinatorics of Maximal Minors

DAVID BERNSTEIN AND ANDREI ZELEVINSKY* Department of Mathematics, Northeastern University, Boston, MA 02115

Received December 16, 1991; Revised November 10, 1992

Abstract. We continue the study of the Newton polytope $\prod_{m,n}$ of the product of all maximal minors of an $m \times n$ -matrix of indeterminates. The vertices of $\prod_{m,n}$ are encoded by coherent matching fields $\Lambda = (\Lambda_{\sigma})$, where σ runs over all *m*-element subsets of columns, and each Λ_{σ} is a bijection $\sigma \rightarrow [m]$. We show that coherent matching fields satisfy some axioms analogous to the basis exchange axiom in the matroid theory. Their analysis implies that maximal minors form a universal Gröbner basis for the ideal generated by them in the polynomial ring. We study also another way of encoding vertices of $\prod_{m,n}$ for $m \leq n$ by means of "generalized permutations", which are bijections between (n - m + 1)-element subsets of columns and (n - m + 1)-element submultisets of rows.

Keywords: matching field, Newton polytope, maximal minor

1. Main results

In this paper we continue the study of the Newton polytope $\prod_{m,n}$ of the product of all maximal minors of an $m \times n$ matrix of indeterminates, which had begun in [1]. This study has several algebraic-geometric and analytic motivations and applications, which were discussed in [1]. But the results and methods in this paper are mostly combinatorial, and the proofs use only a bit of convex geometry. Here we prove some of the conjectures made in [1] including Conjecture 5.7 (Theorem 1 below). As shown in [1, §7], this implies the following important property of maximal minors.

THEOREM 0. [1, Conjecture 7.1]. The set of all maximal minors of a generic $m \times n$ matrix $X = (x_{ij})$ is a universal Gröbner basis for the ideal generated by them in the polynomial ring $C[x_{ij}]$.

This paper is essentially self-contained and can be read independently of [1]. To state our main results we reiterate some terminology and notation from [1]. We fix two integers m and n with $2 \le m \le n$. Let $\mathbb{R}^{m \times n}$ be the space of real $m \times n$ matrices. We abbreviate $[n] := \{1, 2, ..., n\}$. Throughout the whole paper

^{*}Partially supported by the NSF (DMS-9104867).

we identify and denote by the same symbol a subset $\Omega \subset [m] \times [n]$ of matrix indices and the corresponding indicator matrix $\sum_{(i,j)\in\Omega} E_{ij}$, where the E_{ij} are matrix units.

For every m-element subset $\sigma \in [n]$ we call a matching with support σ any bijection $\Lambda_{\sigma}: \sigma \to [m]$. By slight abuse of notation, we use the same symbol Λ_{σ} for the graph of a matching $\{(i, j) \in [m] \times [n] : j \in \sigma, i = \Lambda_{\sigma}(j)\}$ (and also for its indicator matrix). A matching field of format $m \times n$ is a choice of a matching Λ_{σ} for each *m*-element subset $\sigma \subset [n]$. Given any matching field $\Lambda = (\Lambda_{\sigma})$, we let $v(\Lambda) = \sum_{\sigma} \Lambda_{\sigma}$ denote the sum of its indicator matrices. The polytope $\prod_{m,n}$ can be combinatorially defined as the convex hull in $\mathbb{R}^{m \times n}$ of the matrices $v(\Lambda)$ for all matching fields Λ (see[1, §1]).

A matching field Λ is called *coherent* if $v(\Lambda)$ is a vertex of the polytope $\prod_{m,n}$. By [1, §1], coherent matching fields can be described as follows. Define the scalar product on $\mathbb{R}^{m \times n}$ by $\langle U, V \rangle = \sum_{i,j} u_{ij} v_{ij}$. Then a matching field $\Lambda = (\Lambda_{\sigma})$ is coherent if and only if there exists a real matrix $\psi = (\psi_{ij})$ such that $\langle \psi, \Lambda_{\sigma} \rangle >$ $\langle \psi, \Lambda'_{\sigma} \rangle$ for every σ and every matching $\Lambda'_{\sigma} : \sigma \to [m]$ different from Λ_{σ} . In this case we say that ψ supports Λ . The set of matrices ψ which support Λ is the normal cone of $\prod_{m,n}$ at the vertex $v(\Lambda)$. It was shown in [1, Proposition 2.2] that every coherent matching field satisfies

the following linkage axiom:

For every $i \in [m]$ and every (m + 1)-element subset $\tau \subset [n]$ there exist two distinct $j, j' \in \tau$ such that the matchings $\Lambda_{\tau \setminus j}$ and $\Lambda_{\tau \setminus j'}$ agree outside the *i*th row, i.e.,

$$\Lambda_{\tau \setminus j} - E_{ij'} = \Lambda_{\tau \setminus j'} - E_{ij}.$$
(1)

Following [1, §5] we associate to every matching field $\Lambda = (\Lambda_{\sigma})$ and every subset $\rho \subset [n]$ of cardinality n - m + 1 a mapping $\Omega_{\rho} : \rho \to [m]$ by the following rule:

$$\Omega_{\rho}(j) := \Lambda_{\overline{\rho} \cup \{j\}}(j), \tag{2}$$

where $\overline{\rho} := [n] \setminus \rho$. As in the case of matchings, we use the same symbol Ω_{ρ} for its graph $\{(i, j) \in [m] \times [n] : j \in \rho, i = \Omega_{\rho}(j)\}$ (and also for its indicator matrix).

