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Abstract. In the first part we generalize the notion of strongly independent sets, introduced in [10]
for polynomial ideals, to submodules of free modules and explain their computational relevance.
We discuss also two algorithms to compute strongly independent sets that rest on the primary
decomposition of square free monomial ideals.

Usually the initial ideal in(I) of a polynomial ideal / is worse than /. In [9] the authors observed
that nevertheless in(/) is not as bad as one should expect, showing that in(I) is connected in
codimension one if / is prime.

In the second part of the paper we add more evidence to that observation. We show that in(7)
inherits (radically) unmixedness, connectedness in codimension one and connectedness outside a
finite set of points from / and prove the same results also for initial submodules of free modules.
The proofs use a deformation from / to in(I).
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1. Introduction

In this paper we present some results about independent sets with special emphasis
on the connection to initial ideals and modules.

Let S = k[xv, v 6 V] be a polynomial ring over a field k, equipped with a
noetherian term order <,/ c 5 an ideal, and in(I) the initial ideal of /, i.e., the
ideal generated by the leading terms lt(f) of all / € /.

a C V is an independent set modulo I iff k[xv : v e <r]n I = (0). This definition
generalizes a notion well known for prime ideals, see [9] and the references cited
therein. A(I) := {a C V : a is independent mod I} is a simplicial complex for
arbitrary ideals I c S, the independence complex of /.

In general it is difficult to find (maximal) independent sets. In their paper
[10], the authors therefore investigated the connections between independent
sets of / and independent sets of in(I), strongly independent sets in their notion.
in(I) usually reflects many properties of / but has a comparatively simple com-
putational and combinatorial structure. Hence, one should expect connections
between independent and strongly independent sets to be useful for computation-
al purposes. This is indeed the case. More precisely, Kredel and Weispfenning
prove in [10] that strongly independent sets of maximal size are independent sets
of maximal size equal to dim S/I. Moreover the authors present an algorithm
to construct all strongly independent sets (according to <) that can easily be
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implemented in a Grobner computation environment.
Computationally submodules of free modules often behave like ideals. Sec-

tion 2 is devoted to an extension of the notions introduced above to this more
general situation. Moreover we discuss two algorithms for computing strongly
independent sets that employ the close connection between independent sets and
the primary decomposition for (radical) monomial ideals. Such a decomposition
can be easily computed, see, e.g., [11] or [2].

In [10] the question arose of whether for prime ideals I all maximal strongly
independent sets are of the same size, the dimension of I. Reformulated,
this means that rad in(I) should be unmixed provided / is prime. Meanwhile
Kalkbrener and Sturmfels [9] proved this conjecture to be valid. Moreover they
showed that for a prime ideal I the simplicial complex A(in(I)) is strongly
connected.

In the second part we generalize the proof for the fact that in(I) is (radically)
unmixed if I is so to in(M) for the submodule M of the free module F. It
doesn't use the connectedness theorem [5, Corollary 1] but rests more directly
on a deformation from M to in(M). Along the same lines we generalize the
connectedness theorem [9, Theorem 1] from prime ideals to ideals and modules
connected in codimension one and prove that for homogeneous ideals / the
scheme Proj S/in(I) and hence A(in(I)) is connected provided Proj S/I is so.
These considerations shed some more light on the main observation of [9] that
in(I) is worse than / but not as bad as one should expect.

All examples of prime ideals I considered in [9] satisfy the stronger condition
that A(in(/)) is even locally strongly connected since |A| is a ball. This is
trivially satisfied for A(J) since it is a matroid complex. We give an example
which shows that this property need not transfer to A(in(I)).

2. Strongly independent sets and primary decomposition of monomial ideals

The first topic of this section is a generalization of the notion of independent
sets to submodules of free modules.

Let S be as in the introduction, Q(S) := S(0) its quotient field, and F = S®kk
r

a free S-module with basis {e1,..., er}. Embed F into the symmetric algebra
S(F) := S ®k S(kr) - k[xv, ei : v eV,i e 1 . . . r ] and extend < to a noetherian
term order on S(F). This defines a module term order on F. Any vector f e F has
a unique representation / = m1 + m2 + ... + mk with terms m1> m2 > ... > mk.
Define the leading term lt(f) := m1, for M C F the leading module in(M) etc.
in the usual way. in(M) splits as a submodule of F into the direct sum of r
monomial ideals.
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Define a C V to be an independent set modulo M iff a is independent mod
(M : gF), the annulator of F/M in 5 and strongly independent modulo M iff it
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is independent modulo in(M).
For r = 1 these definitions coincide with the classical ones given in the

introduction. Since / 6 M : F implies in(f) e in(M): F, we conclude that again
strongly independent sets are independent. Moreover in(M) : F = r\sins(M)
implies that a C V is strongly independent mod M iff it is independent (in the
ideal-theoretic sense) mod in s (M) for some s. If we denote the independence
complex of M by A(M) this means A(M) D A(in(M)) = UaA(ins(M)).

