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Abstract. We present the basic theory of cocyclic development of designs, in which group development
over a finite group G is modified by the action of a cocycle defined on G x G. Negacyclic and
w-cyclic development are both special cases of cocyclic development.

Techniques of design construction using the group ring, arising from difference set methods, also
apply to cocyclic designs. Important classes of Hadamard matrices and generalized weighing matrices
are cocyclic.

We derive a characterization of cocyclic development which allows us to generate all matrices
which are cocyclic over G. Any cocyclic matrix is equivalent to one obtained by entrywise action of
an asymmetric matrix and a symmetric matrix on a G-developed matrix. The symmetric matrix is a
Kronecker product of back w-cyclic matrices, and the asymmetric matrix is determined by the second
integral homology group of G.

We believe this link between combinatorial design theory and low-dimensional group cohomology
leads to (i) a new way to generate combinatorial designs; (ii) a better understanding of the structure
of some known designs; and (iii) a better understanding of known construction techniques.

Keywords: orthogonal design, Hadamard matrix, difference set, group development, negacyclic
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1. Introduction

This paper describes a connection between combinatorial design theory and low-
dimensional group cohomology. We believe this link leads to (i) a new way
to generate combinatorial designs; (ii) a better understanding of the structure
of some known designs; and (iii) a better understanding of known construction
techniques.

In [3] de Launey introduced a general method for developing a design from
its initial row. It extends the technique of group development modulo a finite
group G and incorporates the techniques of negacyclic and w-cyclic development.
The method arose as a characterization of those (2-dimensional) combinatorial
designs which can be extended in a particular way to give higher-dimensional
designs whose axis-normal 2-dimensional sections satisfy the defining properties of
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the original design. Specifically, ordinary group development over G is modified
by the action of what we term here a cocyclic development function defined on
G x G. In [4], we showed that the designs so developed have a type of difference
set construction based on an extension of G. This cocyclic development is far
less restrictive than group development: in [3, 4] a number of known families
of Hadamard matrices and orthogonal designs are shown to be cocyclic and in
[4] it is conjectured that cocyclic Hadamard matrices exist for all orders n = 0
(mod 4).

Here, we present the basic theory of this development technique and describe
its link with the low-dimensional cohomology of G.

In §2 and §3, we introduce the concepts of a pairwise combinatorial design
(PCD) and a weak difference set. The PCDs provide a setting for our development
theory, and weak difference sets are a generalization of difference sets. In §4 and
§5, cocyclic development functions and cocyclic PCDs are described and related to
weak difference sets and to the abelian extension functions (AEFs) of [4], In §6
and §7, some fundamental extension properties of cocyclic PCDs are deduced. In
§8 we pose three basic combinatorial questions about the cocyclic development
of designs, and in §9 we present the main computational tool for this general
theory: the development table for G.

The remainder of the paper relates to the third basic question: given G, what
are the cocyclic development functions over G? In §10, an AEF is identified
as a 2-dimensional cocycle, which permits us in §11 and §12 to describe the
group of AEFs in terms of the second cohomology group of G. This connection
is used in §13 to prove that a cocyclic matrix is equivalent to one constructed
from an underlying group developed matrix by an entrywise action of a matrix
possessing a natural decomposition into asymmetric and symmetric parts. The
asymmetric matrix is determined by the second integral homology group of G
and the symmetric matrix, determined by the first integral homology group of G,
is a Kronecker product of back w-cyclic matrices. The (Hadamard) product of
these two matrices is the minimal development table for G and is isomorphic to
the second cohomology group of G.

2. Pairwise combinatorial designs

Definition 2.1. Let X and Y be m x n matrices; we say Y is equivalent to X
(written X ~ Y) if Y can be obtained from X by applying a sequence of row
or column permutations. If X = [zy], the equivalence class X containing X is
called a configuration, and is denoted by parentheses: X = (xij).

We introduce notation to specify a generalized inner product constraint on
pairs of rows occurring in a design: let S be a finite set with at least two elements,
and let A be a nonempty subset of the set of 2 x n (n > 1) configurations with
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entries from S. Let Us denote the group of permutations on 5, and let IIA

denote the largest group of maps TT in 77s such that, for all configurations

Definition 2.2. Let X and Y be v x v matrices over S; we say Y is A-equivalent
to X (written X ~A Y) if Y can be obtained from X by a sequence of the
operations:
(i) the rows or columns are permuted, or

(ii) a row or column [xi], 1 < i < v is replaced by the row or column [n(xi)], 1 <
i < v, for some n e LA.
Similarly, the configurations X and y inherit A-equivalence from their rep-

resentatives X and y.

We introduce a class of configurations which is closed under A-equivalence.

Definition 2.3. A pairwise combinatorial design PCD(v, A) is a v x v configuration
(x i j) with entries from S such that, for all s = t, where 1 < s, t < v, the 2 x v

Note the (v,UR, LC, B, S)-designs of [3, 4] include PCD(v, A)s. (Put
UR = Uc = nA, and let (3 be the constraint given in Definition 2.3.) More-
over (see [3], Examples 2.2-4.3), symmetric balanced incomplete block designs,
Hadamard matrices, (balanced, generalized) weighing matrices, and orthogonal
designs (ODs) are PCDs (In each case, these designs satisfy an orthogonality
condition on their rows, and A lists the allowable pairs of orthogonal rows.)

3. Weak difference sets

The following notation is used:

(i) Let G be a finite group (multiplicatively written with identity 1) of order
v. For indexing purposes it will be assumed throughout that G has a fixed
order G = {a1, a2, . . . , av} where a1 = 1.

(ii) If the rows and columns of a matrix X are indexed by G, this will be denoted
by X = [xaiaj](1 < i, j < v) or, more often, by X = [xab](a, b e G).