We are now in a position to state our first main result. We say that a subset $\Sigma \subset [m] \times [n]$ is transversal to a matching field $\Lambda = (\Lambda_{\sigma})$ if $\Sigma \cap \Lambda_{\sigma} \neq \emptyset$ for all σ .

THEOREM 1. [1, Conjecture 5.7]. Let $\Lambda = (\Lambda_{\sigma})$ be a matching field of format $m \times n$ satisfying the linkage axiom. Then a subset $\Sigma \subset [m] \times [n]$ is transversal to Λ if and only if $\Sigma \supset \Omega_{\rho}$ for some (n-m+1)-element subset $\rho \subset [n]$.

As indicated in the introduction to [1], the linkage axiom is an analog to the basis exchange axiom in the theory of matroids. In the course of the proof of Theorem 1 we sharpen this analogy by presenting two other "matroid-like" characterizations of matching fields which satisfy the linkage axiom.

THEOREM 2. The following conditions on a matching field $\Lambda = (\Lambda_{\sigma})$ are equivalent:

- (a) Λ satisfies the linkage axiom.
- (b) For every two distinct m-element subsets $\sigma, \sigma' \subset [n]$ there exists $j' \in \sigma' \setminus \sigma$ with the following property: if $\Lambda_{\sigma'}(j') = i$ and $j = \Lambda_{\sigma}^{-1}(i)$ then the matchings $\Lambda_{\sigma \setminus j \cup \{j'\}}$ and Λ_{σ} agree outside the *i*th row, *i.e.*,

$$\Lambda_{\sigma \setminus i \cup \{i'\}} - E_{ii'} = \Lambda_{\sigma} - E_{ii}. \tag{3}$$

(c) For every two distinct m-element subsets σ , σ' of [n] having a common column j_0 such that $\Lambda_{\sigma}(j_0) \neq \Lambda_{\sigma'}(j_0)$ there exists an m-element subset $\sigma'' \subset \sigma \cup \sigma' \setminus j_0$ such that $\Lambda_{\sigma''} \subset \Lambda_{\sigma} \cup \Lambda_{\sigma'}$.

Theorem 2 will allow us to prove the following converse of Theorem 1.

THEOREM 3. Let $\Lambda = (\Lambda_{\sigma})$ be a matching field of format $m \times n$. Suppose that every minimal with respect to inclusion subset of $[m] \times [n]$ transversal to Λ coincides with some Ω_{ρ} . Then Λ satisfies the linkage axiom.

Theorems 1-3 will be proven in §2.

From now on we set p := n - m + 1. If p = 1 i.e., m = n, then a matching field Λ is simply a bijection between the set of columns and the set of rows of a square matrix. It was suggested in [1, §6], that the vertices of $\prod_{m,n}$ for the general m and n can be encoded by some bijections between the sets of "generalized columns" and "generalized rows" of a rectangular matrix. To be more precise, let C be the set of all p-element subsets of [n], and R the set of all nonnegative integer vectors $\alpha = (\alpha_1, \ldots, \alpha_m)$ with $\sum_i \alpha_i = p$. Clearly, C and R have the same cardinality $\binom{n}{p} = \binom{n}{m-1}$. Every matching field Λ gives rise to a mapping $w = w_A : C \to R$ defined by

$$w(\rho)_i := \operatorname{card}(\Omega_{\rho}^{-1}(i)). \tag{4}$$

THEOREM 4. If Λ is a coherent matching field then $w_{\Lambda}: C \to R$ is a bijection.

This result establishes Conjecture 6.11 from [1] for coherent matching fields.

THEOREM 5. A coherent matching field Λ is uniquely determined by the bijection $w_{\Lambda}: C \to R$.

We will give two different proofs of Theorem 5. The first one shows that for every matching field Λ (not necessarily coherent) the point $v(\Lambda) := \sum_{\sigma} \Lambda_{\sigma} \in \prod_{m,n}$ is recovered from the mapping $w_{\Lambda} : C \to R$ as follows:

We identify a subset $\rho \subset [n]$ with its indicator vector (ρ_1, \ldots, ρ_n) , where $\rho_j = 1$ if $j \in \rho$, and $\rho_j = 0$ if $j \notin \rho$. For every $\alpha \in R$, $\rho \in C$ we denote by $\alpha \cdot \rho$ an $m \times n$ matrix whose (i, j)-th entry is equal to $\alpha_i \rho_j$. We associate to a mapping $w: C \to R$ the matrix

$$M(w) := \sum_{\rho \in C} w(\rho) \cdot \rho.$$
⁽⁵⁾

Let $\mathbf{1}_{m \times n}$ denote an $m \times n$ matrix with all entries equal to 1.

