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Abstract. We prove that various subarrangements of Coxeter hyperplane arrangements are free. We
do this by exhibiting a basis for the corresponding module of derivations. Our method uses a theorem
of Saito [24] and Terao [30] which checks for a basis using certain divisibility and determinantal
criteria. As a corollary, we find the roots of the characteristic polynomials for these arrangements,
since they are just one more than the degrees in any basis of the module. We will also see some
interesting applications of symmetric and supersymmetric functions along the way.
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1. Introduction

Our aim is to show that certain subarrangements of the Coxeter arrangements
are free by explicitly calculating bases for the corresponding modules of deriva-
tions. As immediate corollaries, we will be able to read off the roots of their
characteristic polynomials. First, however, we need to set up some definitions
and notation. We will follow the book of Orlik and Terao [19] as much as
possible.

Let K be a field, and let

be an arrangement (finite set) of hyperplane subspaces in Kn. Thus all our
hyperplanes will be central, i.e., going through the origin. Let L = L(A) be the
poset of intersections of these hyperplanes ordered by reverse inclusion. Thus
L has a unique minimal element 0 corresponding to Kn, an atom corresponding
to each Hi, and a unique maximal element 1 corresponding to n1<i<kHi. It is
well known that L is a geometric lattice with rank function
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for any X € L. Let (u (X) = p,(0, X) denote the Mobius function of the lattice.
Then the characteristic polynomial of L is

If x(A r) = 0 then r is called an exponent of A. (When A is an arrangement
coming from a root system, then r is an exponent of the corresponding Weyl
group.) The multiset (= set with repetitions) of exponents of A will be denoted
exp(A).

Now consider the polynomial algebra A = K [ x 1 , . . . , xn] - K[x] with the
usual grading by total degree A = ®i>oAi. A derivation is a K-linear map

satisfying

for any f,g € A. The set of all derivations is an .A-module. It is graded by
saying that 9 has degree d if 8(Ai) C Ai+d. This module is free with a basis
given by the operators d/dxi, ..., d/dxn. It will often be convenient to display
a derivation as a column vector whose entries are its components with respect
to this basis. Thus if

where pi(x) e K[x] for all i, then we write

Let ei, ..., en denote the coordinate vectors in Kn with the variables x1, ..., xn

being considered as elements of the corresponding dual basis. So any hyperplane
H C Kn is defined by an equation

where aH is a linear polynomial. Thus, the arrangement A in (1) is determined
by the form

Consider the associated module of A-derivations defined by
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We say that A is a free arrangement if D(A) is a free A-module. Terao first
introduced free arrangements and proved the following fundamental theorem
[29, 30]. A simpler proof was obtained with Solomon [25].

THEOREM 1.1. // A is free then

(1) D(A) has a homogeneous basis 01( . . . , 0„,
(2) the set

depends only on A,
(3) the exponents of A are the nonnegative integers

Notice that if 0, is presented in matrix format, then the corresponding exponent
can be read off as the degree of one (any) of the entries.

In order to find such homogeneous bases, we use a result whose holomorphic
version is due to Saito [24], and whose algebraic analogue comes from Terao
[30] and Solomon-Terao [25], Given any set of derivations 6^, . . . , 9n, consider
the rectangular matrix whose columns are the corresponding column vectors

THEOREM 1.2. Suppose 91, . . . , On e D(A) where A has defining form Q. Then
the following conditions are equivalent:

(1) det 9 = cQ where c € K is nonzero,
(2) A is free with basis 61, . . . , On.

Thus, we can prove that an arrangement A is free by constructing homogeneous
derivations that

(1) are in the submodule of A-derivations and
(2) have the proper determinant.

If A is an arrangement, then we will use ©(A) to denote the set of all matrices
0 corresponding to a basis of D(A).

We can simplify the verification of the first of these two conditions as follows.
Note that Q \ 9(Q) if and only if aH | 9(Q) for all hyperplanes H in the
arrangement, since the aH are relatively prime. Furthermore, aH \ 6(Q) is
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equivalent to aH \ 0(aH), since 9 is a derivation. Thus, we have our basic tool
in the following result (see [19, Proposition 4.8]).

COROLLARY 1.1. Let 61, ..., 9n be derivations and let A be an arrangement. Then
the 6i form a basis for D(A) if

1. aH | 9i(aH) for all H € A, and
2. det@ = cQ where c e K is nonzero.