Since the dimensions of M and in(M) coincide, we get another way to compute
dim F/M = max(dim S / i n k ( M ) : Vfc) : It is the maximal size of a strongly
independent set modulo M.

In [10] the authors describe an algorithm DIMREC for the computation of
all strongly independent sets of ideals that rests on an inspection of variable sets
in a search tree. Below we use the connection between strongly independent
sets and primary decompositions of monomial ideals for another approach to the
problem.

As explained above we may restrict our attention to squarefree (since A(I) =
A(rad I)) monomial ideal I c S. For any such ideal there is a simplicial complex
A C 2V on the vertex set V such that I is generated by the "minimal non faces"
of A, see, e.g., [13]. Define A(d) = (xv:v#cr) for a C V. Then
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is the primary decomposition of the ideal /, and hence A coincides with the
collection A(I) of independent sets mod I.

Such a decomposition can easily be computed, either by induction on the
number of generators of I as in [11] or by induction on the number of vari-
ables involved as in [2]. Run time experiments, based on REDUCE and the
author's research package CALI [8], suggest that both algorithms are better than
DIMREC. The best performance was obtained with the algorithm from [2].

It is well known, see, e.g., [4], that the codimension problem is NP-hard
in n, the number of variables involved. By Sperner's theorem the number of
strongly independent sets may indeed grow exponentially in n. On the other
hand, the prime decomposition algorithm for monomial ideals in [11], inducting
on the number of generators, shows that the number of independent sets is
(constructively) bounded by O(md) with m the number of generators of I and d
an upper degree bound (< n) for them.

Example. Consider for 0 < k < n the following squarefree monomial ideals:

and I(n) := J(0, n). An easy induction argument shows that J(k, n) has the
following prime decompositon:
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Hence I(n) has n("2
+1) independent sets. On the other hand, both algorithms

cited above compute a monomial prime decomposition through the inductive
step

3. Some connections between in(M) and M

Let S, F, M be as in the previous section and < a term order on S(F).
Any such term order can essentially be represented by a weight vector w e

(RW)(W := V U [1.. .r]) with nonnegative weights, see [12]. More precisely,
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defines a partial order on the set of terms and for any (total) term order <
there exists a unique w such that < refines <„,.

Since w € (N^)* defines a grading on S(F), every vector f e F has a
unique decomposition / = f1 + f2 + ... into w-homogeneous components with
degwf1 > degw f2 > .... Set ltw(f) := f1 and inw(M) : = < ltw(f) : f e M >.

Several term orders may define the same initial module in(M). They can be
described as refinements of a certain partial term order on NW with a finitely
generated (pointed) positivity cone, see, e.g., [7]. Since the weight vectors
of these refinements form the dual of this positivity cone, there is a term

Counting the monomial prime ideals involved during the algorithm we obtain
the following complexity:

and thus

Hence on these examples the proposed algorithms are exponential in the number
of maximal independent sets produced. A better performance may be achieved
by a random ordering of the input monomials as, e.g., proposed in [3]. It's an
open question whether there is a deterministic algorithm with linear complexity in
the number of maximal independent sets (i.e., that effectively finds each maximal
independent set exactly once).
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order with positive integer weights w0 e (NW)* among them belonging to its
interior. Hence inWo(M) = in(M). Moreover if M1, M2, ..., Mm is a finite
collection of submodules of F, there is even a weight vector w € (NW)* such that
inw(Mk) = in(Mk) for all k simultaneously. Indeed, the union of the positivity
cones of all Mk is contained in the positivity cone of < and finitely generated.
Hence it defines a pointed cone, too.