THEOREM 6. Let Λ be an arbitrary matching field (not necessarily coherent), and $w_{\Lambda}: C \to R$ be the corresponding mapping. Then

$$v(\Lambda) = M(w_{\Lambda}) - {\binom{n-1}{m}} \mathbf{1}_{m \times n}.$$
 (6)

In the second proof of Theorem 5 we assume that Λ is coherent and show that all the sets Ω_{ρ} can be recovered by the bijection $w_{\Lambda}: C \to R$. The set Ris a set of all integer points of a "thick" simplex with vertices pe_1, pe_2, \ldots, pe_m , where e_1, \ldots, e_m are standard basis vectors in \mathbb{R}^m . We make R a graph with α and α' joined by an edge if and only if $\alpha - \alpha' = e_i - e_{i'}$ for some indices $i \neq i'$. By a path from α to α' we mean a chain $(\alpha(0) = \alpha, \alpha(1), \ldots, \alpha(d) = \alpha')$ of minimal possible length such that $\alpha(k-1)$ and $\alpha(k)$ are joined by an edge for $k = 1, \ldots, d$; here d is the distance between α and α' in R.

THEOREM 7. Let $w = w_A : C \to R$ be a bijection corresponding to a coherent matching field A. Let $\rho \in C$, $i \in [m]$, and let $(\alpha(0), \alpha(1), \ldots, \alpha(d))$ be an arbitrary path from $w(\rho)$ to pe_i in R. Then

$$\Omega_{\rho}^{-1}(i) = \bigcap_{k=0}^{d} w^{-1}(\alpha(k)).$$
(7)

Theorem 7 provides some necessary conditions for a bijection $w: C \to R$ to be of the form w_A for a coherent matching field A. Namely, the RHS of (7) must be independent of the choice of a path $(\alpha(0), \alpha(1), \ldots, \alpha(d))$, and the subsets $\Omega_a^{-1}(i)$ defined by means of (7) must satisfy

$$card(\Omega_{\rho}^{-1}(i)) = w(\rho)_i, \ \Omega_{\rho}^{-1}(i) \cap \Omega_{\rho}^{-1}(i') = \emptyset$$
(8)

for all $\rho \in C$ and distinct $i, i' \in [m]$. It turns out that these necessary conditions are sufficient in the case n = m + 1. More precisely, we have the following theorem.

THEOREM 8. Suppose that n = m + 1, i.e., p = 2. Then the following conditions on a bijection $u: R \to C$ are equivalent :

- (a) A bijection u has the form w_A^{-1} for some coherent matching field Λ of format $m \times (m + 1)$.
- (b) For every two distinct $i, i' \in [m]$

$$card(u(2e_i) \cap u(e_i + e_{i'})) = 1, \ u(2e_i) \cap u(e_i + e_{i'}) \cap u(2e_{i'}) = \emptyset.$$
(9)

It would be interesting to investigate how far the conditions (8) are from being sufficient for general m and n.

As a by-product of our proof of Theorem 4 we will derive the following alternative description of the polytope $\prod_{m,n}$. For each nonnegative integer vector $\beta = (\beta_1, \ldots, \beta_m)$ with sum n let Ξ_{β} denote the polytope of nonnegative $m \times n$ matrices having row sums β_1, \ldots, β_m and all column sums equal to 1.

THEOREM 9. The polytope $\prod_{m,n}$ coincides with the Minkowski sum $\sum_{\beta} \Xi_{\beta}$, the summation over all integer vectors $\beta = (\beta_1, \ldots, \beta_m)$ with $\sum_i \beta_i = n$ and all $\beta_i \ge 1$.

Theorems 4-9 will be proven in §3.

2. Proof of Theorems 1-3

Proof of Theorem 2. We will use two equivalent versions of the linkage axiom established in [1].

LEMMA 10. [1, Theorem 2.4 and Proposition 2.13]. The following conditions on a matching field $\Lambda = (\Lambda_{\sigma})$ are equivalent:

- (a) A satisfies the linkage axiom.
- (a') For every (m + 1)-element subset $\tau \subset [n]$ there exists a tree T with the set of vertices τ and the set of edges labeled bijectively by [m], such that for every $j_0 \in \tau$ the matching $\Lambda_{\tau \setminus j_0}$ sends each $j \in \tau \setminus j_0$ to an index i such that the unique path from j to j_0 in T starts with the edge labeled by i.
- (a") For every (m + 1)-element subset $\tau \subset [n]$ and any three different elements j_1 , $j_2, j_3 \in \tau$: if $\Lambda_{\tau \setminus j_1}(j_2) \neq \Lambda_{\tau \setminus j_3}(j_2)$ then $\Lambda_{\tau \setminus j_1}(j_3) = \Lambda_{\tau \setminus j_2}(j_3)$.