Many of our free arrangements will come from those which interpolate between
two Coxeter arrangements. Certainly, any finite set P C Kn of vectors gives
rise to the arrangement whose hyperplane subspaces are the H = px for p e P.
Here, orthogonal complement is being taken using the standard bilinear form
on Kn with respect to the basis e1, . . . , en. Let R and 5 be root systems with
R c S. By adding the roots of S\R to R one at a time, one obtains a sequence
of subsets each of which determines a hyperplane arrangement. It turns out that
these arrangements are often free and so the associated characteristic polynomials
factor over the nonnegative integers. Zaslavsky [31] was the first to consider
the family of hyperplane arrangements interpolating between the root systems
Dn and Bn. These investigations were continued by Cartier [4], Orlik and
Solomon [18], Orlik-Solomon-Terao [12, Example 2.6], Ziegler [34], and Hanlon
[11]. Surprisingly, other interpolating families seem not to have been studied
previously, even though they are related to the notion of inductive freeness.

2. Linear interpolations

In this section we will consider the cases where the number of roots in S\R
is a linear function of the dimension of R. First, however, we must introduce
our fundamental arrangements, which will be the three infinite families of Cox-
eter arrangements. It will be convenient in what follows to use the notation
{v,, . . . , Vn}1 = {v1, .. . , v1}. Now let

and

and

The arrangements in (3). (4), and (5) are said to be Coxeter arrangements of type
A. B. and D, respectively. If K is of characteristic 2 then An_1 = Dn. To avoid
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this degeneracy, we assume in the rest of this paper that the characteristic of K
is not 2.

To describe the matrices in &(A) for each case, we will need to define some
derivations. Let

where xi = x1x2 . . .x i - 1x i + 1 . .xn - 1xn . We will sometimes use the abbreviation
X1 = X. Although our notation does not take the number of variables into
account, we always assume it is n unless stated otherwise. This given, we have
the following theorem (see Orlik [16]).

THEOREM 2.1. The Coxeter arrangements (3)-(5) are free. They have defining
forms, basis matrices, and exponents as follows.

(1) For type A,

(2) For type B,

(3) For type D,

First we will interpolate between An-1 and An. Let

It will also be convenient to let Pd = d/dxd. So, as a column vector, Pd has a
one in the dth position and zeros elsewhere. The next result should be compared
with [12, Example 2.6] and [19, Example 4.55].



296 JOZEFIAK AND SAGAN

THEOREM 2.2. The arrangements An,k are free with

where we view An.o as an arrangement in Kn+1.

Proof. The equation for Q is obvious. Also, the fact about the exponent set will
follow immediately from our assertion about &(An,k). Thus, we will only prove
the latter.

We first check the divisibility condition in Corollary 1.1. All the derivations
of the form Xd are part of a basis for D(An). Thus, we automatically have
aH | X d ( a H ) for all H 6 An,k Q An. As for 6 = c(x)Pn+1, there are two
possibilities. If aH = xi - xj where i < j < n + 1, then 0(aH) = 0 since only
the n + 1st entry of Pn+1 is nonzero. So clearly aH \ 0(aH) in this case. If
aH = xi - xn+1 where i < k, then aH | c(x). Thus, again, aH \ 0(aH).

As far as the determinant criterion in Corollary 1.1, let 9 be the matrix in
the statement of the theorem. Then we have

It is instructive to make a table of the exponents for the interpolating
arrangements of Theorem 2.2. Assume that n = 3. So A3,0 (which is A2 except
for the ambient space) has exp(A3,0) = {0, 1, 2, 0} while A3,3 (which is exactly
A3) has exp(A3,3) = {0, 1, 2, 3}. For the intermediate steps, we have

where we have set the exponent that has changed in italic. The behavior of the
changing exponent mirrors the fact that the last basis element of An,k is obtained
from that of An,k-1 by multiplying by xk - xn+1, which is of degree one. We
encourage the reader to make such an exponent table for each theorem that
follows.
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Many of our proofs will use the same reasoning as Theorem 2.2. Thus, we
will pass over the facts about the defining form and exponent multiset without
mention. Furthermore, checking the divisibility condition often uses a few simple
facts about derivations which we collect in the next lemma for easy reference.

LEMMA 2.1. The following divisibility results hold.

(1) For all i, we have xi | 0(xi) if and only if xi divides the ith entry of the column
vector for 9.

(2) // there exists a polynomial p(t) such that 0(x i) = p (x i ) for all i, then we have
xi - xj | 9(x i - xj) for all i, j.

(3) For all i, j, m we have xi + xj \ X2m+1(xi + xj).
(4) For all i and j, if xi + xj divides the ith and jth entries of the column vector

for 9 then xi + xj \ 0(xi, + xj).
(5) For all i, j < n we have xi, ± xj \ Xn(xi ± xj).

Proof. Statements 1 and 4 are obvious. For 2, merely note that 0(x i - xj) =
p(x i ) - P ( x j ) . Finally, 3 and 5 follow by direct calculation.