A (v, k ,y ) -d i f ference set over G is a subset D = {d1 , d2, ..., dk} of G such
that the list of differences d id j

-1(1 < i, j < k, i = j) contains each nonidentity
element of G exactly A (> 1) times. We may define a map gD : G —> {0, 1} so that
gD(a) = 1 if and only if a e D. Then the v x v matrix X = [ g D ( a i a j ) ] (1 <i,j< v)
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is (the incidence matrix of) an SBIBD(v, k, A). (See, for example, [11,1.11(2.2,
2.4)].) This process is reversible: if there exists a map g : G -> {0, 1} such
that X = (g(aiaj))(1 < i, j < v) is an SBIBD(v, k, A), then the set {a | a €
G and g(a) = 1} is a (v, k, A)-difference set over G.

These standard concepts will now be generalized.

Definition 3.1. A (v, A)-difference set over G is a set {(a, g(a)) \ a € G} where
g : G —> S is a map such that the v x v configuration X = (g(ab)) (a, 6 € G) is a
PCD(v, A).

Each (v, A-difference set over G determines a PCD(v, A) but the converse
is generally not true. Nonetheless, a PCD(v, A) may have a weaker difference
set construction based on a group whose order is greater than v. It is on this
idea that we now focus.

Definition 3.2. Suppose there exists a subset J of cardinality v of a group E and
a map g : E —> S such that the v x v configuration X = (g(ab)) (a, b € J) is a
PCD(v, A); then the set {(a, g(a)) \ a e E} is called a (u, A)-weak difference set
over E.

Example 3.1. Let E =< i, j, k : i2 = j2 = k2 = -1, ij = k > be the quater-
nions. Set J = {1, i, j, k} and let 5 be the set of commuting indeterminates
{0, ±w, ±x, ±y, ±z}. Then

D = {(1, w), (i, x), (j, y), (k, z),(-1, -w), (-i, -x), (-j, -y), (-k, -z)}

is a weak difference set which generates an OD(4; 1, 1, 1, 1), X, where

which (in Z[w,x,y,z]),

and UA = {multiplication by 1 or -1}.

Here A is the set of configurations
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4. Development functions

The technique of f-developing a matrix from a row or column is described in
the following definition. In [4] this is termed (f, G)-development.

Definition 4.1. Let g : G —> S and f : G x G —» Us be set mappings. Then
the matrix X = [f(a, b)g(ab)] (a, b e G) is said to be f-developed from the row
[g(a)](a € G) by development function f (over G). We also say X is f-developed
from the column [g(b)] (b e G). If f is the trivial map, then X is G-developed,
or group developed (over G). A configuration is said to be f-developed if it has a
representative which is f-developed.

Of course, any matrix [xab] over S is f-developed for some f and G: given
g, define f(a, 6) to be any permutation such that f(a, b)g(ab) = xab. If f is
unrestricted, the fact that a matrix is f-developed will imply nothing about its
structure. We identify certain special properties which a development function
may possess.

Definition 4.2. Let H be a group with identity 1 and let f : G x G -> H be a set
mapping.

(i) We say f is abelian if, for all ai, aj, bi, bj € G,

f(ai, bi)f(aj, bj) = f(aj, bj)f(ai,bi).

(ii) We say f is an extension function if for all a, 6, c € G,

(iii) We say f is normalised if f(1, 1) = 1.
(iv) We say f is a suitable function for PCD(v, A)s if H = IIA.

The most critical of these is the "extension" property (ii). It determines the
extension group of G used in the weak difference set construction of PCD(v, A)s,
and permits extension of PCD(v, A)s to proper higher-dimensional designs (see
Theorem 5.1 and §6 below).

Of most interest to us are functions possessing several of these properties.

Definition 4.3. Let H be a group with identity 1 and let f : G x G —> H be a set
mapping.

(i) We say f is an AEF (abelian extension function) if it satisfies (i) and (ii) of
Definition 4.2.

(ii) We say f is A-robust if it satisfies (ii) and (iv) of Definition 4.2.
(iii) We say f is a A-cocyclic development function if it satisfies (i), (ii), and (iv)

of Definition 4.2. That is, it is a suitable AEF for PCD(v, A)s.
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Berman's w-cyclic matrices [1], and Delsarte's negacyclic matrices [5], are
equivalent to matrices developed by an AEF. If X1, ..., xv e 5 and w e IJs, an
w-cyclic matrix has the form

Reversing the order of the columns of such a matrix gives a back w-cyclic matrix.
Negacyclic development sets w equal to an element of order 2 (typically -1), and
cyclic (group) development sets w = 1.

Example 4.1. (w-cyclic development}. If G =< a : a" = 1 > is cyclic, g : G —> S
is a set map and w e Us, then a back w-cyclic matrix is f-developed from the
initial row [g(ai](0 < i < v - 1) by the AEF f ( a i , aj) = w[(i+j)/v]. The order of
/ (under the operation of pointwise multiplication of functions) is the same as
the order of w in ns.

The A-robust development functions / have the useful property that any row
or column of an f-developed matrix may itself be f-developed to form a A-
equivalent matrix. This can be seen for rows in equation (2) and for columns in
equation (3) of the following equivalent definition of A-robustness.

THEOREM 4.1. Let f : G x G —> Us be a development function; then f is A- robust if
and only if, for every a0, b0 e G, there exist maps sa0, tb0 : G —> HA and permutations
aa0, Tb0 on G with the property that, for any map g : G —> S,

and hence, because 5 has at least two elements, aa0(a) = a0a. Substituting back
and setting o = 1, together with the corresponding results for columns, gives
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Proof. The forward implication follows on setting sa0(a) = f(a0, a), tb0(b) =
f(b, b0)> aa0(a) = a0a and Tb0(b) = bb0. We prove the reverse implication. If (2)
holds, let g run through all the constant functions to show that
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Hence f(1, 1) commutes with f(a, b), and (1) follows. a

Now suppose / in Definition 4.2 is abelian. Since f(G x G) generates an
abelian subgroup of H, we lose nothing by assuming that H is an abelian group
C. Indeed, when H is abelian, there is a natural equivalence relation defined
on AEFs and hence on cocyclic development functions. Its origin is explained
in §10.

Definition 4.4. Let C be an abelian group with identity 1.