With w = w0 we can associate a one-parameter deformation from M to in(M)
as in [1]. More precisely, assume that the finite set of terms E generates in(M)
and

is the corresponding Grobner basis. Let t be a new variable. Then

is a Grobner basis of the submodule Mt of Ft := Sr generated over St := S[t] by
this set. Moreover w(m) > w(n) for all m, n such that rmn ^ 0 by construction.
Hence the fibers Rc := Ft/Mt <8>k k[t]/(t - c) are isomorphic to R = F/M for
c £ 0 and to R0 = F/in(M) for c = 0.

Alternatively Mt can be described as the homogenization of M with respect
to the weight vector w. Define

as the homogenization map and the dehomogenization map respectively, i.e.,

Then Mt = h(M) and h(M) is generated by all (w-)homogeneous vectors
f ( t ) € Ft such that f(1) 6 M. This immediately implies that t is a nonzero
divisor on Ft/Mt and proves the following

LEMMA 1. rk(M) = rk(in(M)) and dim F/M = dim F/in(M)(=dim Ft/Mt - 1).

Let p € SpecS be a prime ideal. Recall that M C F is p-primary iff
Ass F/M = {p} where p = rads(M : F) is a prime. More general, for a primary
decomposition M = nQi we obtain
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The following lemma is the crucial point in the argument below.

LEMMA 2. Let M CF be a submodule of the free module R Then

Hence

Proof. Let M = r\Qi be the primary decomposition of M with Qi c F Pi -primary.
Fix a weight vector w e (NW)* such that in(M) = inw(M)in(Qi) = inw(Qi),
and in(pi) - inw(pi) for all i. Then Mt = h(M) = D/i(Qi) is the primary
decomposition of Mt where h(Qi) is (rad(h(Qi) : h(F)) = h(pi))-primary. Since

it remains to prove that the latter expression is equal to rads(in(M): F) + (t).
Assume f e (h(M) : h(F) + (t)), i.e., (f + at)h(F) C h(M) for some a e St.

Evaluating at t = 0 we conclude that f(0)F C in(M), i.e., f(O) e in(M) : F.
Since F = f(0) (mod t) it follows that f e in(M): F + (t).

Assume xa e in(M) : F, i.e., xaei e in(M) = in(h(M)) for all i. This
implies that for all i there is a representation xaei = mi - t(£ aikek) with certain
mi e h(M). In particular we get a representation

Use this representation to eliminate er from all other expressions. We obtain
representations

By an induction argument we immediately get for all i

and hence (xa)r € h(M): h(F) + (t). a

We are now ready to state our results on the connection between M and
in(M).
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Define M to be (radically) unmixed iff all isolated components of Supp F/M
are of the same dimension. The following result generalizes [9, Corollary 1].

THEOREM 1. If M is unmixed of dimension d then in(M) is unmixed of dimension
d and A(in(M)) is pure of dimension d— 1.

Proof. The latter assertion follows directly from the decomposition of A(in(M))
obtained in Section 2. To prove the former one, by Lemma 2 we can restrict
ourselves to the case where M is a prime p of dimension d in 5. But then
Pt(= h(p)) is a homogeneous prime of dimension d+1 in St and since in(p) + (t) =
pt + (t) with the nonzero divisor t we conclude that in(p) is unmixed of dimension t.

n

As a consequence, in difference to the general case discussed above, the
dimension of an unmixed ideal can be obtained from its Grobner basis in linear
time with respect to the number of variables, since any two maximal (with respect
to inclusion) strongly independent sets have equal size.

Note that neither (true) unmixedness transfers from I to in(7) nor (radically)
unmixedness from in(I) to I:

Macaulay's curve
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being prime, has an initial ideal

with embedded prime, whereas

is radically mixed, but radin(I) = (x) is unmixed.
Define M to be connected in codimension 1 iff M is unmixed, say of dimension

d, and any two isolated components Qi and Qj in the primary decomposition
M = (~\Qi can be connected by a sequence Qi = Qi0, Qi1, • • •, Qim = Qj of
components of M such that dimF/(Qik-1 + Qik) = d - 1 for all k = 1,... ,m.

A simplicial complex A is strongly connected iff any two maximal faces <?i, GJ e A
can be connected by a sequence of maximal faces <TJ = a^, <r<, , . . . , a^ = o, such
that tonVu-il = lff«*-iVi»l = 1 for k = 1 , • • • ,m, see [9]. This definition is
equivalent to the property of SpecS/I(A) being connected in codimension one.