Note that for the multiset of exponents, it is really immaterial in which order
we add the hyperplanes of An \An-1. This is because the lattices of corresponding
intermediate arrangements will be isomorphic. (Strictly speaking, An-1 is not
contained in An because of the difference in dimension. However, we will ignore
such facts whenever it does no harm to do so.) In fact for an arbitrary order,
the only change needed in the statement of the previous theorem is to let c(x)
be the product of the linear forms forms for the hyperplanes added so far. This
will be true when interpolating between Bn-1 and Bn, or between Dn and Bn,
but not in any of the other cases we consider.

To go from Bn-1 to Bn, take any linear ordering of the hyperplanes of Bn\Bn-1,
say H1, H2, . . . , H2n-1. Then define

The proof of the next theorem is so similar to that of Theorem 2.2 that it will
be omitted.

THEOREM 2.3. The arrangements Bn,k are free with

where we view Bn,0 as an arrangement in Kn.



298 JOZEFIAK AND SAGAN

However, when we interpolate between Dn-1 and Dn, order does make a
difference. In fact, if one considers the arrangement

then x(A, t) can be easily calculated using deletion and restriction [19]. One
finds that x(A, t) = (t - 1)(t - 3)(t2 - 4t + 5) which does not factor over the
integers. Thus, A cannot be free by Theorem 1.1. So we will add the hyperplanes
of Dn\Dn-1 by putting in all those of the form (ei - en)L first, followed by all
of those looking like (ei + en)1. If we do this, then the second half of the
interpolation will be exactly like part of one of our interpolations from An-1 to
Dn. For this reason, we will postpone the details until Section 4.

For the last interpolation of this section we will go between the arrangements
Dn and Bn. Take an arbitrary order H1, ..., Hn of Bn\Dn and let

The proof of the following theorem again closely follows the model of Theo-
rem 2.2. and so is left to the reader.

THEOREM 2.4. The arrangements DBn,k are free with

3. Determinantal identities

In this section we collect various determinantal formulas needed in the sequel.
At first we proved them directly. Later we learned from Bernard Leclerc that
they followed from some classical identities for alternants. We would like to
thank him for bringing Garbieri's theorem (Theorem 3.1) to our attention and
supplying bibliographical information.

Let L be a commutative ring with unity and consider f 1 ( t ) , . . . , fn(t) e L[t],
Let

so that m > n and each fi has at most TO nonzero coefficients. Now write

where cij € L for all i, j. If x1, ..., xm are indeterminates over Z, then we
define an n x m matrix (classically called the alternant of f1,...,fn if n = m)
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Notice that we will use a subscript outside of the brackets to give the dimensions
of a matrix, if necessary. Also, if B is a submatrix of C and we write B = [bij]nxm,
then we are assuming 1 < i < n and 1 < j < m, regardless of B's position within
C.

If n = m, then the determinant of D(f; x) is denoted A(f; x), considered as
an element of L[x 1 , ..., xn]. In the special case when fi(t) = ti-1, 1 < i < n, we
get the matrix D(x) and the familiar Vandermonde determinant A(x).

We will need to use circulant matrices, which are those of the form

Also let ej(d) = ej(x1,..., xd) be the jth elementary symmetric function in the
first d indeterminates x 1 , . . . , xd. Note that ej(d) = 0 if j < 0 or j > d. It will
be convenient to consider the corresponding generating functions

and

We will repeatedly use the fact that Ed(xi) = 0 for i < d.
Let C denote the m x m matrix with block form

where

and

Note that B encodes the coefficients of En and that B = 0 if m = n.
We are now ready to state the main determinantal identity of this section. The

following theorem is due to Garbieri [10]; see also [14, 15]. For completeness,
we give a proof from [15].
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THEOREM 3.1. Use the preceding notation and assume that L is an integral domain.
Then we have

in L[x1, ..., xn].

Proof. Recall that m > n and let y1, y2, • • • ym-n be a set of auxiliary variables.
(The set is empty if m = n.) Consider the auxiliary functions

where 1 < i < m — n. Then

Notice that D(g; x) is the zero matrix since gi(xj) = 0 for 1 < j < n. Therefore,
taking determinants, we get

Since A(x, y) = A(x)A(y)E n (y 1 )E n (y 2 ) • • • En(ym - n) , we finally obtain the desired
A(f; x) = det C • A(x) because L[x 1 , ..., xn] has no zero divisors.

