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Abstract. It is known that a strongly regular semi-Cayley graph (with respect to a group G)
corresponds to a triple of subsets (C, D, D') of G. Such a triple (C, D, D') is called a partial
difference triple. First, we study the case when D U D' is contained in a proper normal subgroup of
G. We basically determine all possible partial difference triples in this case. In fact, when \G\ f 8
nor 25, all partial difference triples come from a certain family of partial difference triples. Second,
we investigate partial difference triples over cyclic group. We find a few nontrivial examples of
strongly regular semi-Cayley graphs when \G\ is even. This gives a negative answer to a problem
raised by de Resmini and Jungnickel. Furthermore, we determine all possible parameters when G
is cyclic. Last, as an application of the theory of partial difference triples, we prove some results
concerned with strongly regular Cayley graphs.
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1. Introduction

A graph r = (V, E) with |V| = v is called a (v, k, A, ̂ )-strongly regular graph if
(i) r is regular with degree k; and (ii) given any two vertices u, v e V, uv e E
(resp. uv g E) implies that there are exactly A (resp. /z) vertices adjacent to
both u and v. For basic results concerning strongly regular graphs, see [4].
A strongly regular graph r = (V, E) is called a strongly regular Cayley graph if
it admits an automorphism group acting regularly on the vertex set V. The
notion has been studied by a number of authors, for reference, please see [3,
5, 9, 10]. A (v, k, A, jj)-strongly regular Cayley graph r - (V, E) can also be
described in group theoretic terms. Indeed, the vertex V is identified with the
elements of the regular automorphism group H and the edge set E is equal to
{(g, dg)\d e S, g 6 H} where S is a subset of H satisfying e 0 S, S(-1) = 5 and
S2 = nil + pS + 7e where ft = A - \i and 7 = k - p. Here we use the notation
that for any subset U of G, we denote J^ge ug in Z[G] by U. If t is any integer
and y = EgecSS e Z[G], we define y(t) = EseG0^-

Recently, Marusic [11] and de Resmini and Jungnickel [12] started investigating
a new kind of strongly regular graphs, namely, strongly regular semi-Cayley graphs.
A strongly regular graph r = (V, E) on 2n vertices is called a strongly regular
semi-Cayley graph if it admits an automorphism group G of order n which has
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two orbits on V.
As proved in [12, Lemma 2.1 and Theorem 2.2], any (2n, k, A, /^-strongly reg-

ular semi-Cayley graph r = (V, E) with respect to a group G can be obtained by
using three subsets (C, D, D' in G such that they satisfy the following conditions:

where e is the identity of G, {3 = A - /A and -y = k - p.. In fact, as described
in [12, Lemma 2.1], the vertex set V is identified with two copies of G, say
V = G U G' where G' is another copy of G. The edge set E is equal to
El U E2 U E3 with E1 = {(g, dg)\d e D, g e G}, E2 = {(g', (dg)')\d € D', g € G},
and E3 = {(g', cg)|c e C, g e G}.

PROPOSITION 1.1. Suppose C, D, D' are subsets of a group G satisfying the conditions
(l)-(4). Then

Proof. (ii) follows the equation (4) and the rest follow by [12, Proposition 2.3].
n

Suppose C, D, D' be subsets of G that satisfy the conditions (l)-(4). Following
[12], we call the triple (C, D, D') an (n; c, d; A, u)- partial difference triple. Here
c = |C|and d = |D|. For convenience, we set B = X - n, y = c + d - n
and A = B2 + 4y. Note that the triple (G\C, (G\{e})\D, (G\{e})\D') is an
(n; n - c, n - d - 1; 2(n - c - d) + \i - 2, 2(n - c - d) + \)-partial difference triple
and the associated graph is the complement of the graph associated with the
triple (C, D, D'). From now on, we shall say (G\C, (G\{e})\£>, (G\{e})\D') is
the complement of (C, D, D').

