The Automorphism Group and the Convex Subgraphs of the Quadratic Forms Graph in Characteristic 2

A. MUNEMASA ${ }^{1}$
Department of Mathematics, Kyushu University, 6-10-1 Hakozaki, Higashiku Fukuoka 812, Japan.
D.V. PASECHNIK ${ }^{2}$
Department of Mathematics, University of Western Australia, Nedlands 6009 WA, Australia.
S.V. SHPECTOROV ${ }^{3}$
Institute for System Analysis, 9, Pr. 60 Let Oktyabrya, 117312 Moscow, Russia.

Received March 12, 1993

Abstract

We determine the automorphism group and the convex subgraphs of the quadratic forms $\operatorname{graph} \operatorname{Quad}(n, q), q$ even.

Keywords: association scheme, distance-regular graph, space of quadratic forms, automorphism group, convex subgraph

1. Introduction

The quadratic forms graph $\operatorname{Quad}(n, q)$ was introduced by Egawa [2]. It has as vertices all quadratic forms on an n-dimensional vector space over $G F(q)$. Two forms f and g are adjacent in $\operatorname{Quad}(n, q)$ whenever rank $(f-g)=1$ or 2. If $n=1$ or 2 , then $\operatorname{Quad}(n, q)$ is a complete graph; the $\operatorname{graph} \operatorname{Quad}(3$, 2) is isomorphic to the distance-transitive graph Alt(4,2) [2]. If $n \geq 3$ and $(n, q) \neq(3,2)$ then $\operatorname{Quad}(n, q)$ is distance-regular, but not distance-transitive. In this paper we investigate the properties of the $\operatorname{graph} \operatorname{Quad}(n, q)$ when q is even. We determine its automorphism group and describe all its convex (i.e., geodetically closed) subgraphs. In the case of odd q both problems have been solved earlier. The group Aut $\operatorname{Quad}(n, q), q$ odd, was determined in [4]. The convex subgraphs of $\operatorname{Quad}(n, q), q$ odd, were determined in [5].

[^0]Over a field of odd characteristic, the quadratic forms graph is the $\{1,2\}$-distance graph of the corresponding symmetric bilinear forms graph. In characteristic 2 this construction fails, and maybe it is the reason why $\operatorname{Aut} \operatorname{Quad}(n, q), q$ even, was not determined earlier. It is quite clear that the mappings $f \mapsto f+g$ ($g \in$ $\operatorname{Quad}(n, q))$ and $f \mapsto \theta^{-1} \circ f \circ g\left(g \in \Gamma L_{n}(q), \theta\right.$ is the field automorphism associated with g) are automorphisms of $\operatorname{Quad}(n, q)$. Together they generate a group Aut ${ }^{0}$ $\operatorname{Quad}(n, q) \cong q^{n(n+1) / 2}: \Gamma L_{n}(q)$, which was thought to be the full automorphism group of $\operatorname{Quad}(n, q)$. It is a little bit of a surprise that this natural conjecture fails, and $\operatorname{Quad}(n, q), q$ even, has more automorphisms.

Theorem 1.1. Assume $n \geq 3$ and $(n, q) \neq(3,2)$. If q is a power of 2 , then $\operatorname{Aut} \operatorname{Quad}(n, q)$ is the product of $\operatorname{Aut}^{0} \operatorname{Quad}(n, q)$ and the group of order q^{n} constituted by the following automorphisms:

$$
f \mapsto f+B_{f}(\cdot, v)^{2} \quad(v \in V),
$$

here B_{f} is the alternating form associated with f, and V the basic n-dimensional vector space over $G F(q)$.

It is easy to check that the permutations given in the theorem are indeed automorphisms of Quad (n, q) and that they form an elementary abelian group E of order q^{n}. Also, a nonidentity automorphism $e \in E$ preserves the rank of every form, but maps some (even rank) forms of plus type to forms of minus type, and vice versa. In particular, E has trivial intersection with $\operatorname{Aut}{ }^{0} \mathrm{Quad}(n, q)$.