To prove Theorem 2 we will establish the implications $(a') \Rightarrow (b) \Rightarrow (c) \Rightarrow (a'')$.

Proof of $(a') \Rightarrow (b)$. Let $\Lambda = (\Lambda_{\sigma})$ be a matching field satisfying (a').

LEMMA 11. [1, Proposition 5.6]. Each subset Ω_{ρ} in (2) is transversal to Λ .

In order to prove that Λ satisfies (b) we choose two distinct *m*-element subsets $\sigma, \sigma' \subset [n]$. We have to show that there exists $j' \in \sigma' \setminus \sigma$ which satisfies (3). Choose arbitrary $j_0 \in \sigma \setminus \sigma'$ and consider the (n - m + 1)-element set $\rho := \overline{\sigma} \cup \{j_0\}$, where $\overline{\sigma} = [n] \setminus \sigma$. By Lemma 11, $\Omega_{\rho} \cap \Lambda_{\sigma'} \neq \emptyset$. Choose a point $(i, j') \in \Omega_{\rho} \cap \Lambda_{\sigma'}$. Now take $\tau := \sigma \cup \{j'\}$ and consider the tree *T* provided by (a'). By definition of Ω_{ρ} , we have $\Lambda_{\tau \setminus j_0}(j') = i$; therefore, the edge *i* in *T* passes through the vertex *j'*. Let *j* be the second end of this edge. Again using (a') we see that $\Lambda_{\tau \setminus j'}(j) = i$, and that $\Lambda_{\tau \setminus j}$ and $\Lambda_{\tau \setminus j'}$ agree with each other outside the *i*th row. But this is exactly the property (3) because $\tau \setminus j' = \sigma$ and $\tau \setminus j = \sigma \setminus j \cup \{j'\}$.

Proof of $(b) \Rightarrow (c)$. We proceed by induction on $p(\sigma, \sigma') := card(\Lambda_{\sigma'} \setminus \Lambda_{\sigma})$. Clearly, $p(\sigma, \sigma') \ge 2$, so we start with the case when $p(\sigma, \sigma') = 2$. Then the set $\tau := \sigma \cup \sigma'$ consists of m + 1 elements, and we have $\sigma = \tau \setminus j', \sigma' = \tau \setminus j$ for some $j, j' \in \tau$, and $\Lambda_{\sigma}(k) = \Lambda_{\sigma'}(k)$ for $k \in \tau \setminus \{j_0, j, j'\}$. Applying the property (b) to the subsets σ and σ' and taking into account that in this case $\sigma' \setminus \sigma$ consists of one element j', we obtain that $\Lambda_{\tau \setminus j_0}(j') = \Lambda_{\sigma'}(j')$, and $\Lambda_{\tau \setminus j_0}(k) = \Lambda_{\sigma}(k)$ for $k \in \sigma \setminus j_0$. Therefore, the subset $\sigma'' := \tau \setminus j_0$ satisfies (c), as desired.

Now suppose that $p(\sigma, \sigma') \ge 3$, and assume that (c) holds for all pairs σ_0, σ' with $p(\sigma_0, \sigma') < p(\sigma, \sigma')$. Apply (b) to σ and σ' , and let $j' \in \sigma' \setminus \sigma, j \in \sigma, i \in [m]$ be the elements satisfying (3). Set $\sigma_0 := \sigma \setminus j \cup \{j'\}$. By (3), $\Lambda_{\sigma_0}(j') = i = \Lambda_{\sigma'}(j')$, and $\Lambda_{\sigma_0}(k) = \Lambda_{\sigma}(k)$ for $k \in \sigma \setminus j$. This implies, in particular, that $\Lambda_{\sigma_0} \subset \Lambda_{\sigma} \cup \Lambda_{\sigma'}$. If $j = j_0$ then the subset $\sigma'' = \sigma_0$ satisfies (c), and we are done; so assume that $j \neq j_0$. By construction, $p(\sigma_0, \sigma') < p(\sigma, \sigma')$, so by inductive assumption we can find $\sigma'' \subset \sigma_0 \cup \sigma' \setminus j_0$ such that $\Lambda_{\sigma''} \subset \Lambda_{\sigma_0} \cup \Lambda_{\sigma'}$. But then $\Lambda_{\sigma''} \subset \Lambda_{\sigma} \cup \Lambda_{\sigma'}$, and we are done.

To complete the proof of Theorem 2 it remains to observe that the property (a'') is a special case of (c) for $\sigma = \tau \setminus j_1, \sigma' = \tau \setminus j_3, j_0 = j_2$.

