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as sums indexed by sets of alternating sign matrices invariant under a 180° rotation. If we put t = 1,
these expansion formulas reduce to the Weyl's denominator formulas for the root systems of type
Bn and Cn. A similar deformation of the denominator formula for type £>„ is also given.
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Introduction

An n x n matrix A = (aij) is called an alternating sign matrix if it satisfies the
following four conditions:

(1) aij € {1, 0, -1}.
(2) Zk=1 aik = 0 or 1 for any i and j.
(3) Zk=1 akj = 0 or 1 for any i and j.
(4) Zk=1 akj = Zk=1 ail = 1 for any i and j.

Such matrices were introduced by W. Mills, D. Robbins and H. Rumsey, Jr. [3].
Their connection with descending plane partitions and self-complementary totally
symmetric plane partitions was studied in [3] and [4].

If we denote by An the set of all n x n alternating sign matrices, then we have
(see [6, 7])

Abstract. An alternating sign matrix is a square matrix whose entries are 1, 0, or -1, and which
satisfies certain conditions. Permutation matrices are alternating sign matrices. In this paper, we
use the (generalized) Littlewood's formulas to expand the products
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where i(A) = Zi<k,j>l aijakl is the inversion number of A; s(A) is the number
of -1s in A; 6(A n - 1 ) = t(n-1,n-3, ..., -n-1); and xa = xa1...xan for a =
t(a1, ..., an). Alternating sign matrices with s(A) = 0 are the permutation
matrices. So, substituting t = -1 in (1), we obtain the Weyl's denominator
formula for the root system of type An-1 (or GL(n, C)):

where Sn is the symmetric group consisting of n x n permutation matrices and
l(w) = i(w) is the length of w e Sn.

The aim of this article is to prove the following deformations of denominator
formulas for the root systems of type Bn and Cn:

where Bn (resp. Cn) is the set of all 2n x 2n (resp. (2n + 1) x (2n + 1))
alternating sign matrices which are invariant under a 180° rotation; 6(Bn) =
t(n-1,n-3, .... 1, -1 -(n-1)); S(Cn) = t(n, n-1 ..., 1, 0, -1, ..., -n);
and xa = xa1 ...xan for a = t(a1, ..., an, (0), -an, ..., -a1). (See Sections 2
and 3 for the definition of i+ (A) and i2(A).) If we put t = 1 in (2) (resp. (3)),
we can obtain the denominator formula for the root system of type Bn (resp.
Cn). We also give a deformation corresponding to the root system of type Dn

in Section 4.
It would be an interesting problem to give an intrinsic interpretation of

alternating sign matrices in terms of root systems.

1. Alternating sign matrices and monotone triangles

In this article, we denote the set of integers by Z. For nonnegative integers n
and m, we put [n] = {1,2,...,n} and Zn,m = [n] x [m].
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We fix the notations concerning partitions (see [2]). A partition is a non-
increasing sequence A = (A1, A 2 , . . . ) of nonnegative integers Ai with finite sum
| A |= Zi>1 Ai. The length l(A) of a partition A is the number of nonzero terms
of A. We often identify a partition A with its Young diagram D(A) = {(i, j) e
Z x Z; 1 < j < Ai, 1 < i < l(A)}.

The conjugate partition of A is the partition A' whose Young diagram D(A') is
obtained from D(A) by reflection with respect to the main diagonal. If A = A',
then we call A a self-conjugate partition.

A partition A is called distinct if A1 > A2 > • • • > A l (A) > 0. For example,
6n = (n, n - 1, ..., 2, 1) is a distinct partition.

Next we introduce the Frobenius notation. For a partition A, we define

Then we write

The partition A can be recovered from a and B by putting

1.1. Alternating sign matrices

A vector a = (a1,..., an) is called sign-alternating if it satisfies

(1) aie{1,0, -1}.
(2) Zk=1 ak = 0 or 1 for i = 1, ..., n.

Then the nonzero entries of a sign-alternating vector alternate in sign.