To compute the determinants of the basis matrices in the next section, we
need some corollaries of this result. Consider the column vector corresponding
to equation (6), namely

Then we have the following determinant.

where
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Proof. The matrix in question is the transpose of the matrix £>(f; x) where

So [X°, X2, ..., X2l -2, El, . . . , En-1] = A(f; x).
Let m = max{2l - 1, n}. Then, by Theorem 3.1,

where

and B is an in equation (8). Expanding about the rows in A1 we obtain

where

Using the identity ek(v + 1) = ek(v) + x v + 1 e k - 1 (v ) and elementary row opera-
tions, we get

The right-hand side is equal to the Schur function sl-1, l-2, .... 1 (x 1 , . . . , xl) by the
Naegelsbach identity (the dual of the Jacobi-Trudi identity), see [13, equation
(3.5)] for details. From the bialternant formula for Schur functions, we obtain

Plugging this value back into equation (10), we are done.

For our second application of Theorem 3.1, let
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and consider the column vector

The proof of the following corollary is similar to that of the previous one, and
so is omitted.

where

Note that we can also consider

It follows from our method of proof that if an arbitrary Fd in equation (12) is
replaced by Fd, then the right-hand side is multiplied by ±1.

For our next pair of corollaries, we will need to recall some facts about super-
symmetric Schur functions. Define certain supersymmetric functions, sj(x; y), in
the variable sets x = {x 1 , ..., xk} and y = {y1, ..., yl}, as the coefficients of the
generating function

If A = (A1, A2, ..., Ar) is a partition, then the corresponding super Schur function
is

Thus s(j)(x; y) = s j (x; y).
We need the following factorization formula for super Schur functions.

THEOREM 3.2. Suppose A contains the k x l rectangle p = (lk). Let a and 0 be the
partitions consisting of rows 1, . . . , k and k + 1, ..., r from X/p, respectively. Then
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where the prime denotes conjugation.

This result can be derived in various ways. It follows from a formula discovered
by A.N. Sergeev which is a supersymmetric analog of the fact that the ordinary
Schur functions can be expressed either as a Jacobi-Trudi determinant or as a
quotient of alternants (see Pragacz [20], Bergeron-Garsia [3] or Pragacz-Thorup
[21]). The factorization formula was originally proved by Berele and Regev [2]
for the hook Schur functions. Once one knows that they coincide with super
Schur functions, Theorem 3.2 follows. A bijective proof of Theorem 3.2 was
given by Remmel [22] using the hook definition.

We will need a special case of Theorem 3.2. Replace y1, ..., yl by xk+1, ..., xn.
Let s\(k; n) denote the resulting Schur supersymmetric function. Combining the
previous theorem with equation (11), we immediately obtain the next result.

To state what our basis matrices look like, we need to introduce the elementary
and complete homogeneous symmetric functions in squares of variables

For the elementaries, we also need the corresponding generating function

and the column vector

Note that the first d entries of Ed are zero, and that the subscript is only half
of the degree of the polynomials which are its entries.

There is another useful expression for the complete homogeneous supersym-
metric functions in this context.
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LEMMA 3.2. We have

Proof. Take equation (13) with y1, . . . , y l replaced by xk+1, ..., xn, and multiply
the top and bottom by (1 + x 1 t ) (1 + x2t) ...(1 + xkt). The resulting generating
function for s j ( k ; n) is

Extracting the coefficient of V yields the desired result.

Finally, we will need an orthogonality result for the elementary and complete
homogeneous symmetric functions. Since its proof is similar to that of the usual
orthogonality relations, we will omit the demonstration.

LEMMA 3.3. Suppose r, s, k ate constants satisfying r > s - k > 0. Then

Note that the lemma clearly still holds if the ordinary symmetric functions are
replaced by those in squares of variables.

To state the next corollary, let [.] and [.] denote the ceiling and floor functions
(round up and round down), respectively.

where

Proof. Using Theorem 3.1 in the usual way, we see that our determinant has
the form of the right side of equation (9). Here, m = n + k, A1 is a matrix of
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ones and zeros, A2 is a checkerboard pattern of zeros and elementary symmetric
functions in squares, and B is as in equation (8). Expanding about the rows in
A1 shows that, up to sign, our determinant is equal to ^(x)detC" where

with

We will now use elementary column operations to modify the jth column of C1

for j starting at 1 and ending at k. Specifically, add to column j multiples of
the j + 1st through wth columns, with the coefficient of column j + l being h l (k ) .
The resulting matrix has the block form

where A"(w_k)xk is the zero matrix (by Lemma 3.3), A'"(w_k)x(w_k) is lower triangular
with eo = 1 on the diagonal, and Bkxk is the matrix whose determinant defines
the super Schur function sn-1, n-2, . . . ,n-k(k; n) (by Lemma 3.2). Expanding around
the first w — k rows of C" and using Lemma 3.1 completes the proof.