For a subspace $U \leq V$ and a form $f \in \operatorname{Quad}(n, q)$ let $Q(f, U)$ denote the subgraph in $\operatorname{Quad}(n, q)$ induced by the set of forms $\{f+g \mid \operatorname{Rad}(g) \geq U\}$. Then $Q(f, U)$ is naturally isomorphic to $\operatorname{Quad}(n-\operatorname{dim} U, q)$. Since the parameters c_{i} of $\operatorname{Quad}(n, q)$ do not depend on n, the subgraphs $Q(f, U)$ are convex.

Theorem 1.2. If Σ is a noncomplete convex subgraph of $\operatorname{Quad}(n, q), q$ even, then $\Sigma=Q(f, U)$ for some $f \in \operatorname{Quad}(n, q)$ and a subspace $U<V, \operatorname{dim} U \leq n-3$.

The maximal cliques of $\operatorname{Quad}(n, q)$ were determined in [3].

2. Preliminaries

Throughout the paper Γ denotes the graph $\operatorname{Quad}(n, q)$ and V denotes the n dimensional vector space over $G F(q)$ on which the quadratic forms from Γ (and associated alternating forms) are defined, q is a power of 2 . Here and below we use the same letter to denote a graph and its set of vertices.

For a given $f \in \Gamma$, we denote by $R(f)$ the set $\{f+h \mid$ rank $(h)=1\}$. Clearly, $R(f)$ is a clique of size q^{n}; after [1, section 9.6], we call such cliques R_{1} cliques. If B_{f} denotes the alternating form associated with f (i.e., $B_{f}(x, y)=$
$f(x+y)-f(x)-f(y)$ then $B_{f}=B_{g}$ if and only if $R(f)=R(g)$. It will be convenient to identify R_{1}-cliques and corresponding alternating form. Under this identification we will use notation like $\operatorname{Rad}(X-Y)$, $\operatorname{rank}(X)$, where X and Y are R_{1}-cliques. Two R_{1}-cliques $R(f)$ and $R(g)$ are at distance 1 from each other whenever rank $\left(B_{f}-B_{g}\right)=2$. It means that the identification of $R(f)$ and B_{f} reveals the structure of the alternating forms graph $\operatorname{Alt}(n, q)$ on the set Δ of R_{1}-cliques.
Every R_{1}-clique X naturally carries the structure of an n-dimensional affine space (denote it by Aff X). The i-dimensional subspaces of Aff X are all sets of the form $S(f, U)=\{f+h \mid h \in R(0)$, $\operatorname{Rad}(h) \geq U\}$, where $f \in X$ and U is an ($n-i$)-dimensional subspace of V. When U is fixed and f runs through X, the sets $S(f, U)$ form a parallel class of i-spaces in Aff X. Notice also that the intersection of subspaces $S\left(f, U_{1}\right)$ and $S\left(f, U_{2}\right)$ is the subspace $S\left(f,\left\langle U_{1}, U_{2}\right\rangle\right)$.

Lemma 2.1. Suppose R_{1}-cliques X and Y are at distance s from each other. Then for every $f \in X$ one has that $\Gamma_{s}(f) \cap Y=S(g, \operatorname{Rad}(X-Y))$ for some $g \in Y$, i.e., $\Gamma_{s}(f) \cap Y$ is a subspace of Aff Y of dimension $2 s$.

For an alternating form $B \in \operatorname{Alt}(n, q)$ and a subspace $U \leq V$ let $A(B, U)=$ $\left\{B+B^{\prime} \mid \operatorname{Rad}\left(B^{\prime}\right) \geq U\right\}$. The subgraph $A(B, U)$ of $\operatorname{Alt}(n, q)$ is naturally isomorphic to $\operatorname{Alt}(n-\operatorname{dim} U, q)$. The following result was proved in [5, Proposition (5.26)].

Lemma 2.2. Every noncomplete convex subgraph of $\Delta=\operatorname{Alt}(n, q)$ coincides with $A(B, U)$ for some B and $U<V, \operatorname{dim} U \leq n-4$.