A (v, k, A, //)-strongly regular graph r is called trivial if r or the complement
of r is a union of complete graphs. In case p, = 0 (and hence 7 = k), F is a
union of complete graphs. Whereas in the other extreme when n = k (and hence
7 = 0), r is the complement of a union of complete graphs. Therefore, we say
an (n; c, d; A, //)-partial difference triple trivial if p, = 0 or c + d. Otherwise, we
say it is nontrivial.

Let us now sum up the objectives of this paper. In Section 2, we determine all
partial difference triples (C, D, D') in a group G when (D U D') is contained in

(i) |D| = |D'|;
(ii) (2|D| -B)|C| = un;

(iii) A = B2 + 4y is a positive integer and has the same parity as B;
(iv) k = |C| + |D| = (4M + A2 - B2)/4;
(v) |C|-|D| = (B±A) /2 .
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a proper normal subgroup of G. (Clearly, in case G is abelian, the requirement
of normality can be removed.) In Section 3, we go back to the case when G is
cyclic. We construct a few more examples of partial difference triples. Two of
them involve a cyclic group of order 8. This answers negatively a problem raised
by de Resmini and Jungnickel [12]. We also determine all possible parameters
for partial difference triples with respect to a cyclic group. In the last section, we
apply the results developed in Section 3 to study strongly regular Cayley graphs
with respect to 2-groups which have a cyclic subgroup of index 2.

(a) (n; c, d; A, u) = (8; 4, 1; 0, 2) and \H\ = 2 or 4;
(b) (n; c, d; A, u) = (25; 5, 2; 0, 1) | and \H\ = 5;
(c) (n; c, d; A, u) = (2m2; 2m, 2m - 2; 2m - 2, 2) and |H| = m2 with m > 2.

Proof. Let p : Z[G] —* Z[G/H] be the ring homomorphism extending the natural
surjection from G to G/H. Applying p to equations (2) and (4), we get

2. (DUD') is contained in a proper normal subgroup of G

We first fix some notation throughout this section. Let (C, D, D') be a nontrivial
(n; c, d; A, p)-partial difference triple in a group G. Throughout this section, we
shall assume D U D' is contained in a proper normal subgroup H in G.

THEOREM 2.1. Suppose (C, D, D') is nontrivial. Then one of the following statements
is true:

By equation (6), we see that 2d - f3 > 0 and p(C) = aG/H. It follows that
p(e)p(&~l)) = n\H\G/H. Therefore d2 = /3d + 7, which implies d = (/3 + A)/2
where A = B2 + 47. Note that B - A is discarded as it is negative. Thus, by
Proposition 1.1 (v),c = d + (B ± A)/2 = 0 or A The case c = 0 can be discarded
as (C, D, D') is then trivial. Using Proposition 1.1 again, we conclude

Note that 0 < A = n + P = (A + f3)((3 + (t-A)/4. So we must have 0 < A-0<6.
As A - /3 is even, we conclude A - /3 = 2, 4 or 6. We first discard the case when
A - (3 = 2. Using the formula we derived earlier, we see that n = A. Hence
n = d + 1 which implies G = D U {e}. This contradicts H ^ G.

Let us now deal with the case when A — /3 = 6. Using the inequality c + d > 7 >
0, we get 3 < A < 6. Thus A = 4 or 5. If A = 5, (n; c, d; A, /i) = (25; 5, 2; 0, 1).
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Clearly, \H\ =5. If A = 4, (n; c, d; A, u) = (8; 4, 1; 0, 2). As H £ G, \H\ = 2
or 4.

Finally, we consider the case when A - 0 = 4. Let m = A/2. It is easy
to check that (n; c, d; A, //) = (2m2; 2m, 2m - 2; 4m - 2, 2). Obviously, for any
h e G, the coefficient of h in DC + CD' equals ID^'/I n C\ + \hD*~V n C"| -
|DhnC1 | + |hD'nC|. Therefore by equation (4),

Let g e C. Observe that Dg c Hg\{g}, gD' c gH\{g}. On the other hand,
\Hgn C| = \gHnC\- n\H\l(2d-/?) = 2\H\jA = \H\/m. It follows that

Simplifying, we obtain \H\ > m2. As H ^ G, it forces |H| = m2. D

In case (n; c, d; A, ̂ i) = (2m2; 2m, 2m - 2; 2m - 2, 2), we can in fact say more
about C.