Definition. Let A be a distinct partition with length n such that A1 < m. An
n x m matrix A = (aij)1<i<n,1<j<m is a A-altemating sign matrix if the following
conditions hold:

(1) Every row and column is sign-alternating.
(2) Zj=1 aij = 1 for any i.
(3) Zi=1 aij = 1 if j = Ak for some k and 0 otherwise.

Let A be a distinct partition with length n. It follows from the definition that,
if A is an n x m A-alternating sign matrix, then aij = 0 for all i and j > A1. So
the number m of columns of a A-alternating sign matrix is irrelevant so far as
m > A1. We denote by A(A) the set of all A-alternating sign matrices. Then we
have
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the set of all n x n alternating sign matrices (defined in Introduction). For a
A-alternating sign matrix A € A(A), we define

called the number of inversions of A. And we denote by a(A) the number of -1s
in A (see [3]).

1.2. Monotone triangles

Definition. A triangular array

is a monotone triangle if it satisfies

(1) Each row is strictly increasing.
(2) ti+1,j < ti,j < ti+1,j+1 for all i = 1, ..., n - 1 and j = 1, ..., i - 1.

For a distinct partition A of length n, let M(A) be the set of all monotone
triangles with bottom row A. For a monotone triangle T = (tij), we put

max(T) = #{(i, j): ti+1,j < ttj = ti+1,j+1},
sp(T) = #{(i, j) : ti+1 < tij < ti+1, j+1},

xT = x01x02-01...x0n-0n-1,x T = x 0 1 x 0 2 - 0 1 . . . x0n-0n-1,

where 8i is the sum of the ith row of T.
To a A-alternating sign matrix A = (aij) e A(A), we associate a matrix

B(A) = (bij) by putting

Then we can define a triangular array T = T(A) by the condition that the number
j appears in the ith row of T if and only if bij = 1. For example, if
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then we have

PROPOSITION 1.1. Let A be a distinct partition with length n.

(1) T gives a bijection from A(A) to M(A).
(2) For A e A(A), we have

i(A) = max(T(A)) + sp(T(A)),

s(A) = sp(T(A)).

Proof. It is easy to see that T is a bijection and that s(A) = sp(T(A)). From (6)
and (7), we have

It follows from the definition of T(A) = (tij) that

Hence we have

i(A) = #{(i, j): tij > ti+1,j} = max(T) + sp(T). D

For a partition A with length < n, we denote by sA(x1 , . . . , xn) the Schur
function corresponding to A.

T. Ibkuyama [7] proved the following formula by using the representation theory
of general linear groups (see [5] for an alternate proof).

PROPOSITION 1.2. ([7, Theorem 2.1], [5, Theorem 4]) Let A be a partition with
length < n. Then we have
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We put A = 0, the unique partition of 0, in Proposition 1.2. Then we can use
Proposition 1.1. to obtain a deformation of the Weyl's denominator formula for
the root system of type An-1.

COROLLARY 1.3.

This corollary reduces to the denominator formula, if t = -1.
Let JN be the N x N antidiagonal matrix given by

Then, for an N x N matrix A = (ay), J N AJ N is the matrix obtained by a 180°
rotation, i.e., if JNAJN = (aij), then aij = aN+1-i,N+1-j Here we quote a lemma
from [2].

LEMMA 1.4. ([2, I.(1.7)]). For a partition v c (mn), we have

LEMMA 1.5. Let A be an N x N alternating sign matrix and A' = JNAJN. For
i = 1,..., N, let A(i) (resp. ui) be the partition such that A(i) + 8i (resp. u(i) + Si)
is the ith row of T(A) (resp. T(A')). Then A(i) is the conjugate partition of u(N-i).

Proof. Let A = A(i) and u = u(N-i). If we put B(A) = (btj) and B(JAJ) = (bij),
then we have bij = 1 - bN_ i , N + 1 - j . Hence, the number j appears in the ith row
of T(A) if and only if N + i - j does not appear in the (N - i)-th row of T(A').
That is,

On the other hand, by applying Lemma 1.4 to A c ((N - i)i), we have

Hence, we see that

This gives Al = ul. D
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2. Deformation for Bn type

In this section we give a deformation of the Weyl's denominator formula for the
root system of type Bn.