(i) An equivalence relation ~ is defined on the set of AEFs : G x G —> C to be:

f ~ f' - > 3 a : G - > C : f'(a, b) = a(a)a(b)(a(ab))-1f(a, b) a, b e G.

(So, the equivalence class of / is determined by those a which are not group
homomorphisms.)

(ii) An AEF f : G x G -> C is termed principal if f ~ 1, where 1 is the trivial
AEF which takes each (a, 6) to 1.

We show that equivalent A-cocyclic development functions determine A-
equivalent matrices.

LEMMA 4.1. Let f, f' : G x G -> IIA be AEFs, and let X be an f-developed
matrix. If f ~ f', then there exists an f'-developed matrix X' such that X ~A X'.
In particular, if f is principal, then X is A-equivalent to a group developed matrix.

Proof. If X = [f(a, b)g(ab)] (a, b e G), then there exists a mapping a : G —> C
such that

X ~A [a(a)a(b)f(a, b)g(ab)] = [f'(a, b)a(ab)g(ab)] = X'. D

Finally we show that, modulo a principal AEF, each AEF has finite order
dividing v.

LEMMA 4.2. Let f : G x G -> C be an AEF. Then fv ~ 1.

Proof. Define a : G -> C to be a(g) = HceG f(g, c). By Definition 4.2 (i) and
(1)
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5. Weak difference sets and cocyclic PCDs

Definition 5.1. A matrix is A-robust over G if it is f-developed for some A-robust
development function f, and a configuration is A-robust if it has a representative
which is A-robust over G. Similar definitions apply to the word cocyclic. When
referring to PCD(v, A)s the prefix "A-" may be dropped.

We note in Theorem 5.1 below that any cocyclic PCD has a weak difference
set construction over an (unnormalized) extension of G by an abelian group
C, with multiplication defined using the development function ([2, p. 92], [4]).
This generalizes the standard result that the incidence matrix of a G-developed
SBIBD corresponds to a difference set over G.

The following notation is used: Let f : G x G —> H be an AEF.
(i) Define a coefficient group of f to be any abelian subgroup C < H con-

taining the abelian group C(f) generated by f(G x G), i.e., C > C(f) =
< f(a, b), a, b, € G > .

(ii) Suppose C is a coefficient group of f. Let E(f, C) be the extension group
of G by C1 with E(f, C) = {(x, a) : x e C, a e G} and multiplication

(x, a)(y, b) = (f(a, b)xy, ab).

For simplicity, write E(f) for E(f, C(f)).
(iii) Let J(f) c E(f) be the v-element set J(f) = {(1, a): a e G}.
(iv) Suppose H < Us. For each g :G->S , define gf : E(f) -> S by gf((x, a)) =

xog(a) for all (x, a) € E(f).

Some comments on the nature of the extension group E(f, C) are appropriate.
The simplest case occurs for f = 1, when E(l, C) is the direct product C x G.
Furthermore, equivalent AEFs determine isomorphic extension groups. If /, /
and a are as given in Definition 4.4 (i), then the mapping o: E(f, C) —> E(f ' , C)
defined by o(x, a) = ( x ( a ( a ) ) - 1 , a) is readily shown to be a group isomorphism.
In particular, the equivalence class of principal AEFs determines the direct
product extension G x G.

THEOREM 5.1. Let f : G x G -> ns be A-cocyclic, and let g : G -> S. Suppose
X = (f(a, b)g(ab))(a, b e G) is a PCD(v, A); then X = ( g f ( ( 1 , a)(l, b)))(a, b e
G), and {(e, g f ( e ) ) \ e € E(f)} is a (v, A)-weak difference set over E(f).

Proof. Immediate from Definition 3.2 and the notation above. n

1Some authors call this the extension group of C by G.
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An immediate corollary of Theorem 5.1 and the remarks preceding it, is that
two cocyclic PCD(v, A)s developed from equivalent functions will have weak
difference set constructions over the same extension group.

Section 3 of [4] lists families of cocyclic designs where the coefficient group
C = UA is the cyclic group of order two. Included, for instance, are examples of
Hadamard matrices of all orders 4n < 100. By contrast, no Hadamard matrix of
order 4 < 4n < 12,100 can be group developed modulo a cyclic group. In [4] we
conjecture that cocyclic Hadamard matrices exist for all orders n = 0 (modulo 4).

6. Robust designs and proper higher-dimensional designs

An important feature of the theory of robust development functions is their
central role in the construction of proper higher-dimensional designs. We recast
two earlier results [3, 4] in terms of PCDs. Equation (1) also appears (see [3,
§2, §3, Eq. (3.3)]) in the context of higher-dimensional designs where uniform
collapsable functions are discussed. Moreover, Theorem 6.2 below is obtained in
[4] for the class of (v, UR, HC, B, S-designs, which includes PCDs.

Definition 6.1. A proper n-dimensional pairwise combinatorial design PCDn(v, A)
is an n-dimensional array (xi1,i2 in)(ij = 1, ..., v, 1 < j < n) of entries from S
such that, for all 1 < s < t < n, the v x v arrays (x i1 if ,it, ,in)(is, it = 1, 2, ..., v)
obtained by fixing all indices except i, and it, are all PCD(v, A)s.

THEOREM 6.1. Let X = (f(a, b)g(ab))(a, beG) be a robust f-developed PCD(v, A);
then X3 = ( g f ( ( 1 , a)(l, 6)(1, c))) = (f(a, b) o f(ab, c)g(abc))(a, b, c € G) is a
PCD3(v,A).

THEOREM 6.2. Let X = (f(a, b)g(ab)) (a, b e G) be a cocyclic f-developed
PCD(v,A); then Xn = ( g f ( ( 1 , a1)(l, a2)...(1, an))) (a1, a2, ..., an e G) is a
PCDn(v, A).

Proof (Outline). For all a1, a2, ..., an € G, put

h(a1, a2, ..., an) = f(a1,a2)o f(a1a2, a3) o f(a1a2 ...an-1, an)g(a1a2 ...an).