LEMMA 2.1. // (n; c, d; A, //) = (2m2; 2m, 2m - 2; 2m - 2, 2), and m > 2, then for
any g € C, A:= H D Cg-1 is a subgroup of order m.

Proof. Since \H\ = m2, (8) becomes an equality. As D, D' do not contain e, it
follows that

After multiplying both sides by g - l , we get

Observe that for any a 6 A, ag e C n Hg and H n Cg-1a-1 = (H n Cg-1)a-1.
After replacing g by ag in equation (9) and multiplying both sides by g-1, we get

Thus A\{a} is a subset of Da. Consequently, D 3 Aa -1\{e}. Similarly, we also
have gD'g-1 D a-1 A\{e}.

Let N := {a6 G\Aa = A}. Clearly, N is a subgroup is A as e e A It
suffices to show A = N. Otherwise, we pick any x e A\N. There exists
y e A such that yx £ A. In particular, yxg 0 C. By equation (7), we have
iDyx^Cg^l + lyxgD'g-^nCg-1! = 2. In particular \DyxHA\ +\yxgD'g^r\A\ < 2.
Recall that x e gD'g-1, so x-1 € gD'(-1)g-1 = gD'g - 1 . Hence y e yxgD'g - 1 n A
So, |Dyx n A| < 1. As we have shown above that D D Ay -1\{e}, we conclude
{x} c Ax n A c .Dyx n A So, Ax n A = {x} as \Dyx n A\ < 1. Consequently,
A n Ax-1 = {e}. So D D (A U Ax-1)\{e}. In fact D U {e} = A U Ax-1 as
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\A U Ax-1\{e}\ = \A\ - 1 + \Ax-1\ - 1 = \D\. By the same argument, D U {e} -
AuAz-1 and Ar\Az-1 = {e} for any z £ A\N. Therefore Ax-1 = Az - 1 . Hence
z € xN. So we conclude A = N\JxN. By the definition of N and the assumption
yx g A, we have yN C A and yxN n A = 0. This gives us yA n A D j/AT.

Observe we have in fact proved in the above argument that yxgD'g -1 r\A = {y}.
On the other hand, we have x-1A\{e} c gD'g-1 and hence yA\{yx} c yxgD'g - 1 .
Since yx 0 A, we have yAr\ A c yxgD'g - 1 r\A = {y}. This is possible only when
N = {e}. In other words, 1 = |N| = m/2. So m = 2 which we agree to rule
out. This finishes proving A is a subgroup. D

THEOREM 2.2. (C, D, D') is a (2m2; 2m, 2m - 2; 2m - 2, 2) partial difference
triple in a group G with D U D' being contained in a proper normal subgroup H
in G iff C = Kg U Lg', D = (K U L)\{e} and D' = ( g - 1 K g U g-1Lg')\{e} where
g 6 H; g' € G\H and K, L are subgroups of order m such that K n L = {e} and
g - 1 K g n g'-1Lg' = {e}.

Proof. Sufficiency can be checked by routine calculation. We now show the
necessity. By equation (8), there exist elements g € H n C and g' e (G\H) n C.
By Lemma 2.1, K := Hr\Cg - 1 and L := HnCg' -1 are groups of order m in H.
Moreover, (K u L)\{e} c D. On the other hand, it is obvious that Kg n Lg' = 0.
Since \C\ = 2m, we must have C = Kg U Lg'. By equation (2), we obtain

If there exists x 6 (K n L)\{e}, then the coefficient of x on the left-hand side is
2m while that on the right is 2 + (2m - 4). This is impossible. We thus prove
K n L = {e}. In particular, we have then D = (K U L)\{e}. By using a similar
argument, we see also that D' = (g - 1KgUg' - 1Lg') \{e} and g-1Kgng'-1Lg' = {e},

n

Remark. In the above theorem, it is clear that KL = H and the converse is true
without assuming m ^ 2.