The proof of the next corollary follows the same lines as the previous demon-
stration, so it is left to the reader. In the proof, it is helpful to note that
ft = Fn^(-x i ) .

where

We note that all of these corollaries can be proved directly (with no reference
to Garbieri's formula or the theory of symmetric functions) by using leading
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coefficient arguments. While these proofs are more elementary, they are also
more complicated.

4. Nonlinear interpolations

When interpolating between An-1 and Bn or An-1 and Dn, the order in which
the hyperplanes are added matters. For example, consider

Then deletion and restriction shows that x(A, t) = (t - 1)(t - 3)(t2 - 5t + 7) where
the quadratic term does not have integral zeros. Thus, by Theorem 1.1, the
arrangement A cannot possibly be free. This example indicates that intermediate
arrangements for some orderings might not be free.

Consider the following set of ordered pairs, which we will list in a triangular
array:

It will also be convenient to consider the sets

Note that (ei + ej)-1 e Dn\An-1 if and only if (i, j) e T.
We can add the (ei + ej)-1 by columns where we read each column of T

from top to bottom, starting with the leftmost column and moving right. More
precisely, put a total order on Tc (and hence on T) by defining

We can also add these hyperplanes by rows where we read each row of T from
left to right, starting with the top row and moving down. Define a total order
on Tr by letting

We will start by considering column interpolations, doing one ending in Bn first
and then one ending in Dn. When ending in Bn, we initially add {e1,..., en}1

and then the elements corresponding to the elements of (14). So for (k, l) € Tc,
let
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Note that for 2 < l < n + 1 the arrangements ABn,o,l and ABn, l-2,l-1 contain the
same hyperplanes and so are equal. The reason for having two names for the
same arrangement is this. In the case that our interpolation ends at the bottom
of a column of T, we actually have two bases for the arrangement. Note that, in
Theorem 4.1, the matrices for the cases (k, l) = (0, 0 and (k, l) = (l - 2, l - 1)
are different even though the arrangements are the same. Thus, that theorem
actually gives two elements of O(ABn.0,l) = &(ABn, l -2 , l -1).

To describe the basis matrices, we will use the following notation. If
A = [aij]nxm and B = [bij]nxm are matrices of the same dimensions, then
the Hadamard product of A and B is

AB = [aijbij]nxm.

Note that we have already been tacitly using this notation, since Xm is just the
Hadamard product of X with itself m times. We will use juxtaposition for both
ordinary and Hadamard product, but no confusion will result. We will only use
the latter on column vectors, where the former is not defined.

THEOREM 4.1. The arrangements ABn,k,l are free with

Before proving this theorem we would like to give the reader a bit of intuition
about what is going on. We start with the matrix

for An-1 U {e1, ..., en}1. (This is easily obtained by using elementary column
operations on the matrix for An-1 in Theorem 2.1, and then multiplying the jth
column by xj.) We wish to end at the matrix

for Bn. Now consider what is happening when we are adding hyperplanes
corresponding to column l of our triangle (14), i.e., when we have the general
& as given in the statement of the theorem. At this point the first l - 1 columns
have been changed into those that we want for 9\. The last n-l columns have
not been touched, and so are still in the form found in OQ. And the lth column
itself is being modified, multiplying it by the equations of the hyperplanes being
added. When we reach the hyperplane corresponding to the last entry in the
lth column of the array (14), the lth column of our basis matrix is equal to
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(x1 + x l ) (x2 + xl) • • • (xl-1 + xl) • XEl-1. We now exchange it for X2l-1 (so that
we get another basis of the same arrangement) and continue the process with
the (l + l)st column.
Proof of Theorem 4.1. Note that xi + xj \ Ed(xi) and xi + xj \ Ed(xj) for all
i< j < d. Also, xi + xl c(x) for all i < k. Thus, the divisibility criterion is
easily checked using Lemma 2.1.

As for the determinant, let 9 be the matrix in the statement of the theorem.
In det© we can factor c(x) out of the lth column and xi out of row i for
1 < i < n. This gives

by Corollary 3.1 (with / replaced by / - 1).

Now we will interpolate from An-1 to Dn by columns. For (k, l) e Tc, let

Using the same convention as before for <c, we obtain the following result.

THEOREM 4.2. The arrangements .ADn,k,l are free with

Proof. For divisibility, it suffices to prove that xi + xj \ Fd(xi + xj) for i < j < d+1.
All the rest of the cases are taken care of by Lemma 2.1. Recall that

So
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where xi, and xj are the ith and jth components of Xd+1, respectively. Thus,
xi +xj | xi + xj (Lemma 2.1, part 5), as well as the products in (19). This
finishes the proof of divisibility.