The argument of [3] is sufficient to prove that (h(a1,a2, ..., an))(a1, a2 ..., an e
G) is a PCDn(v, A), and a direct calculation (see [4, proof of 2.11]) shows this
design is the same as Xn. D

7. The expanded design of a cocyclic PCD

For u > v, let X = [zij](l < i, j < u) be a matrix such that for any v x v "window"
of the form Xst = [xij](s <i < s + v and t < j < t + v), the configuration Xst is
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a PCD(v, A). Then the configuration X will be said to have the (v, A)-window
property. It is shown below that any cocyclic PCD(v, A) can generate a group
developed configuration which has the (v, A)-window property.

Definition 7.1. Let II = { p 1 , p2 , . . . , pm} be a subgroup of 77s, and let X =
(xij) (1 <i,j< v) be a configuration with elements from 5. Let Q(II, X) =
(w(k,i),(l,j)) = (Pk ° P i ( x i j ) ) (1 < k, l < m and 1 < i, j < v) be termed the 77-
expanded design of X.

The mv x mv matrix [w(k,i),(l,j)] = [pk ° Pi(xij)] of Definition 7.1 may usefully
be regarded as a Kronecker product X x [77] = [xij] x [pk o pl] in which a copy
of X in each position of the group multiplication table of 77 is acted on by the
corresponding element of 77. Now suppose X is a PCD(v, A) and II < IIA. The
representative of Q(L, X) with this order on its rows and columns is an m x m
block matrix of v x v matrices which are A-equivalent to X. Indeed, every v x v
window is A-equivalent to X. For, suppose a v x v window submatrix overlaps
the (k, l), (k, l + 1), (k + 1, I) and (k + 1, l + l)th block matrices. Application
of pk

-1 and p-1
k+1 to the appropriate rows and pl

-1 and p-1
l+1 to the appropriate

columns, transforms the window into a submatrix, itself equivalent by row and
column permutations to X. Moreover, when f is cocyclic and X = [f(a, b)g(ab)],
the C(f)-expanded design

Q(C(f), X) = (g f ( (x , a)(y, b))) ((x, a), (y, b) € E(f))

is developed modulo E(f). Hence the following is true.

THEOREM 7.1. If X is a cocyclic PCD(v, A) developed by f, then Q ( C ( f ) , X) has
an E(f)-developed representative which has the (v, A)-window property.

Example 7.1. The OD(4; 1, 1, 1, 1), X, in Example 3.1 is cocyclic. (G =
{e, u, v, uv} is the elementary abelian group of order 4 and /, given by the
table

is cocyclic by [3, 3, Ex.3.10]. C(f) = {1, -1} is the cyclic group of order 2, and
E(f) is the quaternions Q8.) The representative of Q ( C ( f ) , X ) with rows and
columns ordered according to the list (1, 1), (1, z), (1, j), (1, k), (-1, 1), (-1, i),
(-1, j), (-1, k) gives an 8 x 8 Q8-developed configuration
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where every 4x4 window is a representative of an OD(4; 1, 1, 1, 1).

8. Three combinatorial questions

We state three questions which are basic to the study of cocyclic designs.

(i) Given a group G and a PCD(v, A), X say, how can one determine whether
X is cocyclic over G?

(ii) Given a group G, when does there exist a PCD(v, A) which is cocyclic
over G?

(iii) Given a group G and a set A, what are the A-cocyclic development functions
over G?

Some remarks on questions (i) and (ii) follow. The main focus of the remainder
of this paper will be question (iii), which we solve using the cohomology groups
of G.

Expanded designs can help answer the first question. In general, if X is
cocyclic, a subgroup of the automorphism group of Q(JA, X) will be isomorphic
to E(f) for some f. Assuming we know the coefficient group C(f), Q(C(f), X)
can be constructed without knowledge of /. By Theorem 7.1, that design would
be E(f)-developed, and examination of the design may help resolve the question.
When G is abelian, and f(a, b) = f(b, a) for all a, b e G, then E(f) is abelian,
so the E(f)-developed design is symmetric. In this case, some progress could
be made by an application of Fourier theory to appropriate expanded designs.

With regard to question (ii), the structure of A may lead to an equation in the
integral group ring Z(E(f)). For example, an f-developed cocyclic Hadamard
matrix over G corresponds to a solution to the following equation over Z(E(f)):

9. The development table

In all three questions, we begin with the group G. Fortunately, we can study
cocyclic development without needing to specify a coefficient group. This is done
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Once an equation in Z(E(f)) is obtained, we may use techniques (arising from
character theory and number theory) similar to those used to "solve for" d-
ifference sets. In §13 we indicate a different approach to question (ii) using
development tables.
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by means of the development table, an important computational tool for cocyclic
design theory.

Even before a coefficient group is specified, any AEF must satisfy the equations
(1). Regard these as v3 simultaneous linear equations with integer coefficients
in the v2 variables (a, 6): that is,

The set of vectors x = (x(a, b))a,b,eG formally satisfying (5) forms a Z-module
under coordinatewise addition; that is, an abelian group, which we denote by
A(G, -). We may apply echelon row reduction over Z to equations (5), to reduce
the number of indeterminates and the number of equations which constrain
them. Indeed, it is always possible to find a set of indeterminates where the only
constraints are "order constraints" of the form mZ = 0, where m is a positive
integer, and Z is an indeterminate. Performing the corresponding reductions on
the components of x leads, by the fundamental theorem of finitely generated
abelian groups, to a standard presentation of A(G, -). To determine all AEFs
with a given coefficient group C, it is then sufficient to assign indeterminates
to elements of C in all possible ways which satisfy the order constraints. This
corresponds to finding the set Hom(A(G, -), C) of all group homomorphisms
from A(G, -) to C.

The development table provides a compact expression for a typical element
of A(G, -). If x is expressed in terms of (possibly constrained) indeterminates,
then the corresponding development table is the matrix [x(a, b)]a,beG, together
with the set of constraining equations.