Proof of Theorem 1. Let $\Lambda = (\Lambda_{\sigma})$ be a matching field which satisfies the linkage axiom, and hence, by Theorem 2, also the property (c). Taking into account Lemma 11 we have only to prove the following statement: If $\Sigma \subset [m] \times [n]$ is transversal to Λ then $\Sigma \supset \Omega_{\rho}$ for some (n - m + 1)-element subset $\rho \subset [n]$. Without loss of generality we can assume that $(m, n) \in \Sigma$ and Σ is minimal transversal to Λ with respect to inclusion. By minimality of Σ , there exists an m-element subset $\sigma \subset [n]$ such that

$$\Sigma \cap \Lambda_{\sigma} = \{(m, n)\}. \tag{10}$$

Consider the restriction of Λ to $[m] \times [n-1]$, i.e., the matching field Λ' of format $m \times (n-1)$ formed by all matchings $\Lambda_{\sigma'}$ with $\sigma' \subset [n-1]$. Let $(\Omega_{\rho'})$ be the corresponding family of subsets of $[m] \times [n-1]$ constructed from Λ' by means of (2); here ρ' runs over (n-m)-element subsets of [n-1]. Let $\Sigma' = \Sigma \cap ([m] \times [n-1])$. Then Σ' is transversal to Λ' . Using induction on n we can assume that $\Sigma' \supset \Omega_{\rho'}$ for some $\rho' \subset [n-1]$ (as a first inductive step we can take n = m, in which case our statement becomes tautological).

Set $\Omega := \Omega_{\rho'} \cup \{(m, n)\}$. We claim that Ω is transversal to Λ . By Lemma 11, Ω is transversal to $\Lambda_{\sigma'}$ for all $\sigma' \subset [n-1]$. It remains to prove that $\Omega \cap \Lambda_{\sigma'} \neq \emptyset$ for each σ' containing n and such that $\Lambda_{\sigma'}(n) \neq m$. To show this we apply the property (c) from Theorem 2 to σ, σ' and $j_0 = n$. We obtain that there exists $\sigma'' \subset ([n-1] \cap \sigma) \cup \sigma'$ such that $\Lambda_{\sigma''} \subset \Lambda_{\sigma} \cup \Lambda_{\sigma'}$. We have already seen that $\Omega \cap \Lambda_{\sigma''} \neq \emptyset$, therefore

$$\Omega \cap ((([m] \times [n-1]) \cap \Lambda_{\sigma}) \cup \Lambda_{\sigma'}) \neq \emptyset.$$

But $\Omega \cap (([m] \times [n-1]) \cap \Lambda_{\sigma}) = \emptyset$ by (10), so $\Omega \cap \Lambda_{\sigma'} \neq \emptyset$, as claimed.

It remains to show that $\Omega = \Omega_{\rho}$ for $\rho := \rho' \cup \{n\}$. But this is clear because for every $j \in \rho$ the matching $\Lambda_{\overline{\rho} \cup \{j\}}$ can intersect Ω only in the element $\Lambda_{\overline{\rho} \cup \{j\}}(j)$ (cf. [1, Lemma 5.4]). Theorem 1 is proven.

Proof of Theorem 3. Suppose that a matching field Λ does not satisfy the linkage axiom. Then the property (c) of Theorem 2 also fails, i.e., there exist two melement subsets σ and σ' of [n] and an index $j \in \sigma \cap \sigma'$ such that $\Lambda_{\sigma}(j) \neq \Lambda_{\sigma'}(j)$, and that there is no matching $\Lambda_{\sigma''}$ contained in $\Lambda_{\sigma} \cup \Lambda_{\sigma'} \setminus ([m] \times \{j\})$. Let $i = \Lambda_{\sigma}(j), i' = \Lambda_{\sigma'}(j)$, and

$$\Sigma := ([m] \times [n]) \setminus (\Lambda_{\sigma} \cup \Lambda_{\sigma'}) \cup ([m] \times \{j\}).$$

Our choice of σ and σ' implies that Σ is transversal to Λ . Choose a subset $\Sigma_0 \subset \Sigma$ which is minimal with respect to inclusion transversal to Λ . Since $\Sigma \cap \Lambda_{\sigma} = \{(i, j)\}, \ \Sigma \cap \Lambda_{\sigma'} = \{(i', j)\}, \text{ it follows that } \Sigma_0 \text{ contains both } \{(i, j)\}$ and $\{(i', j)\}$. Therefore, Σ_0 is not one of the subsets Ω_{ρ} , which proves Theorem 3.

3. Proof of Theorems 4-9

Proof of Theorem 4. We fix a coherent matching field $\Lambda = (\Lambda_{\sigma})$; a matrix $\psi = (\psi_{ij})$ supporting Λ ; and a vector $\alpha = (\alpha_1, \ldots, \alpha_m) \in R$. Since card(R) = card(C), to prove our theorem it is enough to construct $\rho \in C$ such that $w_{\Lambda}(\rho) = \alpha$.