The determinant condition is an immediate consequence of Corollary 3.2,
replacing l by l — 1 and factoring out c(x) as usual.

Using the remark following Corollary 3.2, we can construct more bases in
9(ADcn,k , l) by replacing an arbitrary Fd in Theorem 4.2 by Fd.

We can now finish the description of the interpolation between Dn-1 and Dn

begun in Section 2. Let H1, H2, • • •, H2n-1 be any linear order of Dn\Dn-1 such
that all hyperplanes of the form (ei - en)-1- come before all those of the form
(ei + en)1. Define

Recall that Pn is the column vector for the derivation d/dxn.

THEOREM 4.3. The arrangements Dn,k are free with

where we view Dn,0 as an arrangement in Kn.

Proof. We will only do the case 0 < k < n - 1, since the second half is
covered by the previous theorem. (Although we required a precise order for the
hyperplanes (ei + en)1 in that theorem, it is clear that the proof goes through for
any ordering of these hyperplanes.) We have already checked all the necessary
divisibility results. Taking the determinant of &, the matrix in the theorem, we
obtain

by Theorem 4.2 again.

Now we can consider row interpolations. For (k, l) e Tr, let
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THEOREM 4.4. Fix k, n with 1 < k < n. Let u =
arrangements ABn,k,l are free with

and w Then

Proof, Recall that Ed(xj) = 0 for j < d, and also that xi + xj \ Ed(xj) for
1 < i < d < j. Also, xk + xj | c(x) for all k < j < l. So the divisibility criterion
follows readily from Lemma 2.1.

The determinantal condition comes from Corollary 3.3 via manipulations
similar to those in the proof of Theorem 4.1.

For the final interpolation of this section, consider (k, l) € Tr and let

The reader can easily supply a demonstration of the next theorem based on the
previous proofs of this section. In particular, the determinant condition follows
from Corollary 3.4.

THEOREM 4.5. Fix k, n with l<k<n. Let u = [n-k-1] and w = [n-k-1]. Then
arrangements ADrn,k,l are free with

S. Complex reflection arrangements

In this section we will consider some generalizations of Coxeter arrangements
and corresponding interpolations. For this, we will need to specialize our field to
the complex numbers, C. Now fix an integer s>2 and let C € C be a primitive
sth root of unity, e.g, C = e2nifs.

Define arrangements
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and

These arrangements consist of the complex reflecting hyperplanes for some of the
finite unitary reflection groups of monomial matrices [17]. Note that Bn(2) = Bn

and Dn(2) = Dn. In fact, when s = 2 Theorems 5.3 and 5.4 yield new bases for
the An-1 to Bn interpolating arrangements that are valid over any field, not just
C. The lattices L(Bn(s)) are isomorphic to the Dowling lattices [6, 7].

Collecting the usual information about these arrangements yields the following
theorem [16].

THEOREM 5.1. The arrangements Bn(s) and Dn(s) are free. They have defining
forms, basis matrices, and exponents as follows.

(1) For Bn(s):

(2) For Dn(s):

Interpolating between Bn(s) and itself is order independent. So take any
linear ordering of Bn(s)\Bn-1(s), say H1, H2, ..., H(n-1)n+1, and define

The proof of the next theorem is like many others, and so is safely left to the
reader.

THEOREM 5.2. The arrangements Bn,k(s) are free with

where we view Bn,0(s) as an arrangement in Cn.

Since An-1 C Bn(s), we may also interpolate between these arrangements.
We will again use our triangle (14). However, now the entry (i,j) is to be
interpreted as a list
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For the column version, choose (k, l) e Tc and consider

so that the parameter b denotes how many terms of the list (20) to take. Note
that when (k, l) = (0, l), these arrangements are only defined for 6 = 0. For
divisibility considerations, it is useful to note that

for all i, j, p and d (a generalization of part 3 of Lemma 2.1).

THEOREM 5.3. The arrangements ABn,k , l ,b(s) are free with

Proof. Throughout the proof, keep in mind that the matrix <9 in the statement
of the theorem has the block form

where A has dimensions (l -1) x (l -1) and C is lower triangular. This is because
of the fact that Ed(xi) = 0 for all i < d. Thus Lemma 2.1 and equation (21)
cover all the divisibility cases.

As for the determinant, we use the fact that in (22), A is the matrix for
Bl-1(s) and C is triangular. Then we have

det 9 = det A • det C
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For the row interpolations it will be convenient to set k = k — 1 and s = s — 1.
For (k, l) € Tr, consider the arrangements

When (k, l) = (k, k) then we must take 6 = 0. Also, define the polynomial

with corresponding column vector Ed.s.