Let Bn be the set of all 2n x 2n alternating sign matrices invariant under a
180° rotation, i.e.,

Definition. Let L = {(i,j;k,l) e Z2n,2n * Z2n,2n :i<k,j>l} and define subsets
L1, L2, L+, and L± of L as follows:

For each subset L*, * = 1, 2, + , ±, and A e Bn, we put

Moreover we put

From the definition, we have, for A e Bn,

The main result of this section is

THEOREM 2.1.

where 6(Bn) =
 t(n - 1, n - 3, ..., 1, -1, ..., -(n - 1)) and xa = x a 1 . . . f o r

a = t(a1, ..., an, -an, ..., -a1).

In order to prove this theorem, first we note the following.
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PROPOSITION 2.2. For A e Bn, let T+(A) be the monotone triangle consisting of
the first n rows of T(A). Then the correspondence T+ gives a bijection

where A runs over all self-conjugate partitions A such that A c (nn).

Proof. follows from Proposition 1.1 and Lemmas 1.4 and 1.5.

LEMMA 2.3. Let A e Bn and T = T+(A) € M(A + 6n). Then we have

(1) i+(A) = max(T) + sp(T).
(2) s(A) = 2sp(T).
(3) x6(Bn)-A6(Bn) = xTx-1x-2 . . . x-n.

(4) i±(A) = |A|.
(5) i + (A)- i - (A) = p(A).

Proof. (1) and (2) follows from Proposition 1.1.(2).
(3) Since Zj=1 aij = 1, the ith component of 6(Bn) - A6(Bn) is equal to

1 {(2n - 2i + 1) - Zj=1 aij(2n - 2j + 1)} = Zj=1jaij - i, which is the sum of
the ith row of T.

(4) The definition says that

By the symmetry J2nAJ2n = A, we have

Hence, we have

Since A is self-conjugate, we see that

Therefore we obtain i±(A) =| A |.
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(5) By definition and (10), we have

The following formula due to D.E. Littlewood is the key to our proof of
Theorem 2.1.

LEMMA 2.4. ([1, p. 238], [2,I Ex. 5.9])

where A rum over all self-conjugate partitions such that A c (nn).

Proof of Theorem 2.1. Replacing xi by txi in Lemma 2.4 and using Proposition
1.2, we obtain

Then the proof follows from Proposition 2.2 and Lemma 2.3 together with (8)
and (9). D

If we put W(Bn) = {A e Bn : s(A) - 0}, then W(Bn) is the Weyl group of
the root system

,• 2n+1-i
where ei = t(0,...,0,1,0,...,0, -1 ,0...,0). By substituting t = 1 in Theo-
rem 2.1, we obtain the denominator formula
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COROLLARY 2.5. (to Theorem 2.1).

where l(A) = i1(A) + i2(A)/2 is the length of Ae W(Bn).

3. Deformation for Cn type

Next we consider a deformation of the denominator formula for the root system
of type Cn.

Let Cn be the set of all (2n + 1) x (2n + 1) alternating sign matrices invariant
under a 180° rotation, i.e.,

Definition. Let L = {(i, j; k, l) € Z2n+1,2n+1 x Z2n+1,2n+1 : i < k, j > l} and
define subsets L0, L1, L2, L+, and L± of L as follows:

For each subset L*, * = 0, 1, 2, +, ±, and A e Cn, we put

Moreover we put

Then we have

The main result of this section is



ALTERNATING SIGN MATRICES AND SOME DEFORMATIONS 165

THEOREM 3.1.

where 6(Cn) = t(n, n- 1, ..., 1, 0, -1, ..., -n), xa = xa1...xan if a = t(a1, • • • •
an, 0, -an ,..., -a1).

For simplicity, we write

Now we consider a partition A = (a1,..., ap|B1,..., Bp) satisfying

For such a partition A, we put

Then these quantities can be expressed in terms of a and (3.