Lemma 2.3. If $n \geq 3$ and $(n, q) \neq(3,2)$ then Γ does not contain a subgraph $\Sigma \cong \operatorname{Alt}(n, q)$ such that Σ intersects every R_{1}-clique of Γ in exactly one vertex.

Proof. Suppose that there exists such a subgraph Σ. Without loss of generality we may assume that 0 is a vertex of Σ. First consider the case $q>2$ and $n \geq 3$.
It is known [1, proof of 9.5.6] that the singular lines of $\operatorname{Alt}(n, q)$, containing the zero alternating form, are the sets $L(B)=\{\alpha B \mid \alpha \in G F(q)\}$, where B is a rank 2 alternating form (in case $n=3 \operatorname{Alt}(3, q)$ is complete and still $L(B)$ is a part of the (trivial) singular line). Let $L=\{0, f, g, \ldots\}$ be the preimage of $L(B)$ in Σ. Then, clearly, $\operatorname{Rad}(f)=\operatorname{Rad}(g)$. Let $h \in\{0, f\}^{\perp}$ (in Γ) and let $t \in R(h) \cap \Sigma$. Then t is adjacent to $0, f$ and g. Since h also is adjacent to f, $\operatorname{Rad}(h-t)>\operatorname{Rad}(f)$. Therefore, the equality $\operatorname{Rad}(f)=\operatorname{Rad}(g)$ implies that h is adjacent to g. It means that L is contained in a singular line of Γ. On the other hand, it is known [2, Lemma 3.6] that, for an f of rank 2, the singular line $\{0, f\}^{\perp \perp}$ of Γ has size 2. Since $|L|=q>2$, we obtain a contradiction.

Now let $q=2$ and $n \geq 4$. By [7, Proposition 3.1], the local graph $\Gamma(0)$ is isomorphic to the Grassmann graph $\left[\begin{array}{c}W \\ 2\end{array}\right]$ for an $(n+1)$-dimensional vector space
W over $G F(2)$. Let us identify $\Gamma(0)$ with $\left[\begin{array}{c}W \\ 2\end{array}\right]$.
Choose $f \in \Sigma_{2}(0)$. Then by Lemma 2.2 the convex closure of 0 and f (in Σ) is a subgraph $\Theta \cong \operatorname{Alt}(4,2)$. The local subgraph $\Theta(0)$ is isomorphic to the Grassmann graph $\left[\begin{array}{l}U \\ 2\end{array}\right]$ for a 4 -dimensional vector space U over $G F(2)$. By [5, Proposition (5.14)], the isomorphism between $\Theta(0)$ and $\left[\begin{array}{l}U \\ 2\end{array}\right]$ can be established by choosing as U certain 4-dimensional subspace of W (i.e., $\Theta(0)=\left[\begin{array}{l}U \\ 2\end{array}\right]$ for that subspace U). On the other hand, f must be rank 4 as a quadratic form (otherwise, $\Gamma(f)$ contains a rank 1 form). It was proved in [7, Lemma 5.7 and the remark after it] that, for a rank 4 form $f, \Gamma(0) \cap \Gamma(f)$ is not contained in $\left[\begin{array}{c}U \\ 2\end{array}\right]$ for any 4-dimensional subspace $U<W$; a contradiction since $\Gamma(0) \cap \Gamma(f)=\Theta(0) \cap \Theta(f)$.

3. The automorphism group

In this section we prove Theorem 1.1. Throughout the section we assume that $n \geq 3$. If $(n, q) \neq(3,2)$, it was shown in [2] that $G=\operatorname{Aut} \operatorname{Quad}(n, q)$ does not mix the edges (f, g) with rank $(f-g)=1$ and the edges with rank $(f-g)=2$. It implies that, under the above restriction, G leaves the set of R_{1}-cliques invariant. It defines a homomorphism of G into the group $\operatorname{Aut} \operatorname{Alt}(n, q)$. The proof of Theorem 1.1 will be given in two steps. First we show that G and the group $G_{0}=E \cdot \operatorname{Aut}^{0} \operatorname{Quad}(n, q)$ from the introduction have the same kernel under this homomorphism. The second step is to show that G and G_{0} have the same image in Aut Alt (n, q).
Let K be the subgroup of G, consisting of all the automorphisms of Γ, stabilizing every R_{1}-clique. Notice that until Proposition 3.2 we do not exclude the case $(n, q)=(3,2)$.