THEOREM 5.4. The arrangements ABn, k, l, b(s) are free with

where c is the column vector corresponding to c(t) = 77, <„<(,(£* - C°t)> and

where the first (respectively, second and third) set of ellipsis in R refers to all integers
with remainder 1 on division by s (respectively, all integers) between the given bounds.

Proof. Divisibility is verified in the usual manner. Also, the matrix 9 in the
theorem has the block form (22), where A has dimensions k x k and C is lower
triangular. Thus

det 0 = det A • det C
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Unfortunately, it is not possible to interpolate from An-1 for D n (s) for s > 2
because the arrangements are not always free. For example, let

Then, using deletion and restriction, we find

The discriminant of the quadratic factor is (2s)2 - 4(s2 + s - 2) = 4(2 - s). Thus,
the characteristic polynomial can only have real roots for a < 2, which is the
case considered in Section 4.

6. The Mobius function of L(DBn,k)

Hanlon [11] computed the characteristic polynomials of the arrangements DBn,k
by explicitly calculating the Mobius function for the corresponding lattice. The
purpose of this section is to go the other way. That is, we will show how
our computations of various basis matrices and the associated characteristic
polynomials can lead to a complete description of the Mobius function.

Recall that if A is an arrangement in Kn, then 1 denotes the maximal element
of L = L(A). The value n(L) = /z(1) is easy to compute from x(A, t): It is just
the coefficient of tdiml. In all the lattices we have considered, this is always the
coefficient of the smallest power of t that appears in x(A, t), i.e., the product
of the negatives of the nonzero elements of exp(.A). To obtain the rest of the
Mobius values, it will be convenient to use Zaslavsky's theory of signed graphs
[31, 32]. Any graph theory terms which are not defined can be found described
in the text of Chartrand and Lesniak [5]. Undefined terms and unproven results
from lattice theory can be looked up in Stanley's book [27].

Each element of L(DBn,k) will be encoded using a graph, G, on the labeled
vertex set [n] = {1, 2, .. . , n}. The edges of G will be of three types:

• a positive edge between vertices i and j, denoted ij+,
• a negative edge between vertices i and j, denoted i j - ,
• a half edge with only one endpoint i, denoted ih.



BASIC DERIVATION FOR SUBARRANGEMENTS OF COXETER ARRANGEMENTS 315

The edges ij+ , ij- and ih correspond to the roots e, - ej, ei + ej and ei,
respectively. (In the general theory there are also loops which are edges with
two endpoints at the same vertex i, corresponding to the root 2e,.) The reason
for the choice of signs will be explained shortly.

To characterize the graphs which appear in L(DBn,k), we need some notation.
For any V C [n], let Kv (respectively, Kv) denote the signed complete graph
consisting of all positive (respectively, all negative) edges between vertices of
V. Similarly, let Kvw (Kvw) denote the complete bipartite graph consisting of
all positive (respectively, all negative) edges between vertex sets V and W. In
using this notation, we tacitly assume that V n W = 0. Finally, let Ky(k} be the
complete signed graph, i.e., the one that has all edges of both signs between
vertices in V together with all half edges on V n [k].

THEOREM 6.1. The lattice L(DBn,k) is isomorphic to the lattice of subgraphs G of
K+(k) such that each component of G is of the form

(1) Kv U KW U Kv,w or

(2) Kv
(k).

Furthermore, there can be at most one component of type 2.
If edge e corresponds to the vector e, then the isomorphism of the preceding
theorem is obtained by sending G to C\e&Ge^L. The reason for our choice of
edge signs is so that the components of type 1 will be balanced (every cycle has
positive sign if we multiply the signs of its edges) Also, if a component of type
2 exists, then it is unbalanced (some cycle corresponds to a negative product).

Now for G € L(DBn,k), let LG be the lattice of all elements of L(DBn,k) less
than or equal to G. Also, suppose that G has components G1, G 2 , . . . , Gk. Then
from the preceding theorem it is clear that we have an isomorphism

To finish our characterization, we need to find p(G) where G is a balanced
component. This can be done using the computation of the Mobius function

For the unbalanced component, we have already done the work. Using
Theorem 2.4, we immediately have the following corollary.

COROLLARY 6.1. If G in L(DBn,k) has the form KV u H, where \V\ = v and
\H| = h is a set of half edges then

where x denotes the cross product of partially ordered sets. But it is well known
that in such a situation we have
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for the partition lattice (see Rota [23]). However, we will accomplish this task
using an interpolating family. Suppose A and A' are arrangements in Kp and
Kq, respectively. Then there is a product arrangement in Kp+q defined by

Notice that if we have basis matrices © e &(A) and ©' e &(A'), then we have a
basis matrix 0 © 0' e O(A x .4') with the block form

Also, we can add sealer multiples of the lower right block to the lower left
one without disturbing the entries in the upper left. These will be the types
of basis elements that we will use to interpolate between the cross product of
two arrangements of type A and the arrangement of a balanced component.
Specifically, fix p and q, and define

Also, let

with Ep, d(t) = 1 for d < p. The corresponding column vector is

where the first p components are zero (and possibly others because of the roots
of Ep,d.