LEMMA 3.2. Let A = (a|B) (a = (a1,...,ap), B = (A,...,BP),p = p(A)) be a
partition satisfying (14). Then we have

(1) q(A) = #{k € [p]: ak > 0}.
(2) Let v = (r|r) be the self-conjugate partition defined by

Then

In particular, we have r(A) = |v|.
(3) u(A) is given by
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where Bp+1 + 1 = 0.

Proof.

(1) This follows from (4).
(2) First we show that, if (k, m) e D(v) and k < m, then Ak + Am > k + m. In

this case, we note that k < p and m < rk + k.

(i) If k < m < p, then Ak > k and Am > m, so we have Ak + Am > k + m.
(ii) If k = m = p, then it follows from (k, m) € D(v) that ap > 0, so Ap > p.

Hence, we have Ak + Am = 2AP > 2p = k + m.
(iii) If k < p < m and ak > Bk+1 + 1, then 7k = ak - 1 and Bk + k >

ak — 1 + k = 7k + k > m. So we have Ak = ak + k = 7k + 1 + k>m
and Am > k, hence, Ak + Am > k + m.

(iv) If k < p < m and ak = Bk+1 + 1, then 7k = ak and Bk+1 + k + 1 =
7k + k > m. So we have Ak = ak + k = 7k + k > m and Am > k, hence
Ak + Am > k + m.

Therefore we obtain Ak + Am > k + m for (k, m) e D(v). Similarly we can
show that Ak + Am < k + m for (k, m) £ D(v). Hence, we have

(3) Here we note that, if k = m and Ak + Am = k + m, then k = m = p and
ap = 0. Now we suppose that Ak + Am = k + m and k < m.
First we show that Ak = m and Am = k. If Ak < m, then we can see that
k < p < m. Hence, we have

so that Bk+1 + 1 > m - k > ak. This contradicts (14). We have a similar
contradiction if Ak > m. Therefore we have Ak = m and Am = k.
Next we show that Bk +1 > ak > Bk+1 +1. Then we can check that k < p < m.
From (4), we have Ak = ak + k = m. On the other hand, from (5), we have
Bk + k > m and Bk+1 + k + 1 < m. Hence, we see Bk + 1 > ak > Bk+1 + 1.
Therefore we obtain
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So, considering the cardinalities of both sides completes the proof. D

PROPOSITION 3.3. For AeC n , le t T+(A) be the monotone triangle consisting of the
first n rows of T(A). Then the correspondence T+ gives a bijection

where A runs over all partitions A satisfying (14).

Proof. For a partition A = (a\B) c ((n + l)n), we put

Then, by considering the shifted diagrams of A + 6n and A' + 6n+1, we can see
that A satisfies (14) if and only if

Now, if A e Cn and T+(A) has the bottom row A + 6n, then the (n + l)-th row
of T(A) is A' + 6n+1 by Lemma 1.5, so that A satisfies (14). Conversely, given
T e M(A + 6n), where A satisfies (14), we can define a monotone triangle T by
adjoining A' + 6n+1 to T. If V = (uij)1<i<n+1,1<j<2n+1 corresponds to T under
the bijection in Proposition 1.1, then if follows from Lemma 1.4 that the matrix
A = (aij)1<i,j<2n+1 defined by

is an alternating sign matrix belonging to Cn and T+(A) = T. D

LEMMA 3.4 Let A € Cn and T = T+(A) e M(A + 6n). Then we have

(1) i+(A) = max(T) + sp(T).
(2) x6(Cn)-A6(Cn)

 = xTx-1x-2...x-n.
(3) i±(A) = r(A).
( 4 ) i + ( A ) - i - ( A ) = q(A)
(5) i0(A) = 2(|A|-r(A))
(6) The number of -1s in the (n + 1)-th row of A is equal to u(A). Hence

s(A) = 2sp(T) + u(A).
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Proof. We prove only (5) and (6). The other statements can be proved in the
same way as in the proof of Lemma 2.3. If we put B(A) = (bij), then it follows
from Lemma 1.6 that

(3) By the symmetry J2n+1AJ2n+1 = A and (15), we have

From (15), we see

and, from (16),

Hence, we have

(4) The number of -1s in the (n + l)-th row of A is equal to

which is u(A) by (15) and (16). D

Our proof of Theorem 3.1 needs the following generalization of the Little-
wood's formula.
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LEMMA 3.5.

summed over all partitions A satisfying (14).