Definition 9.1. A development table for G is a pair (D, S) such that D =
[d(a, b)]a,beG, where d is a typical element of A(G, -), S is a set of constraints
obtained from (5) by row reduction over Z, and d(a, b) is a linear combination
of indeterminates which are constrained only by the equations in 5. (For brevity
of expression we will usually use multiplicative notation for entries in D.)

For example, for G =< a : a2 = 1 >= Z2 the 8 relations (5) reduce to
(1, a) = (a, 1) = (1, 1), so a development table for G is (D, 0), where
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and Z and A are unconstrained indeterminates. In this case A(Z2, -) = Z2.
Other examples are given in [3, 3.8, 3.10] for G = Zv, Z22, in [4, Table 3] for
G = Z32 and in [4, 4.5] for G a finite abelian group.

Our aim is to obtain a simple development table for G, with either the
minimum number of indeterminates or a distinctive pattern of entries.

After reduction, the generators (indeterminates) in a standard presentation
of A(G, -) fall into two categories: those of infinite order (unconstrained) and



COCYCLIC DEVELOPMENT OF DESIGNS

those of finite order (constrained). Each category can be isolated by factoring
out the other; that is, by adding an equation Z = 0 for each indeterminate Z in
the category to be discarded, and continuing the echelonisation.

Because equivalent AEFs determine equivalent cocyclic matrices, by Lem-
ma 4.1, we also want to derive similar tables for the inequivalent AEFs. An
important consequence of Lemma 4.2 bears on this: if the echelon row reduction
of the equations (5) is performed modulo v, the resulting set of solutions contains
at least one representative of each inequivalent AEF and is necessarily finite.
Hence there are only finitely many inequivalent AEFs.

Using group cohomology, we will show that the unconstrained indeterminates
in a standard presentation of A(G, -) correspond to known techniques of group
and w-cyclic development, and the constrained indeterminates add asymmetry
to the development tables. In particular (see Lemma 4.1), the technique of
group development over G is embodied in the principal AEFs, and corresponds
to the subgroup B(G, -) of A(G, -) consisting of solutions to (5) of the form
x = (x(a, b) = x(a) + x(b)-x(ab))a , b e G . Factoring B(G, -) out allows us (in §13)
to present the desired minimal development tables of inequivalent AEFs, which
have a minimum number of indeterminates and a distinctive structure.

Before doing this, we must introduce a little cohomology theory for G, with
coefficients in C, and describe the cocyclic development functions in this context.

10. The cohomological connection

In the next three sections we will describe the AEFs anew, in terms of the first
and second integral homology group of G. We shift emphasis of specify a finitely
generated abelian coefficient group C and consider all AEFs f : G x G —> 77s
whose image groups C(f) are subgroups of C. We now let C be additively
written with identity 0. Since C is abelian, any map f : G x G —> C is an AEF
by (1) exactly when it satisfies
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and is normalized if

The cohomological connection with the design theory of §§4-9 rests on the
following observation. A map satisfying (6) and (7) is known in group cohomology
as a factor set or, alternatively, as a 2-dimensional cocycle of the normalized
standard complex for computing the cohomology of G with trivial coefficients in
C [2, pp. 92-93]. Each factor set determines a (normalized) central extension of
G by G just as each AEF determines an unnormalized extension of G by G (see
notation (ii) in §5).
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The following notation is used:
(i) A(G, C) = {f : G x G -> G, f an AEF} = Hom(A(G, -), G)

(ii) S(G, C) = {f e A(G, C), f ~ 1}.

Both A(G, C) and the set of factor sets are abelian groups under pointwise
addition of functions, and are finitely generated because C is. The equivalence
class B(G, C) of principal AEFs is a subgroup of A(G, C); similarly, the equiva-
lence class of principal factor sets is a subgroup of the group of factor sets. The
quotient group A(G, C)/B(G, C) is finitely generated and hence finite, since by
Lemma 4.2 it has exponent dividing v. Three simple facts are noted.

PROPOSITION 10.1.
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The group of equivalence classes of factor sets is isomorphic to H2(G; C), the
"second cohomology group of G with trivial coefficients in C" (see [2, §3] or [7,
pp. 209-210], for example). So, by Proposition 10.1(ii),

Thus, in principle, all we need to know about inequivalent AEFs is embodied
in the more familiar group H2(G; C).

We state some of its properties. The interested reader may find full expositions
in homological algebra texts such as [2, 7], or an overview in [8]. By the "Universal
Coefficient Theorem" [7, V. Thm. 3.3], it is known that H2(G; C) decomposes
as a direct sum:

Here, G' is the commutator subgroup of G, G/G' is the (finite) abelianization
of G and H2(G) is the second integral homology group of G. For abelian groups
F and H, Extz(F, H) is a specific abelian group (see [7, III.4] and Proposition
10.2 below) depending only on F and H, and Hom(F, H) is the abelian group
of all group homomorphisms from F to H.

By (iii) in Proposition 10.1 and (8), H2(G; C) is a direct sum of finite cyclic
groups of orders dividing v. Setting C = Z and noting (9) shows that H2(G)
also has this form. Essentially (see [9]), it consists of relations satisfied by
commutators in G, modulo those which are universally satisfied. An algorithm
to compute H2(G) (which is also called the Schur multiplicator of G), is given in
[8, pp. 83-84].
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then (as was calculated directly in [4]), H2(G) = ZM-1
m1 Zm2

M-2 © • • • © ZmM-1

and if the summand Zmi of G is generated by xi then the summands Zmi

of H2(G) are generated by the classes of [xi, x i+j], 1 < j < M - i. Clearly
G/G' = G.

(ii) G a split extension of a cyclic group by a cyclic group.

G =< a, b : ar = 1, 68 = 1, b - 1ab = at > where ts = 1 (modulo r).

By [10, pp.253-255] H2(G) = Zg, where g = g.c.d.(s,r). By inspection
G/G' = < a : aw = 1 > © < 6: 6* = 1 >, where w = g.c.d.(r, t - 1).

The abelian group Extz(G/G', C) is calculated by a standard technical result.