Let m := (xv : v e V) be the irrelevant ideal of 5. The following result
combines connectedness resp. connectedness in codimension 1 of M and in(M).
It generalizes [9, Theorem 1] where the same results are proved for prime ideals.
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THEOREM 2.

(a) Let k be algebraically closed. Assume Supp F/M remains connected after remov-
ing any finite set of (closed) points. Then (Supp F/in(M)\{m} is connected
and A(in(M)) is a connected simplicial complex.

(b) If M is connected in codimension 1 then in(M) is so and A(in(M)) is a strongly
connected simplicial complex.

Proof.

(a) W.l.o.g. we may assume dim S/P > 1 for all minimal primes of M.
Assume (Supp F/in(M))\{m} is not connected. Since (Supp S/in(P))\{m}
is connected for P e Ass F/M, [9, Theorem 1], by Lemma 2, M decomposes
into two parts M = A n B such that Supp F/in(A) and Supp F/in(B) have
only m in common. Since in(A) + in(B) C in(A + B), this implies F/(A + B)
zero-dimensional, a contradiction.

(b) If Supp F/in(I) were not connected in codimension one, we would likewise
find a decomposition M = A n B, such that dim F/(A + B) < d - 2, since
Spec S/in(P) for P € Ass F/M is connected in codimension one, again by
[9, Theorem 1]. D

The restriction given in (a) is essential since Supp S/in(M) is always connected.
For homogeneous ideals (and modules) (a) can be reformulated:

COROLLARY 1. Let I c 5 be a homogeneous ideal. If Proj S/I is connected then
Pro] S/in(I), A(J) and A(in(J)) are so.

Define a simplicial complex A to be locally strongly connected iff link&a is
connected for all a e A such that dim a < dim A - 2 (including the empty face
if dim A > 0). It follows that A is strongly connected in the sense of [9].

If J is a prime ideal, A(J) is locally strongly connected since it is a matroid
complex. Moreover in all examples given in [9], A(in(I)) is also locally strongly
connected since it is always a quasimanifold in the sense of [6].

Example.
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This is the Grobner basis with respect to the pure lexicographic term order
of the prime ideal with generic point (s3,s2t, stu,su(u - s),u2(u - s)), see [11,
8.6.2]. Since in(I) = (X0 ,X1) n (x0,x4) n (x1,x3) n (x2 ,x4) , we get A(in(I)) =
((234), (123), (024), (013)). This complex is not locally connected at a = (0).
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This example shows that locally connectedness may not transfer to in(I) even
for prime ideals.

References

1. D. Bayer,"The division algorithm and the Hilbert scheme," Thesis, Harvard University, Cam-
bridge, MA, 1982.

2. D. Bayer and M. Stillman, "Computation of Hilbert functions," J. Symb. Comp. 14 (1992), 31-50.
3. A.M. Bigatti, P. Conti, L. Robbiano, and C. Traverso, "A divide and conquer algorithm for

Hilbert-Poincare series, multiplicity and dimension of monomial ideals," to appear.
4. G. Carra Ferro, "Some properties of the lattice points and their application to differential

algebra," Comm. Alg. 15 (1987), 2625-2632.
5. W. Fulton and J. Hansen, "A connectedness theorem for projective varieties, with applications to

intersections and singularities of mappings," Ann. Math. 110 (1981), 26-92.
6. H.-G. Grabe, "Uber den Stanley-Reisner-Ring von Quasimannigfaltigkeiten," Math. Nachr. 117

(1984), 161-174.
7. H.-G. Grabe, "Moduln iiber Streckungsringen," Results in Math.15 (1989), 202-220.
8. H.-G. Grabe, CALl-A REDUCE Package for Commutative Algebra, Version 1.0, 1992 (available

through the REDUCE library redlib@rand.org).
9. M. Kalkbrener and B. Sturmfels, "Initial complexes of prime ideals," Adv. Math, to appear.

10. H. Kredel and V. Weispfenning, "Computing dimension and independent sets for polynomial
ideals," J. Symb. Comp. 6 (1988), 231-247.

11. B. Renschuch, Elementare und praktische Idealtheorie, Deutsche: Verlag der Wissenschaften, Berlin,
1976.

12. L. Robbiano, "On the theory of graded structures," J. Symb. Comp. 2 (1986), 139-170.
13. R.P. Stanley, Combinatorics and commutative algebra, Birkhauser, Boston, 1983.

145