Lemma 3.1. For every R_{1}-clique X, K induces on X the group of translations of Aff X.

Proof. It suffices to prove that every $a \in K$ induces a translation of Aff X. It follows from Lemma 2.1 that a preserves every parallel class of subspaces in Aff X, and hence a is either a translation or a collineation. Suppose a is a nontrivial collineation with a center $x \in X$ (in particular, $q>2$). Take an R_{1}-clique Y at distance 1 from X. By Lemma 2.1, $S=\Gamma(x) \cap Y$ is a plane of Aff Y, and $T=\Gamma(y) \cap X(y$ is an arbitrary element of S) is a plane in Aff X. Clearly, a stabilizes T and does not stabilize every plane parallel to T. By Lemma 2.1, adjacency relation establishes a bijection between the parallel classes of S and T (in Aff Y and Aff X, respectively). Consequently, a stabilizes S and does not stabilize every plane of Aff Y, parallel to S. It follows that a cannot induce a translation of Aff Y, hence it induces a nontrivial collineation.
By connectivity, a induces a nontrivial collineation on every R_{1}-clique Y. In
particular, a fixes exactly one form t_{Y} in every Y. Moreover, the above argument shows that $t_{Y_{1}}$ and $t_{Y_{2}}$ are neighbors whenever Y_{1} and Y_{2} are such. It means that the subgraph Σ induced by all t_{Y} 's is naturally isomorphic to $\operatorname{Alt}(n, q)$. This contradicts Lemma 2.3.

Lemma 3.2. Let $A \leq K$ and let Σ be the subgraph induced by all the vertices of Γ, fixed by A. Then
(1) for every $f \in \Sigma$, one has $R(f) \subseteq \Sigma$;
(2) the image of Σ in $\Delta=\operatorname{Alt}(n, q)$ is a convex subgraph.

Proof. The part (1) follows from Lemma 3.1. For (2), let $X, Y \subseteq \Sigma$ be two R_{1}-cliques at distances $s>1$ from each other. Suppose that an R_{1}-clique T lies on a shortest path from X to Y, say, rank $(X-Y)=2 i$ and rank $(T-Y)=2 j=\operatorname{rank}(X-Y)-\operatorname{rank}(X-T)=2 s-2 i$. By Lemma 2.1, for $x \in X$ and $y \in Y, S_{1}=\Gamma_{i}(x) \cap T$, is a $2 i$-dimensional subspace of Aff T, and $S_{2}=\Gamma_{j}(y) \cap T$ is a $2 j$-dimensional subspace of Aff T. Clearly, we may choose x and y in such a way that $S_{1} \cap S_{2} \neq \emptyset$. According to the remark before Lemma 2.1, $S_{1} \cap S_{2}=S(f,\langle\operatorname{Rad}(X-T), \operatorname{Rad}(T-Y)\rangle)$ for an $f \in S_{1} \cap S_{2}$. But the equality rank $(X-Y)=\operatorname{rank}(X-T)+\operatorname{rank}(T-Y)$ implies that $\langle\operatorname{Rad}(X-T)$, $\operatorname{Rad}(T-Y)\rangle=V\left[1\right.$, Lemma 9.5.5 (i)]. It means that $S_{1} \cap S_{2}$ consists of a unique form, and hence A fixes T elementwise by Lemma 3.1.

Proposition 3.1. K is contained in G_{0}.
Proof. It is easy to see that $\left|K \cap G_{0}\right|=q^{2 n}$. Hence it suffices to prove that $|K| \leq q^{2 n}$.

First we consider the case of even n (recall that $n \geq 3$). Let f be a form of rank n. By Lemma 2.2, the geodetic closure of $\{R(0), R(f)\}$ coincides with the whole of Δ. Hence Lemma 3.2 implies that the stabilizer in K of both 0 and f is trivial. Therefore, $|K| \leq|R(0)| \cdot|R(f)|=q^{2 n}$.