PROPOSITION 10.2. [7, III.4]. Let F and H be abelian groups, with F finite and H
finitely generated. If the primary invariant decomposition of F is F = fi=1 Zqi, qi =

pi, pi a prime, 1 < i < L , and, if H = Zk © (0fNj=1 Znj), then

(i) Extz(F, H) = 0L
i=1 Extz(Zqi, H),

(ii) Extz(Zqi, H) = Zk
qi 0 (®N

j=1 Zgij), where gij = g.c.d.(qi, n j).

To summarize: up to equivalence, each AEF has order dividing v (by (iii) in
Proposition 10.1) and a decomposition as a sum of two AEFs (by (8) and (9)).
Indeed, we shall be much more precise. However, practical application of these
powerful results requires that we describe the isomorphisms (8) and (9) in more
detail.

11. The group of abelian extension functions

We use part of the (inhomogeneous, unnormalized) standard complex or "bar
resolution," tensored by Z, which consists of a sequence of free abelian groups of
finite rank, together with abelian group homomorphisms with special properties.

The following notation is used: let M0(G) = Z and for m > 1, let Mm(G) be
the free abelian group of rank vm generated by the elements of Gm, that is

Mm(G) = A b < ( x 1 , x 2 , . . . , x m ) , x 1 , x 2 , . . . , x m e G > .

Example 10.1.

(i) G finite abelian. If G has torsion invariant decomposition
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For m > 0, define the abelian group homomorphism dm+1 : Mm+1(G) —> Mm(G)
on each infinite cyclic generator by: d1(a1) = 0 and, for m > 1,
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Put Im = dm+1(Mm+1(G)), Km+1 = Kernel(dm+1) and note that Im < Km. The
quotient Km/Im is usually called the mth integral homology group of G and is
denoted Hm(G). In particular, H1(G) = G/G'. Put Rm(G) = Mm(G)/Im, and
let sm+1 : Rm+1(G) —> Mm(G) be the quotient map induced by dm+1. Note that
Hm(G) < Rm(G).

We can now describe A(G, C) and B(G, C) in terms of those groups and
homomorphisms for which m = 1, 2. By definition, R2(G) is the abelian group
generated by {(a, b), a, b e G}, subject to the relations {-(a, b) + (b, c)-(ab, c) +
(a, bc), a, b, c € G}, so is isomorphic to the group A(G, -) of §9. That is,

A(G,-)= R2(G).

LEMMA 11.1. Define o : A(G, C) -> Hom(R2(G), C) to be

(i) A(G, C) a Hom(R2(G), (C).
(ii) If he B(G, C), then o (h) (H 2 (G)) = 0.

Proof. It is readily checked that o is well defined and an isomorphism. Similarly,
{a : G -> C} = Hom(M1(G), C), and o takes an element in B(G, C) to an
element as2 for some a e Hom(M1(G}, C}. Indeed as 2 (H 2 (G)) = 0, giving the
second result. D

From now on, without further comment, we will use (i) of Lemma 11.1 to
regard an AEF equally as a set mapping f : G x G —> C satisfying (6) or as
an abelian group homomorphism f: R2(G) —> C. So to determine A(G, C) we
need only express R2(G) as a direct sum of cyclic groups.

THEOREM 11.1. With v = \G\ and the notation above,

(i) R2(G)/H2(G) a Zv.
(ii) R2(G) = N2(G) ® H2(G) where N2(G) a [R2(G)/H2(G)].

(iii) A(G, C) = Hom(N2(G), C) ® Hom(H2(G), C) = Cv 8 Hom(H2(G), C).
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We show M2(G)/K2 = Zv. The subgroup d*2(M2(G)/K2) is free abelian, and
since d*2 is an injection, M2(G)/K2 is free abelian of rank at most v. For any
a e G with order o(a), define T(a) = Ei=0(a, ai) +K2. Then d2*(r(a)) = o(a)(a)
and if a = b, then o(a)(a) = o(b)(b); so this group has rank v. By isomorphism,
R2(G)/H2(G) is also free abelian of rank v; consequently R2(G) is a direct sum
N2(G)®H2(G) where N2(G) = R2(G)/H2(G). Finally, (iii) follows from the facts
that Hom(X ®Y,C) = Hom(X, C) ® Hom(Y, C) and Hom(Z, C) = C. D

Since H2(G) is finite, it is the torsion subgroup of R2(G), and N2(G) is a
torsion-free complement.

The isomorphism Theorem 11.1(ii) implies that any AEFf : G x G —> C has
a decomposition as a sum f = fs + fc where fs annihilates the subgroup H2(G)
of R2(G) and fc annihilates the subgroup N2(G). For abelian G, this result was
obtained directly in [4, 4.9].

Definition 11.1. The AEF f e A(G, C) is symmetric if f(H2(G)) = 0. Let
S(G, C) denote the subgroup of symmetric AEFs. The commutator part of an
AEF is its restriction to H2(G).

By Theorem 11.1(iii) we see that S(G, C) a Hom(N2(G), C). Note that
Lemma 11.1(ii) implies that every principal AEF is symmetric: i.e., B(G, C) <
S(G, C). These remarks together with the isomorphisms (8) and (9) imply the
final results of this section.

COROLLARY 11.1.

(i) A(G, C) = S(G, C) ® Hom(H2(G), C)
(ii) S(G, C)/B(G, C) a Extz(G/G', C).

12. The group of symmetric AEFs

We show that any A-cocyclic matrix developed by a symmetric AEF is A-
equivalent to one obtained by entrywise action of a symmetric matrix on a group

Proof. Any group homomorphism h : F -> H factors through F/Ker(h) as
h = h* o n : F —> F/Ker(h) —> H where n is the canonical quotient map and h*
is the injection induced from h. Thus we have the following commuting diagram
of abelian groups with short exact columns.
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Direct calculation shows that lifting two inequivalent AEFs in S(G/G', G) pro-
duces two inequivalent AEFs in S(G, C), so any element of S(G, C) is equivalent
to a lifted AEF satisfying the symmetry relation (11).