For each nonnegative integer vector $\beta = (\beta_1, \ldots, \beta_m)$ with sum n, let Ξ_β denote the polytope of nonnegative $m \times n$ matrices having row sums β_1, \ldots, β_m and all column sums equal to 1. Let Γ_β be the vertex of Ξ_β supported by ψ ; we assume ψ to be sufficiently generic so that Γ_β is unique. Clearly, each Γ_β is a (0,1)-matrix, and we identify it with its support which is a subset of $[m] \times [n]$, and also with the mapping $[n] \to [m]$ whose graph is this subset.

For each $i \in [m]$ let $\beta(i)$ denote the vector

$$\beta(i) = (\alpha_1 + 1, \alpha_2 + 1, \dots, \alpha_{i-1} + 1, \alpha_i, \alpha_{i+1} + 1, \dots, \alpha_m + 1).$$
(11)

LEMMA 12. For every two distinct indices i, i' = 1, ..., m the *i*th row of $\Gamma_{\beta(i)}$ is contained in the *i*th row of $\Gamma_{\beta(i')}$.

Proof. We associate to *i* and *i'* an edge-colored oriented graph $G_{i,i'}$ with the vertex set [m] and the color set [n] as follows: There is an edge from i_1 to i_2 colored by *j* whenever $i_1 \neq i_2$, $(i_1, j) \in \Gamma_{\beta(i)}$ and $(i_2, j) \in \Gamma_{\beta(i')}$. Lemma 12 is an immediate consequence of the following lemma.

LEMMA 13. The graph $G_{i,i'}$ is an oriented chain from i' to i.

Proof. First we show that $G_{i,i'}$ has no oriented cycles. Suppose there is an oriented cycle

 $i_1 \xrightarrow{j_1} i_2 \xrightarrow{j_2} \dots \xrightarrow{j_{p-1}} i_p \xrightarrow{j_p} i_1.$

Consider two subsets $S = \{(i_1, j_1), (i_2, j_2), \dots, (i_p, j_p)\}$ and $S' = \{(i_2, j_1), (i_3, j_2), \dots, (i_p, j_{p-1}), (i_1, j_p)\}$ of $[m] \times [n]$. These two subsets occupy the same rows and columns, and we have $S \subset \Gamma_{\beta(i)}$, $S' \subset \Gamma_{\beta(i')}$. But this contradicts the fact that both $\Gamma_{\beta(i)}$ and $\Gamma_{\beta(i')}$ are supported by the same linear functional ψ . Indeed, without loss of generality we can assume that $\langle \psi, S \rangle < \langle \psi, S' \rangle$. But then $\Gamma_{\beta(i)} + S' - S$ is a point in the polytope $\Xi_{\beta(i)}$ with $\langle \psi, \Gamma_{\beta(i)} + S' - S \rangle > \langle \psi, \Gamma_{\beta(i)} \rangle$, which contradicts our choice of $\Gamma_{\beta(i)}$.

We define the valency of a vertex i_0 in $G_{i,i'}$ as the number of edges going out of i_0 minus the number of edges going into i_0 . Since the graph describes passing from $\Gamma_{\beta(i)}$ to $\Gamma_{\beta(i')}$, all the vertices have valency 0, except *i* having valency -1and *i'* having valency 1. Since $G_{i,i'}$ has no oriented cycles, it can be only a chain from *i'* to *i*. This completes the proof of Lemmas 12 and 13.

Now let $\rho(i) := \Gamma_{\beta(i)}^{-1}(i)$ be the set of columns occupied by the *i*th row of $\Gamma_{\beta(i)}$, and let $\rho = \bigcup_{i=1}^{m} \rho(i)$. By Lemma 12, the subsets $\rho(i)$ are mutually disjoint. Since $card(\rho(i)) = \alpha_i$, it follows that $card(\rho) = p$, i.e., $\rho \in C$.

Put $\Omega := \bigcup_{i=1}^{m} (\{i\} \times \rho(i))$. To prove Theorem 4 it suffices to show that $\Omega = \Omega_{\rho}$, which implies that $w_{\Lambda}(\rho) = \alpha$.

LEMMA 14. There exists a tree T with the vertex set [m] whose edges are labeled bijectively by $\overline{\rho} := [n] \setminus \rho$, such that:

(a) For every $i \in [m]$

 $\Gamma_{\beta(i)} = \Omega \cup \{ (i', j) \in [m] \times \overline{\rho} : i' \xrightarrow{j} i \}.$

(b) For every $j_0 \in \rho_i$

$$\Lambda_{\overline{\rho}\cup\{j_0\}} = \{(i, j_0)\} \cup \{(i', j) \in [m] \times \overline{\rho} : i' \xrightarrow{j} i\};$$

$$(12)$$

here the notation "i' \xrightarrow{j} i" means that the unique path from i' to i in T starts with the edge labeled by j.

Proof.