Now let us separately consider the case $n=3$. Choose a rank 2 form f and let $X=R(f)$. Let Y be an R_{1}-clique such that $\operatorname{Rad}(Y) \neq \operatorname{Rad}(X)$. This condition and Lemma 2.1 imply that $\Gamma(0) \cap Y$ and $\Gamma(f) \cap Y$ are nonparallel planes of Aff Y. Hence $L=\Gamma(0) \cap \Gamma(f) \cap Y$ is a line of Aff Y. Pick a form $g \in L$. If T is an R_{1}-clique such that $\operatorname{Rad}(T) \notin\langle\operatorname{Rad}(X) \operatorname{Rad}(Y)\rangle$, then the line $\Gamma(0) \cap \Gamma(f) \cap T$ is not parallel to the plane $\Gamma(g) \cap T$ and hence $\Gamma(0) \cap \Gamma(f) \cap \Gamma(g) \cap T$ has cardinality 1 . It means that an element of K fixes T whenever it fixes $0, f$ and g. Let T^{\prime} be an arbitrary R_{1}-clique different from X, Y and T. Then $\operatorname{Rad}\left(T^{\prime}\right)$ is not contained in at least one of $\langle\operatorname{Rad}(X)$, $\operatorname{Rad}(Y)\rangle,\langle\operatorname{Rad}(X), \operatorname{Rad}(T)\rangle$, and $\langle\operatorname{Rad}(Y), \operatorname{Rad}(T)\rangle$. We can repeat the above argument for appropriate R_{1}-cliques to obtain that an element K fixes T^{\prime} whenever it fixes $0, f$, and g. Thus we have shown that the subgroup of K fixing $0, f$ and g is trivial.

Now we can estimate the order of K. The stabilizer of 0 moves f within the plane $\Gamma(0) \cap X$. The stabilizer of 0 and f moves g within the line L. Therefore, $|K| \leq q^{3+2+1}=q^{6}$.

Finally, let us consider the case $n>3$ is odd. Choose a form f of the maximal even rank $2 s=n-1$. Let g be a rank 2 form such that $\operatorname{Rad}(f) \notin \operatorname{Rad}(g)$. Then Lemma 2.2 implies that the geodetic closure in Δ of $R(0), R(f)$, and $R(g)$ coincides with the whole of Δ. By Lemma 3.2, the stabilizer in K of $0, f$ and g is trivial. By Lemma 2.1, $H=\Gamma_{s}(0) \cap R(f)$ is a hyperplane of Aff $R(f)$. Furthermore, $S_{1}=\Gamma_{s}(f) \cap R(g)$ is a hyperplane of Aff $R(g)$, $S_{2}=\Gamma(0) \cap R(g)$ is a plane of Aff $R(g)$ and S_{2} is not parallel to S_{1}. Hence $|K| \leq|R(0)| \cdot|H| \cdot\left|S_{1} \cap S_{2}\right|=q^{n+(n-1)+1}=q^{2 n}$.

In case $(n, q) \neq(3,2), K$ coincides with the kernel of G acting on Δ. Hence, in order to prove Theorem 1.1 it remains to establish the following.

Proposition 3.2. Assume $(n, q) \neq(3,2)$. Then the images of G and G_{0} in Aut Δ coincide.

Proof. In what follows, a bar over an element, or a subgroup of G means taking image in the action on Δ.