Remark. If t = 0 and 1, then the above Lemma reduces to the known Littlewood's
formulas (see[ 1, p. 238], [2, I. Ex. 5.9.]):

where T (resp. p) runs over all partitions of the form r = (a1 , . . . ,ap \a1 , . . . , ap)
(resp. p = (a1 + 1, ..., ap + l|a1, ..., ap)) such that a1 < n — 1.

To prove Lemma 3.5, we fix a partition A = (a|B) satisfying (14). We put
Ek = min(ak, Bk) (k = 1, ..., p) and a = (e|e). Then

And we put

LEMMA 3.6.

Proof. By Lemma 3.2, if ap > 0, then

and, if ap = 0, then
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So it is enough to show

If Bk + 1 > ak > Bk+1 + 1, then we have 7k = ak - 1 and ek = ak; hence,
ek - 7k = 1. If Bk + 1 = ak > Bk+1 + 1. then we have 7k = ek = ak - 1. If
Bk + 1 > ak = Bk+1 + 1, then we have 7k = ek = ak. Therefore, we obtain (17).

D

For a subset J of S, we put

It is checked that e(J)1 > e(J)2 > ... > e(J)P > 0. So we can define a partition
o ( J ) - (e(J) \e (J) ) . Similarly, if ap = 0, then we can define a self-conjugate
partition a(J) = (e(J)\e(J)), where

LEMMA 3.7.

(1) A/o(J) is a vertical strip, i.e., 0 < Ai - a( J)i < 1 for all i.
(2) A/a( J) is a vertical strip.
(3) If IT is a self-conjugate partition such that p(ir) = p and A/TT is a vertical strip,

then there exists a subset J and S such that TT = <o(J).
(4) If IT is a self-conjugate partition such that p(n) = p — 1 and A/TT is a vertical

strip, then there exists a subset J of S such that TT = <o(J).

Proof. (1) If k < p, then e(J)k = ak or ak - 1, hence

Let k > p and suppose that Ak - o( J)k > 2. Then, by (5), there exists an integer
i such that
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so that Bi+1 > e(J)i.

(i) If i e J, then it follows from Bi + 1 > ai (resp. Bi + 1 = ai) that
ei = ai > Bi+1 + 1 (resp. ei = ai - 1 > Bi+1 + 1), which contradicts
Bi+1 > e(J)i.

(ii) If i & J, then e(J)i = ai -1, so we have Bi+1 + 1 > ai, which contradicts
ai > Bi+1 + 1.

Therefore we have Ak - o(J)k < 1 for any k.

(2) This follows from (1).
(3) Let TT = (n\n) be a self-conjugate partition such that p(n) = p and A/ir is

a vertical strip. Then, putting J = {k e [p] : ek - nk = 1}, we show that
J C S. Suppose that ek-nk = 1. If Bk + 1 = ak, then ek = ak - 1, hence,
Ak - irk = 2, which contradicts the assumption that A/TT is a vertical strip. If
ak = Bk+1 + 1, then ek = ak and it follows from ir = ir' that Am - irm > 2
where m = k + Ak, which also contradicts the assumption. Hence we see
that J cS and TT = o( J).

(4) This also follows from (3). D

The following lemma is well known.

LEMMA 3.8.

(1)

summed over all partitions u such that u/r is a vertical r-strip
(2) If T is a self-conjugate partition and u/r is a vertical strip, then n satisfies (14).
(3)

Proof. (1) See [2, I.(5.17)]; (2) is easy; (3) see [2, I.(2.2)]. D

Now we are in position to prove Lemma 3.5.