(a) By Lemma 12, $\Omega \subset \Gamma_{\beta(i)}$ for each $i \in [m]$, and the difference $\Gamma_{\beta(i)} \setminus \Omega$ is the graph of a bijection $\Lambda'_{[m]\setminus i} : [m] \setminus i \to \overline{\rho}$. Passing to transpose matrices, we

represent the family of bijections $(A'_{[m]\setminus i}), i = 1, ..., m$ as a matching field of format $(m-1) \times m$ with the row set $\overline{\rho}$ and the column set [m]. This matching field is coherent because it is supported by the transpose of ψ . Therefore, it can be described as in Lemma 10 (a'), which is exactly our statement.

(b) Put $\sigma = \overline{\rho} \cup \{j_0\}$. Clearly, the RHS of (12) is (the graph of) a matching $\Lambda'_{\sigma} : \sigma \to [m]$. By (a), $\Lambda'_{\sigma} \subset \Gamma_{\beta(i)}$. It follows that $\Lambda'_{\sigma} = \Lambda_{\sigma}$; otherwise, $\Gamma_{\beta(i)} - \Lambda'_{\sigma} + \Lambda_{\sigma}$ would be a point of the polytope $\Xi_{\beta(i)}$ having a bigger value of the supporting form ψ than $\Gamma_{\beta(i)}$.

Comparing (12) with (2), we see that if $j_0 \in \rho(i)$ then $\Omega_{\rho}(j_0) = i$. Therefore, $\Omega = \Omega_{\rho}$, which completes the proof of Theorem 4.

Proof of Theorem 9. Let ψ be a generic linear form on the space of matrices. Let $\Lambda = (\Lambda_{\sigma})$ be a coherent matching field supported by ψ , and for each nonnegative integer vector $\beta = (\beta_1, \ldots, \beta_m)$ with $\sum_i \beta_i = n$ and all $\beta_i \ge 1$, let Γ_{β} be the vertex of Ξ_{β} supported by ψ . It is enough to show that the vertex $v(\Lambda) := \sum_{\sigma} \Lambda_{\sigma}$ of $\prod_{m,n}$ coincides with the vertex $\sum_{\beta} \Gamma_{\beta}$ of $\sum_{\beta} \Xi_{\beta}$. This is a consequence of the following lemma.

LEMMA 15. For every $(i, j) \in [m] \times [n]$ there exists a bijection between the set of all m-element subsets $\sigma \subset [n]$ such that $j \in \sigma$ and $\Lambda_{\sigma}(j) = i$, and the set of all β as above such that $(i, j) \in \Gamma_{\beta}$.

Proof. Choose $\sigma \ni j$ such that $\Lambda_{\sigma}(j) = i$. Take $\rho = \overline{\sigma} \cup \{j\} \in C$ and define $\alpha = w_A(\rho) \in R$. Let $\beta = \beta(i)$ be a vector associated to α by means of (11). Using the description of Γ_{β} and Λ_{σ} given by Lemma 14, we obtain the following relation:

$$\Gamma_{\beta} = \Lambda_{\sigma} + \Omega_{\rho} - E_{ij}.$$
(13)

This implies that $(i, j) \in \Gamma_{\beta}$, and hence the mapping $\sigma \mapsto \beta$ is a desired bijection. Lemma 15 and Theorem 9 are proven.

Proof of Theorems 5 and 6. As usual, we will identify subsets of $[m] \times [n]$ with their indicator matrices. By definition,

$$v(\Lambda) = \sum_{\sigma} \Lambda_{\sigma} = \sum_{\sigma} \sum_{j \in \sigma} \{(\Lambda_{\sigma}(j), j)\}$$

Let us represent each one-element set $\{(\Lambda_{\sigma}(j), j)\}$ in the sum as a difference $\{\Lambda_{\sigma}(j)\} \times (\overline{\sigma} \cup \{j\}) - \{\Lambda_{\sigma}(j)\} \times \overline{\sigma}$. We can write then $v(\Lambda) = M_1 - M_2$, where

$$M_1 = \sum_{\sigma} \sum_{j \in \sigma} \{\Lambda_{\sigma}(j)\} \times (\overline{\sigma} \cup \{j\}), M_2 = \sum_{\sigma} \sum_{j \in \sigma} \{\Lambda_{\sigma}(j)\} \times \overline{\sigma}.$$

We will show that $M_1 = M(w_A)$, $M_2 = \binom{n-1}{m} \mathbf{1}_{m \times n}$.

If we put $\rho = \overline{\sigma} \cup \{j\}$, then by (2) we have $\Lambda_{\sigma}(j) = \Omega_{\rho}(j)$. Therefore, the summation for M_1 can be rewritten as

$$M_1 = \sum_{\rho \in C} \sum_{j \in \rho} \{\Omega_{\rho}(j)\} \times \rho.$$
(14)

Remembering the definition of w_A we see that the inner sum in (14) is $w_A(\rho) \cdot \rho$, so $M_1 = M(w_A)$, as desired.