If $n \geq 5$, then Aut Δ is known to be \bar{G}_{0} [6], so the assertion is trivial. In case $n=4$ the automorphism group of Δ is twice larger (i.e., Aut $\Delta=\bar{G}_{0} .2$), since it contains an element interchanging the two classes \mathcal{Q}_{1} and \mathcal{Q}_{2} of maximal cliques in Δ. These two classes are represented, respectively, by the cliques

$$
Q_{1}=\left\{B \in \Delta(0) \mid \operatorname{Rad}(B) \leq U_{1}\right\} \cup\{0\}
$$

and

$$
Q_{2}=\left\{B \in \Delta \mid \operatorname{Rad}(B) \geq U_{2}\right\},
$$

where U_{1} and U_{2} are fixed subspaces of V of dimensions 3 and 1 , respectively. Let $f \in \Gamma$ be a rank 1 form, such that $\operatorname{Rad} f=U_{1}$. Then 0 and f have the same set of neighbors in the preimage of Q_{1}. On the other hand, the preimage of Q_{2}, naturally isomorphic to $\operatorname{Quad}(3, q)$, does not contain a pair of vertices with this property. It follows that \bar{G} leaves \mathcal{Q}_{1} and \mathcal{Q}_{2} invariant and, hence, $\bar{G}=\bar{G}_{0}$.

It remains to consider the case $n=3, q>2$. In this case Δ is a complete graph with q^{3} vertices. For $f \in \Gamma$ and a subspace $U<V, \operatorname{dim} U=n-2$, the subgraph $Q(f, U) \cong \operatorname{Quad}(2, q)$ (see Introduction) is a clique of size q^{3}. Such cliques will be called cubic. Consider the plane $S=S(x, U)$ of Aff $R(x)$. Then S^{\perp} coincides with the union of $R(x)$ and the cubic clique $Q=Q(x, U)$. Moreover, no element from $Q \backslash S$ is adjacent to an element from $R(x) \backslash S$. Since the set of planes of Aff X, where X runs through all R_{1}-cliques, is invariant under G, this implies that the set of cubic cliques is also invariant under the action of G. Now the vertices of Δ and the images of the cubic cliques (each image consists of q elements) form a 3 -dimensional affine space over $G F(q)$.

Since \bar{G}_{0} is isomorphic to the full automorphism group of that affine space, we obtain $\bar{G}=\dot{G}_{0}$.

4. Convex subgraphs

In this section we prove Theorem 1.2. Clearly, it suffices to consider the case $n \geq 3$; we start with $n=3$.

Proposition 4.1. Let $n=3$ and let $f \in \Gamma$ be a form of rank 3. Then the convex closure of 0 and f coincides with the whole of Γ.

Proof. Let C denote the convex closure of 0 and f. Let X be an R_{1}-clique such that $\operatorname{Rad}(X) \neq \operatorname{Rad}(R(f))$. Then the line $L_{1}=\Gamma(0) \cap \Gamma(f) \cap X$ of Aff X is contained in C. Choose now an R_{1}-clique Y, such that $\operatorname{Rad}(Y) \notin\langle\operatorname{Rad}(R(f))$, $\operatorname{Rad}(X)\rangle$. Then the line $L_{2}=\Gamma(0) \cap \Gamma(f) \cap Y$ of Aff Y also is contained in C. Moreover, for $x \in L_{1}$ and $y \in L_{2}$, one has that L_{1} is not parallel to the plane $\Gamma(y) \cap X$ and L_{2} is not parallel to the plane $\Gamma(x) \cap Y$. Now every $a \in X$ is adjacent to every x on L_{1} and to some y on L_{2}. Clearly, we can choose x to be nonadjacent to that y. Therefore, a belongs to C. It follows that X (and, symmetrically, Y) is contained in C. Notice now that the sets of lines $A(X, U)$, where $X \in \Delta$ and $U<V$ has dimension 1, makes Δ an affine 3 -space. In terms of this affine space the above conclusion can be rephrased as follows: if P, Q, $R \in \Delta$ are noncollinear and $P \cap C \neq \emptyset \neq Q \cap C$, then $R \subseteq C$. Now for every R_{1}-clique T we can choose two out of three R_{1}-cliques $R(f), X$ and $R(0)$ to form together with T a noncollinear triple. It means that $T \subseteq C$ and hence $C=\Gamma$.