Now, let Ap-\ and Aq-1 be type A arrangements in the spaces generated by
e1 , . . . , ep and ep+1, ..., ep+q, respectively. Consider the following set of ordered
pairs, which we will list in a rectangular array:
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It will also be convenient to consider

Hyperplanes indexed by the elements of S can be added either by rows or
columns. But by symmetry (interchanging p and q), we get the same lattices
either way, so we will only do the latter. Let <c denote the total order (15) on
the set Sc. Now for (k, l) e Sc, consider

Note that when k = p and l = p + q then Ap,q,k,l is the arrangement corresponding
to a graphical component Kv U Kw U KV, W where \V\ = p and \W\ = q.

THEOREM 6.2. Let n = p + q. Then the arrangements Ap,q,k,l are free with

Proof. To check divisibility there are two cases. Suppose first that the derivation
is of the form Xd. Then we have divisibility by xi - xj because either i, j < p or
i, j > p. In both situations Xd(xi - xj) = 0 from the definition (23). Divisibility
by xi + xj following because i < p < j. So

which immediately implies what we want.
Now consider those derivations containing a factor of Ep,d:, For divisibility by

xi - xj, note that for i, j < p all the entries are zero. And for i, j > p the entries
are linear combinations of the columns for Aq-1, so we have the desired result in
either case. Finally, look at the xi + xj. Divisibility is automatic when j < p since
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then the relevant entries are zero. The only other situation is c (x )E l - 1 (x i + xl),
and then xi, + xl is a factor of c(x).

Note that our matrices & have the block triangular form (22). In this case A
is (l - 1) x (l - 1) and C is lower triangular. By induction on q, we can assume
that A is a basis matrix for Ap, l-p-1,p,l-p-1. Hence

Now if k = p and l = p + q = n, then exp(Ap,q,k,l) = {0, 1, 2, ..., n - 1}.
Thus, we have the remaining Mobius values.

COROLLARY 6.2. If G = KV U Kw U KV,W where \V\ + \W\ = p + q = n, then

u(G) = (-1)n-1(n-l)!
Of course, this is not the most efficient way to compute the Mobius function.

But we have gained a lot of extra information along the way.

7. Comments

There are other methods for proving factorization of the characteristic polynomial,
X- First of all, it would be interesting to compute the Mobius function directly
for the various families introduced above. Then one could prove that their
characteristic polynomials factor directly as Hanlon [11] did for DBn,k. Zaslavsky
[33] also computed the characteristic polynomials and Mobius values for these
lattices using coloring techniques.

Theorem 1.1 gives an algebraic explanation of the factorization of x. Stanley
[26] developed the notion of a supersolvable lattice to combinatorially explain
this phenomenon. Bennett and Sagan [1] have developed a generalization of the
notion of supersolvability. It can be use to combinatorially prove factorization of
x(DBn,k, t), even though the lattices are not supersolvable for 0 < k < n - 2, or
for k = 0 and n > 4. This method should extend to the other nonsupersolvable
cases under consideration as well.

It is natural to ask which subarrangements of Coxeter arrangements are free.
An answer for subarrangements of An-1 is as follows. Recall that each subset
of hyperplanes in an arrangement of type A, B or D can be considered as a
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signed graph. Those contained in An-1 are just graphs with no negative edges
or half edges. Stanley [26] gave the following criterion to test supersolvability in
this case.

THEOREM 7.1. Let A C An-1 have graph G. Then A is supersolvable if and only
if there is a sequence

of induced subgraphs of G such that

1. Gi has i vertices for 1 < i < n,
2. if Vi is the vertex of Gi\Gi-1, then the subgraph of Gi induced by vi and its

neighbors in Gi is complete.

Fulkerson and Gross [9] showed that the two conditions in the previous theorem
are equivalent to G being chordal, i.e., every cycle of G has a chord. Previously,
Jambu and Terao [12] demonstrated that any supersolvable arrangement is free.
It is easy to see that the converse is also true for subarrangements A C An-1.
(If A's graph is not chordal, then it has an induced cycle. This corresponds to
a localization of the arrangement which is not uniform, hence A is not free.) It
would be interesting to characterize the free subarrangements of other Coxeter
arrangements. We should note that recently Edelman and Reiner [8] have been
able to characterize the free arrangements lying between An-1 and Bn.
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