Example 1. As a special case of Theorem 2.2, we can now construct a family
of partial difference triples. For any two groups K, L of order m, we set G
to be the direct product of K, L, and Z2. For convenience, we assume K, L
are subgroups of G. Set (C, D, D') as described above, we then get a nontrivial
partial difference triple of required parameters.

To complete the picture, we shall look into the case when m = 2. In that case
(n; c, d; A, ̂ ) = (8; 4, 2; 2, 2). If G is cyclic, no nontrivial example can be found
as D = D' must be the set of elements of order 4, so by [12, Theorem 4.2], the
graph is trivial. On the other hand, if H is elementary abelian, then Aa-1 n A
defined above will just be Aa n A D {e, a}. Therefore |N| > 2. So (C, D, D')
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must be as described above. This observation then takes care of cases when G is
an elementary abelian 2-group and when G is a dihedral group with H being not
cyclic. If G is a dihedral group and H is cyclic, then it can be shown that C is a (4,
2, 4, 2)-relative difference set. By [13, Corollary 4.1.8], no such relative difference
set exists. However, there are examples which are not of the form described
above. For example, if G = Z2 x Z4, we can set C = {(0, 0), (0, 1), (1, 0), (1, 3)}
and D = D' = {(0, 1), (0, 3)}. If G = <g, h\g2 = h2, g4 = e, hg = gh3), then
C = {1, g, gh, h} and D = D' = {h, h3} form a partial difference triple (c.f. [12,
Example 4.3]).

So far, we have determined all partial difference triples with given parameters
as in Theorem 2.1 (c). Our next objective is to determine if there exist partial
difference triples with given parameters as in Theorem 2.1 (a) and (b). We first
deal with the case when |G| = 25. Obviously, G is abelian. By [12, Theorem
4.4, Remark 4.5], G is elementary abelian and a (25; 5, 2; 0, Impartial difference
triple exists.

Now assume |G| =8. So D = {g} and D' = {g'}. By condition (1), the order
of g and g' must be 2. Since /3 ̂  0, after subtracting equation (3) from equation
(2), we see that g = g'. Therefore (D U D') = {g, e} is of order 2. If G is cyclic,
then by [12, Theorem 4.2] (C, D, D') is trivial. However, a nontrivial example
does exist if G is not cyclic.

Example 2. Let G be an abelian group of order 8. Suppose G is not cyclic and
g is an element of order 2. Let K be a subgroup of order 4 and g 0 K. Define
C = {e} u Kg\{g}, and D = D' = {g}. It is easy to check that (C, D, D') is an
(8; 4, 1; 0, 2)-partial difference triple. Observe that in this case, we may replace
C by hC for any h € G (see [12, Example 4.3]).

If G is nonabelian group of order 8, then it must be isomorphic to a dihedral
group or quaternion group.

Example 3. Let G be a dihedral group of order 8. We write G = (g, h\g4 =
h2 = e,gh = hg3). Let C = {e, gh, g2h, g3h} and D = D' = {h}. We leave it to
the reader to check that (C, D, D') is also a partial difference triple. Note that
H = (h, g2) in this case.

Example 4. Let G be a quaternion group of order 8. We write G = (g, h\g2 =
h2, g4 = e, hg = gh3). Then C = {e, g, gh, h} and D = D' = {h2} form a partial
difference triple.

To end this section, we would like to point out that it is possible to determine
all nontrivial triples with D U D' contained a proper normal subgroup. In case
|G| ^ 8, 25, we have already determined all. By routine calculation, it is not
hard to find them all. However, since it does not involve any new idea, we shall
not proceed into that direction.