Proof of Lemma 3.5. If u(A) is even, then the coefficient of sA on the right-hand
side of Lemma 3.5 is equal to
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By Lemma 3.6 and the definition of o(J), it is equal to

Similarly, if u(A) is odd, then the coefficient of sA on the right-hand side of
Lemma 3.5 is equal to

Hence, it follows from Lemma 3.7 that the right-hand side of Lemma 3.5 is

where, in the above summations, r runs over all self-conjugate partitions such
that T c (nn), and A runs over all partitions such that A satisfies (14) and A/r is
a vertical strip. But, for fixed r, Lemma 3.8 implies

Therefore Lemma 2.4 completes the proof of Lemma 3.5. D

Remark. By similar argument, we can prove

where A = (a|B) runs over all partitions satisfying

and

It would be interesting to give a bijective proof to this identity.

Proof of Theorem 3.1. By substituting txi for xi in Lemma 3.5 and using
Proposition 1.2, we obtain
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Now by using (11)-(13), Proposition 3.2 and Lemma 3.3, we have

If we put W(Cn) = {A e Cn : s(A) = 0}, then W(Cn) is the Weyl group of the
root system

i 2n+2-i
where ei = t(0,...,0,1,0,...,0, -1 ,0,...,0). By substituting t = 1 in Theo-
rem 3.1, we obtain the denominator formula.

COROLLARY 3.9. (to Theorem 3.1).

where l(A) = i1(A) + i2(A)/2 is the length of A e W(Cn).

4. Deformation for Dn Type

Finally we give a deformation for the root system of type Dn.

Definition. Let Dn be the set of all 2n x (2n-1) matrices A = (aij)1<i<2n,1<j<2n-1

satisfying the following conditions:

(1) Every row is sign-alternating.
(2) Every column, except for the nth column, is sign-alternating.
(3) aij = a2n+1-i,2n-j.
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(4) The vector (a1n,..., ann) is sign-alternating and Zi=1ain = 1.

Let L = {(i, j;k, l) 6 Z2n,2n-1 x Z2n,2n-1 : i < k, j > l} and define subsets
L1, L2, L+, and L± of L as follows:

For each subset L*, * = 1, 2, +, ± and A e Dn, we put

Moreover, for A e Dn, we put

THEOREM 4.1.

where 6(Dn) = t(n - 1, n - 2, ..., 1, 0, 0, -1, ..., -(n - 1)) and 6'(Dn) = t(n -
1,n-2, . . .1,0,-1. . . , -(n-l)1.

We can prove this theorem in a way similar to that of Theorem 2.1, so we
omit the proof.

Let W(Dn) be the subgroup of W(Bn) consisting of matrices A such that
i1(A) is even. Then W(Dn) is the Weyl group of

i 2n+1-i
where ei =t(0,...,0,1,0,...,0, -1 ,0,...,0). The subset W(Dn) = {A e Dn :
s(A) = 0} of Dn can be identified with the Weyl group W(Dn) as follows.

PROPOSITION 4.2. For A € W(Dn), let A = (aij)1<i<2n,1<j<2n-1 be the matrix
defined by
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Then this correspondence A i-> A is a bijection between W(Dn) and W(Dn). More-
over the length of A is given by

Therefore, substituting -1 for t in Theorem 4.1, we obtain the Weyl's denom-
inator formula.

COROLLARY 4.3. (to Theorem 4.1).

By considering 2n x (2n + 1) matrices, we can give another deformation for
the root system of type Cn.

Definition. Let Cn be the set of all 2n x (2n+ 1) matrices A = (aij)1<i<2n,1<j<2n+1

satisfying the following conditions:

(1) Every row is sign-alternating.
(2) Every column, except for the (n + l)-th column, is sign-alternating.
(3) aij = a2n+1-i,2n+2-j.
(4) The vector (a1,n+1,... , an, n+1) is a sign-alternating vector and En

=1 ai,n+1 =
0.

Let L = {(i, j; k, 1) e E2n,2n+1 x E2n,2n+1 : i < k, j > 1} and define subset
L1, L2, L+ and L± of L as follows:

For each subset L*, * = 1, 2, +, ± and A 6 Cn, we put

Moreover, for A € C'n, we put

THEOREM 4.4.
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where S(Cn) =
 t(n, n - 1, ..., 1, 0, -1, ..., -n) and 6'(Cn)= t(n, n - 1, .., 1,

-1, .., -n).

If t = -1, then this theorem reduces to the denominator formula.
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