Recall that $\Delta \cong \operatorname{Alt}(n, q)$ is the graph of R_{1}-cliques.
Lemma 4.1. If Σ is a convex subgraph of Γ then the image of Σ in Δ is convex.
Proof. Let X and Y be two R_{1}-cliques at distance $s>1$ from each other, such that $X \cap \Sigma \neq \emptyset \neq Y \cap \Sigma$. Let T be an R_{1}-clique such that T is at distance i from X and at distance j from Y with $s=i+j$. It suffices to prove that $T \cap \Sigma$ is nonempty.

Let $x \in X \cap \Sigma$ and $y \in Y \cap \Sigma$. If rank $(x-y)=2 s+1$ then $\Gamma_{s}(y) \cap X$ is a nonempty set contained in Σ. Replacing x by any element from $\Gamma_{s}(y) \cap X$, we may assume without loss of generality that rank $(x-y)=2 s$. By Lemma 2.1, both x and y belong to the subgraph $\Gamma_{0}=Q(x, \operatorname{Rad}(X-Y)) \cong \operatorname{Quad}(2 s, q)$. Since $\operatorname{Rad}(X-Y)=\operatorname{Rad}(X-T) \cap \operatorname{Rad}(T-Y)[1$, Lemma 9.5 .5 (i)], we have that $T \cap \Gamma_{0} \neq \emptyset$. Also Γ_{0} is a convex subgraph and hence $\Sigma_{0}=\Gamma_{0} \cap \Sigma$ is convex. It means that we can substitute Γ_{0} and Σ_{0} in place of Γ and Σ. In other words we may assume that $n=2 s$.

Finally, $V=\langle\operatorname{Rad}(X-T), \operatorname{Rad}(T-Y)\rangle$ implies that the $2 i$-dimensional subspace $\Gamma_{i}(x) \cap T$ and the $2 j$-dimensional subspace $\Gamma_{j}(y) \cap T$ of Aff T must intersect each other in exactly one point.

According to this lemma and Lemma 2.2, the image of Σ must be a clique, or a natural subgraph $\operatorname{Alt}(k, q), k \leq n$.

Proposition 4.2. Suppose $\Sigma \subseteq \Gamma$ is convex and its image in Δ is a clique. Then either Σ is a clique, or $\Sigma=Q(f, U) \cong \operatorname{Quad}(3, q)$ for an $f \in \Sigma$ and some subspace $U<V, \operatorname{dim} U=n-3$.

Proof. Suppose Σ is not a clique. Then there exist $f, g \in \Sigma$ such that rank $(f-g)=3$. By Proposition 4.1, the closure Σ_{0} of f and g coincides with $Q(f$, $\operatorname{Rad}(f-g)) \cong \operatorname{Quad}(3, q)$. Notice that the image of Σ_{0} in Δ is a maximal clique. It follows that the images of Σ and Σ_{0} coincide. Suppose $\Sigma \neq \Sigma_{0}$ and $x \in \Sigma \backslash \Sigma_{0}$. Let $X=R(x)$ and let $Y \neq X$ be another R_{1}-clique such that $Y \cap \Sigma \neq \emptyset$. Then also $T \cap \Sigma_{0} \neq \emptyset$. Choose $y \in Y \cap \Sigma_{0}$. Then the plane $\Gamma(y) \cap X$ is contained in Σ_{0} and hence rank $(x-y)=3$. Moreover, $\operatorname{Rad}(x-y) \neq \operatorname{Rad}$ $(f-g)$. One more application of Proposition 4.1 gives that the image of Σ is bigger than the image of Σ_{0}; a contradiction.

Proposition 4.3. Suppose that Σ is a convex subgraph of Γ such that the image of Σ in Δ coincides with $A(B, U)$ for some alternating form B and subspace $U<V$, $\operatorname{dim} U \leq n-4$. Then $\Sigma=Q(f, U)$ for an $f \in \Sigma$.