LEUNG AND MA
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3. Cyclic partial difference triples

In this section, we shall assume (C, D, D') is a nontrivial (n; c, d; A, ̂ )-partial
difference triple in cyclic group G. Our main objective is to find all possible
values for (n; c, d; A, fi). We shall show that apart from the parameters (2m2 +
2m + 1;m2,m2 + m;m2 - 1, m2) given in [12], there are some other nontrivial
partial difference triples with different parameters. This gives a negative answer
to a problem raised by de Resmini and Jungnickel [12].

We first recall some results concerning the character values of C, D and
D'. Recall that any character x of an abelian group G can be extended to a
homomorphism from Z[G] to C. We shall also denote the extension by x- As
proved in [12, Proposition 3.1], we have the following.

PROPOSITION 3.1. Let (C, D, D') be an (n;c, d; A, n)-partial difference triple in an
abelian group G. Let x be a nontrivial character of G. Then either

(i) x£ = 0 and XD = xD1 = (ft ± A)/2 or
(ii) XD + xD

1 = 13.

In any case, xD + xD' e {/3 - A, 0, 0 + A}.

We now go back to the case when G is cyclic. Let (C, D, D') be an (n; c, d; A, /^)-
partial difference triple in G. For any positive integer w, we define Hw to be
the unique subgroup of order w if w is a divisor of n. Otherwise, we define
Hw = 0. By [12, Lemma 3.5], there exist x0, . . . , x4 e Z such that

In equation (11), the readers are reminded that if a set is empty, the corresponding
coefficient will be taken as 0. When H2A = G, we shall always set x1 = 0. Thus
x1 ^ 0 would mean that H2A is a proper subgroup of G. Note that the subgroups
concerned form a chain. Thus by considering the number of elements which lie
in a certain subgroup, we conclude 0 < Y^'i = oxi < 2 for s = 0, 1, 2, 3. Since

D U D' does not contain e, Y?i = o xi = 0. Therefore -2 < x4 = -Si = oxi < 0.

LEMMA 3.1. 0 = x4 = -2, -1, 0 and a;3 is even.

Proof. Let (C', E, E') be the complement of (C, D, D'). It is easy to see that
P for (G', £, E') is -2 - /9. If we write
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then x'4 = -2 - x4. Therefore /? = x4 iff /?' = x'A. Thus, we can assume /3 < 0.
Let H be the smallest nonempty subset in {G, H^A, HA, HA/I}. Let x be a
nonprincipal character on H. Applying x to equation (11), we get x(D + D') = x4.
By Proposition 3.1, x4 = /? or J3±A. Since A +1/3| > 0, x4 jt 0 + A. On the other



hand, A > ,fij > 2 as (C, D, D') is nontrivial. As p < 0, /3 - A < -2 < x4. We
thus prove x4 = /3.

Next, we may assume X3, ̂  0. Let x' be a character which is principal on HA/2

but not on HA. Then x'(D + D') = (x3/2)A + /?. By Proposition 3.1, x3 must
be even. n

In Section 2, we have already proved that there is no nontrivial partial difference
triple in any cyclic group when DuD' is contained in a proper subgroup H. By
considering the complement, we may assume G\(D u D') cannot be contained in
a proper subgroup also. We may thus assume XQ = 1.

LEMMA 3.2. // n is even and (C, D, D') is nontrivial, then up to complementation,
D + D' is one of the following:

(a) G_-~H_A _
(b) G + H2A- 2HA/2.
(c) G_ + H_A-2HAI2. _
(d) G-H2A + MA - 2HA/2.

In particular, we may assume /3 = 0.