PROPOSITION 12.1. If f, € S(G, C), it has a decomposition

fs=f+
A+ fB, fA

+ = fA o (n x n), fA € S(G/G', C), fB € B(G, C),

and any other such decomposition fs = f+
A. + fB. arises as f+

A. = f+
A + h+, fB* =

fB-h+, for some h e B(G/G', C).

In fact, any fA € S(G/G', C) itself has a unique decomposition as a sum of
symmetric AEFs, one for each cyclic factor of G/G'. (See [4, 4.10]: for finite
abelian groups H and K, the group of symmetric AEFs on H x K is the direct
product of the groups of symmetric AEFs on H and K.) By (i) of Example
10.1 it also follows that for any cyclic group Zq, H2(Zq) = 0; so all the AEFs
over Zq are symmetric and S(Zq, C)/B(Zq, C) = H2(Zq;C).

PROPOSITION 12.2. Let the primary invariant decomposition of G/G' be G/G' =
®j=1zqj, qj = Pj

J, Pj a Prime, 1 < j < L. Then

(i) S(G/G',C)= 0j=1 S(Zqj,C),
(ii) S(G, C)/B(G, C) = ej=1 S(Zqj, C)/B(Zqj, C) a ©fj=1 H2(Zqj; C).

Together, Proposition 12.1 and (i) of Proposition 12.2 give us a complete
decomposition of any symmetric AEF.
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developed matrix. Moreover, the symmetric matrix is the Kronecker product of
back w-cyclic matrices.

By (ii) of Corollary 11.1, the group S(G, C}/B(G, C} of equivalence classes
of symmetric AEFs over G is isomorphic to Extz,(G/G', C), and hence also to
the group

S(G/G', C)/B(G/G', C)

of equivalence classes of symmetric AEFs over the abelianization G/G'.
Note that, if h : G —> H is a homomorphism of finite groups and f e A(H, C),

then f+ = f o (h x h) e A(G, C) (cf. [4, 3.2.H]). Setting H - G/G' and
h = n : G -> G/G' shows that any AEF f over G/G' determines a lifted AEF f+

over G. By [4, 4.9], any f e S(G/G', C) always satisfies the symmetry relation
f ( x , y) = f(y, x), x, y € G/G'; consequently, the lifted AEF f+ satisfies
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We write the group operation in A(ZV, Z) and in A(ZV, Zn) multiplicatively and
use the isomorphisms < x >= Z, < x : xn = 1 >= Zn and < a : av = 1 >= Zv.

LEMMA 12.1.

(i) Define w : Zv x Zv -> Z to be w ( a i , a j ) = x[(i+j)/v], 0 < i, j < v - 1. Then
w1 € S(Zv, Z), and w1 ~ wm if and only if 1 = m (modulov). Indeed, any
function f e S(ZV, Z) is equivalent to some power of w.

(ii) if g = g.c.d.(v, n), define w : Z v x Z v - > Znto be w(ai, aj) = x(n/g)[(i+j)/v], 0 <
i, j < v — 1. Then w1 e S(Zv, Zn), and w1 ~ wm if and only if l = m(modulog).

Indeed, any function f e S(Zv, Zn) is equivalent to some power of w.

Proof. We only prove (i); the proof for (ii) is similar. The argument of [3, 4.6,
second part of proof] shows w is an AEF. It, and its powers, clearly satisfy (11).
If w1 ~ wm then there exists a : Zv —» Z such that

w1-m(a i , aj) = x
(1-m)[(i+j)/v] = a(ai)a(aj)a(ai+j)-1, 0 < i, j < v - 1.

Put i = j = 0 to show a(l) = 1 and put i = 1 to show a(aj) = a(a)j, 1 < j < v—1.
Consequently a(a)v = x1-m, so v | (l - m). Conversely, if l - m = dv, set
a(ai) = xdi, 0 < i < v - 1 to show w1 ~ wm. Hence w generates an order v cyclic
group of inequivalent AEFs, which, by the first part of (12), forms a complete
set of equivalence class representatives. D

Geramita and Seberry [6, 4.198] note that if v is odd, any negacyclically
developed matrix over Zv is (using our terms) A-equivalent, for nA = Z2, to
a cyclically developed matrix. This is easily explained by (ii) of Lemma 12.1,

THEOREM 12.1 (Structure Theorem for Symmetric AEFs). Let f e S(G, C),
and let the primary invariant decomposition of G/G' be 0j=1 Zqj, where qj = pj, PJ

a prime, and 1 < j < L. Then
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where fsj e S(Zqj, C ) , f B e B(G, C) and the decomposition is unique up to the
choice of coset representative fB of the coset fB + B(G/G', C)+ in B(G, C).

It is a remarkable fact that each coset of symmetric AEFs over a cyclic group
contains a specific w-cyclic development function (see Example 4.1), which is
the natural choice of coset representative for design theoretic purposes. By (ii)
of Proposition 10.2 the second cohomology group for a cyclic group with cyclic
coefficients is known:
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and is in fact the simplest illustration of a very general phenomenon. Since,
by (12) H2(ZV;Z2) = Z2 or 0 according as v is even or odd, there are at
most two equivalence classes of cocyclic orthogonal designs over Zv (assuming
C = UA = Z2 consists of the permutations on 5 given by multiplication by ±1).
When v is odd, the sole equivalence class (of the trivial AEF w0 = 1) is that
of cyclic development. When v is even, the nontrivial equivalence class (of the
AEF w of order 2) is that of negacyclic development.

THEOREM 12.2. There are g = g.c.d.(v, n) inequivalent cocyclic development
functions over Zv with coefficients in Zn, all of which are symmetric. When g = 1,
the sole equivalence class is that of cyclic (group) development. When g > 1, the
nontrivial equivalence classes are those of wk-cyclic development, k = 1, • • •, g - 1,
where w is an element of order g in Zn.

13. The minimal development table

Finally, we apply this link between group cohomology and design theory to
extract a minimal development table for G. It is isomorphic to H2(G; -) (with
unspecified coefficient group), and provides a complete (finite) list of inequivalent
cocyclic development functions.