Proof. Let $f \in \Sigma$ and $\Sigma_{0}=Q(f, U)$. We first prove that $\Sigma \subseteq \Sigma_{0}$. Indeed, let an R_{1}-clique $Y \in A(B, U)$ be a neighbor of $R(f)$. Suppose there is $g \in Y \cap \Sigma$ such that $g \notin Q(f, U)$. Then $\operatorname{rank}(g-f)=3$ and $\operatorname{Rad}(g-f) \nsucceq U$. By Proposition 4.1 it follows that $Q(f, \operatorname{Rad}(g-f)) \subseteq \Sigma$. But $A\left(B_{f} \operatorname{Rad}(g-f)\right) \nsubseteq A(B, U)=$ $A\left(B_{f}, U\right)$, a contradiction. Hence $Y \cap \Sigma \subseteq \Sigma_{0}$. By connectivity of $A(B, U)$, we obtain that $\Sigma \subseteq \Sigma_{0}$. It means that without loss of generality we may assume that Σ covers the whole of Δ (i.e., $U=0$).

Now we claim that there is an R_{1}-clique X such that $|X \cap \Sigma|>1$. Indeed, suppose $|X \cap \Sigma|=1$ for every R_{1}-clique X. Let $\left\{t_{X}\right\}=X \cap \Sigma$. If two R_{1}-cliques X and Y are adjacent then t_{X} and t_{Y} are adjacent, otherwise Proposition 4.1 forces a contradiction. Therefore, Σ is isomorphic to Δ; a contradiction with Lemma 2.3, since $n \geq 4$.

Let X be an R_{1}-clique such that $x_{1} \neq x_{2} \in X \cap \Sigma$. Let L be the line of Aff X containing x_{1} and x_{2}. Let Y be an R_{1}-clique at distance 1 from X, such that for $y \in Y$ the plane $\Gamma(y) \cap X$ is not parallel to L. Notice that $\Gamma\left(x_{1}\right) \cap Y \cap \Sigma$ is nonempty. Indeed, if $y \in Y \cap \Sigma$ is not adjacent to x_{1} then the whole plane $\Gamma\left(x_{1}\right) \cap Y$ is contained in Σ. Let us choose $y \in \Gamma\left(x_{1}\right) \cap Y \cap \Sigma$. Since L is not parallel to $\Gamma(y) \cap X, y$ is not adjacent to x_{2}. By convexity of $\Sigma, \Gamma(y) \cap X \subseteq \Sigma$. It follows that all planes of Aff X, which contain x_{1} and do not contain x_{2},
are contained in Σ. Substituting now other elements of X in place of x_{2} we establish that $X \subseteq \Sigma$.

Finally, for an R_{1}-clique Y at distance 1 from X, and for $y \in Y \cap \Sigma$ we can find an $x \in X$ which is not adjacent to y. Therefore, $Y \cap \Sigma \supseteq \Gamma(x) \cap Y$ has cardinality at least q^{2}. Applying the argument from the previous paragraph to the R_{1}-clique Y, we obtain $Y \subseteq \Sigma$. Repeating this argument and using the connectivity of Δ we eventually establish that $\Gamma=\Sigma$.

References

1. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer, Berlin-Heidelberg, 1989.
2. Y. Egawa, "Association schemes of quadratic forms," J. Combin. Theory Series A 38 (1985), 1-14.
3. J. Hemmeter, and A. Woldar, "The complete list of maximal cliques of the Quad (n, q), q even," preprint.
4. L. -K. Hua, "Geometry of symmetric matrices over any field with characteristic other than two," Ann. Math. 50 (1949), 8-31.
5. E.W. Lambeck, "Contributions to the theory of distance regular graphs," Ph.D. thesis, Technical University Eindhoven, 1990.
6. M.-L. Liu, "Geometry of alternate matrices," Acta Math. Sinica 16 (1966), 104-135.
7. A. Munemasa, D.V. Pasechnik, and S.V. Shpectorov, "A local characterization of the graphs of alternating forms and the graphs of quadratic forms over GF(2)," to appear.

[^0]: ${ }^{1}$ A part of this research was completed during this author's visit at the Institute for System Analysis, Moscow, as a Heizaemon Honda fellow of the Japan Association for Mathematical Sciences.
 ${ }^{2}$ A part of this research was completed when this author held a position at the Institute for System Analysis, Moscow.
 ${ }^{3}$ A part of this research was completed during this author's visit at the University of Technology, Eindhoven.