As for M_2 , substituting $i = \Lambda_{\sigma}(j)$ we can rewrite the summation as

$$M_2 = \sum_{i,\sigma} \{i\} \times \overline{\sigma}$$

Therefore, for every *i* and *j* the (i, j)-th entry of M_2 is equal to the number of (n-m)-element subsets $\overline{\sigma} \subset [n]$ which contain *j*, i.e., to $\binom{n-1}{n-m-1} = \binom{n-1}{m}$. This completes the proof of Theorem 6. To prove Theorem 5 it remains to observe that a coherent matching field Λ is uniquely determined by the vertex $v(\Lambda)$.

Proof of Theorem 7. Let $\alpha = (\alpha_1, \ldots, \alpha_m) = w_A(\rho)$. Then the distance d from α to pe_i is equal to $p - \alpha_i$, and the first vector in a path from α to pe_i has the form $\alpha(1) = \alpha + e_i - e_{i'}$ for some $i' \neq i$. Let $\rho' = w_A^{-1}(\alpha(1))$. By induction on d, to prove Theorem 7 it is enough to show that

$$\Omega_{\rho}^{-1}(i) = \rho \cap \Omega_{\sigma}^{-1}(i).$$
⁽¹⁵⁾

Let $\beta(1), \ldots, \beta(m)$ be a family of vectors associated to α by means of (11). By (13), $\Omega_{\rho}^{-1}(i)$ is the set of columns occupied by the *i*th row of $\Gamma_{\beta(i)}$. Now apply the same statement to a family $\beta'(1), \ldots, \beta'(m)$ associated by the same rule (11) to the vector $\alpha(1)$. By definition, $\beta'(i) = \beta(i')$, so we obtain that $\Omega_{\rho'}^{-1}(i)$ is the set of columns occupied by the *i*th row of $\Gamma_{\beta(i')}$. Now (15) follows at once from the description of $\Gamma_{\beta(i)}$ and $\Gamma_{\beta(i')}$ given by Lemma 14. Theorem 7 is proven.

Proof of Theorem 8. The implication $(a) \Rightarrow (b)$ is clear because for n = m + 1, the condition (9) is simply another way of saying (8). So we suppose that a bijection $u: R \to C$ satisfies (9), and we wish to show that $u = w_A^{-1}$ for some coherent matching field A of format $m \times (m + 1)$.

Consider the edge-colored graph T with the set of vertices [m+1] and the set of colors [m], where two vertices j and j' are joined by an edge colored with i whenever $u(2e_i) = \{j, j'\}$. Clearly, T has m edges, each color appearing exactly once.

LEMMA 16. Suppose that $s \ge 2$, and $j_1, j_2, ..., j_s$ are distinct elements of [m + 1] such that j_k and j_{k+1} are joined in T by an edge colored with i_k for k = 1, ..., s - 1. Then

$$u(e_{i_k} + e_{i_{k'}}) = \{j_k, j_{k'+1}\}$$
for all $1 \le k \le k' \le s - 1$.
(16)

Proof of Lemma 16. We proceed by induction on s. For s = 2 the equality (16) is simply the definition of the graph T, and for s = 3 it follows at once from (9). So we can assume that $s \ge 4$, and that (16) holds for all pairs (k, k') except (1, s - 1). By (9), the two-element set $u(e_{i_1} + e_{i_{s-1}})$ has nonempty intersection with each of the sets $u(2e_{i_1}) = \{j_1, j_2\}$ and $u(2e_{i_{s-1}}) = \{j_{s-1}, j_s\}$. Therefore, $u(e_{i_1} + e_{i_{s-1}})$ has the form $\{j, j'\}$, where $j \in \{j_1, j_2\}, j' \in \{j_{s-1}, j_s\}$. But our inductive assumption implies that

$$\{j_1, j_{s-1}\} = u(e_{i_1} + e_{i_{s-2}}), \{j_2, j_{s-1}\} = u(e_{i_2} + e_{i_{s-2}}), \{j_2, j_s\} = u(e_{i_2} + e_{i_{s-1}}).$$

Since u is a bijection, the only opportunity left is $u(e_{i_1} + e_{i_{s-1}}) = \{j_1, j_s\}$, as desired.

By Lemma 16, every two vertices in T are connected by at most one chain; hence, T has no loops. Since T has m + 1 vertices and m edges, we conclude that T is a tree. Consider the matching field Λ of format $m \times (m + 1)$ associated to the tree T as in Lemma 10 (a'). Then Λ is coherent by [1, Theorem 2.4]. Comparing Lemma 16 with the formulas (2) and (4) above, we see that $u = w_A^{-1}$, which completes the proof of Theorem 8.

Reference

1. B. Sturmfels and A. Zelevinsky, "Maximal minors and their leading terms," Advances in Math, 98 (1993), 65-112.