Recall from §9 that a development table it is presentation in matrix form of
A(G, -) = R2(G), so by (ii) of Theorem 11.1 it is possible to find a development
table with the minimum number of indeterminates.

A minimum development table so derived from the isomorphism A(G, -) =
N2(G)®H2(G) has v unconstrained indeterminates corresponding to v "symmet-
ric" generators of N2(G) and (usually) some order-constrained indeterminates
corresponding to the "commutator" generators of H2(G).

Our minimal development table is a presentation of A(G, -)/B(G, -) in
matrix form. A development table is obtained from a minimal development
table by superimposing on it a group development table corresponding to a
presentation of the subgroup B(G, -).

On setting S(G, -) to be the subgroup of A(G, -) isomorphic to N2(G),
the results of Proposition 12.2(ii) and Lemma 12.1 allow us to determine a
minimal set of "symmetric" generators for S(G, -)/B(G, -), each with finite
order dividing v.

For a cyclic group of prime power order, the minimal development table is
just the matrix [w1(a, b)] for the w-cyclic development of Lemma 12.1(i).

Definition 13.1. Let v = pt be a prime power, and let A be an indeterminate of
order dividing v in an abelian group. The minimal development table of Zv is the
(symmetric) v x v matrix
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The symmetric minimal development table for an arbitrary G is built up from
Definition 13.1 by Kronecker products, and the commutator minimal development
table is given by Hadamard products of the matrices corresponding to the
generators of Hom(H2(G), -).

Definition 13.2. Let G be a finite group of order v and let Jr be the r x r all
1s matrix.

(i) Let the primary invariant decomposition of G/G' be G/G' = 0j=1, Zqj, qj =
ptj, Pj a prime, 1 < j < L. The symmetric minimal development table MD s (G)
of G is the v x v Kronecker product matrix

MD s (G) = J|G'| x MD(Zq1) x MD(Zq2) x • • • x MD(ZqL).

(ii) Let f1, f2, . . . , fM be a minimal generating set for the torsion subgroup of
A(G, -). A commutator minimal development table MDC(G) of G is the v x v
Hadamard product matrix, together with the corresponding order constraints

MDC(G) = [f1(a, b)] o [f2(a, b)] o • • • o [fM(a, b)] (a, b e G).

Definition 13.3. Let G be a finite group of order v. A minimal development table
MD(G) of G is a v x v Hadamard product matrix

MD(G) = MDs(G) o MDC(G).

(ii) G a cyclic group of order 6, G = Z6 = Z3 x Z2 = {e,a,a2,b,ab,a2b}. Then

Example 13.1.

and, from (i) of Example 10.1 or [3, 3.10],

(i) G a 4-group G = Z2 x Z2 = {e, a, a, ab}. Then
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(iii) G a dihedral group of order 2r, r odd, G = {e, a, a2,..., ar-1,b, ab, a2b,..., ar-1b},
cf (ii) of Example 10. Then |G'| - r; G/G' =< b : b2 = 1 >; H2(G) a 0 and

(iv) G = Ab < x1,x2,x3 : 2x1 = 2x2 = 2x3 > = Z3
2, with elements ordered

lexicographically (cf. (i) of Example 10.1). Then \G'\ = 1,L = 3,q1 = q2 =
53 = 2 and

and, from (i) of Example 10.1 or [4, Table 3], for K2 = L2 = M2 = 1

(v) G the quaternions, G = {e, a, a2, a3, b, ab, a2b, a3b}. It may be shown that
H2(G) = 0, so that every AEF on G is symmetric. Clearly

(vi) G a dihedral group of order 8, G = {e, a, a2, a3, b, ab, a2b, a3b} (cf. (ii) of
Example 10.1). Then

G/G' = < a : a2 = 1 > 9 < b : b2 = 1 >; H2(G) = Z2,

and the generator of H2(G) is given by the class of [a2,b]. So

and
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for (1,1,-1), (1,-1,-1), (-1,1,-1) there are none,
for (1, 1, 1) the only solution (also cyclically developed modulo Z4) is

The minimal development table answers question (iii) (see §8), and is therefore
of central value in answering question (ii). For instance, to look for cocyclic ODs

over G, the indeterminate entries of MD(G) are assigned values in a cyclic group
of order 2, and the resultant matrix is superimposed on an arbitrary G-developed
matrix. Then the simultaneous equations resulting from the row-orthogonality
requirement are solved.

We shall pursue this question elsewhere, but we close with a small example
of the application of this theory. Consider the non-cyclic group (i) of Example
13.1 G = Z2 x Z2, and let S, A and UA - {1, -1} = Z2 be as given in Example
3.1. Any cocyclic OD over G is A-equivalent and hence OD-equivalent ([6, p.
74]), to one of the form

A, B, K e HA, A2 = B2 = K2 = 1, e, f, g, h e S.

The resulting simultaneous equations are

(1 + A)(ef + gh] = 0, (1 + B)(eg + fhK) = 0, (1 + ABK)(eh + fgB) = 0.

The eight inequivalent cocyclic development functions specified by the values of
the vector (A, B, K} determine the four nonisomorphic extensions of Z2 x Z2

by Z2 for the corresponding weak difference set constructions (Theorem 5.1)
as follows:

Z3
2 : (1, 1, 1)

Z 4 x Z 2 : ( l , -1, 1),(-1, 1, 1),(-1, -1,1)
D8 : (1,1, -1),(1, -1,-1),(-1, 1,-1)
Q8 : (-1, -1, -1).

For each choice of (A, B, K), the simultaneous equations may be solved to
give all possible cocyclic ODs over Z2 x Z2. In particular, we list the cocyclic
ODs which are full (no entries are 0):
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for (1,-1,1), (-1,1,1), (-1,-1,1) the only solutions are

while for (-1,-1,-1) the simultaneous equations hold vacuously and the
solutions are (cf. Example 3.1)

This last result means there is exactly one equivalence class of OD(4;1,1,1,1)s,
not two (as stated in [6, Theorem 4.1]), since by [3, 4.3. (iii)] all OD(4;l,l,l,l)s
are cocyclic. (This may also be checked directly.)
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