Proof. Since n is even and (C, D, D') is nontrivial, [12, Theorem 4.4] implies n
is divisible by A. Up to complementation, we may assume /3 = 0 or -1. As we
have discussed earlier, x$ must be 1. By (11) and Lemma 3.1, we have
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First, we assume x\ •£ 0. Recall that H2A is now a proper subgroup of G. Let
X and x' be characters of G such that x is principal on HA but not on H2A, and
x' is principal on H2A but not on G. Applying x and x' on (12), we get

Subtracting equation (14) from (13), we see that x(D + D')-x'(D + D') = 2x1A.
Since 2x1 ^ 0, it follows from Proposition 3.1 that x1 = -[x2 + ( x 3 / 2 ) ] = ±1.
Thus for any nontrivial character $ principal on HA, we have 4>(D + 7?) ^ fi
and therefore 4>(D - D') = 0. As before, we let p : 1[G] -> 1[G/HA} be the ring
homomorphism extending the natural projection from G to G/HA. It follows
that ijj(p(D) - p(iy)) = 0 for any nontrivial character ^ on G/HA. Hence we
obtain p(D) = p(D'}. In particular, we have \D n gHA\ = \D'ngHA\ for any
g & HA. Recall that G ^ H2A, so there exists g 6 G\H2A. But by equation (12),
we see that gHA is a disjoint union of D n gHA and D' n gHA. It follows that
A = 2\Dr\gHA\ which is even. In particular, /3 ̂  -1. Thus, we may assume
/3 = x4 = 0. Recall that 1 + x1 + x2 + x3 + x4 = 0 and 0 < 1 + x1 + x2 < 2.
So, we have 1 + x\ + x2 + 0:3 = 0 and -2 < x3 < 0. But by the last lemma,
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x3 is also even. So, x3 = 0 or -2. If x3 = 0, x1 = -x2 = ±1. In any case,
1 + X1 + X2 + x3 ^ 0 which is impossible. So, we must have x3 = -2. Then we
have either x2 = 2, xj = -1 or x2 = 0, xi = 1. The former case gives us (d)
and the latter case gives us (b).

Next, we assume x1 = 0. Suppose 0 = -1. Then x4 = -1 and A is
odd. In particular, x3 = 0. Since £?=0Xj = 0, we conclude 052 = 0. Thus,
n = \G\ - 2\D\ + 1 is odd. This is a contradiction. Finally, we assume /3 = 0.
Using l_+_x2 +_»3jf 0, we see that either x3 = 0, x2 = -1 or x3 = -2, x2 = 1.
So D + Ty = G - HA or G - HA - 2HA/2. D

THEOREM 3.1. Up to complementation, the parameters for any nontrivial partial
difference triples in cyclic groups are the following:

(a) (n; c, d; A, fj) — (2m2 + 2m + 1; m2, m2 + m; m2 - 1, m2)where m > 1.
(b) (n; c, d; A, n) = (2m2; m2, m2 — m; m2 — m, m2 - m)where m>2.
(c) (n; c, d; A, ̂ ) = (2m2; m2, m2 + m; m2 + m, m2 + m)where m > 3.
(d) (n; c, d; A, /^) = (2m2; m2 ± m, m2; m2 ± m, m2 ± m)where m>2.

Proof. As proved in [12, Theorem 4.4], (a) holds whenever n is odd or n is not
divisible by A. We may therefore assume n is even and n is divisible by A. Let
(C, D, D') be a nontrivial partial difference triple. As before, we may assume
XQ = 1. By Lemma 3.2, we may also assume /? = 0 and \D\ = n/2 or (n±A)/2.

Suppose \D\ = n/2. Then by Proposition 1.1 (ii), n = \C\. Therefore
A2 = 47 = 4(1(71 + \D\ - M) = 2n. Hence, we obtain n = A2/2. Putting A = 2m,
we thus get (n; c, d; A, p) as in (d). Note that in this case (G\C, D, D') is also
a partial difference triple.

Next, if \D\ - (n ± A)/2, then |C| = n/2 or (n ± 2A)/2. If \C\ = n/2, then
/^ = |D|. So, by a similar argument, we obtain (n;c, d;A, //) as in (b) or (c).
Note that in (c), m > 3. Otherwise, say m = 2 and (C', E, E') is the complement
of (C, D, D'), then |E| = \E'\ - 1. That means E = E' = {g} where p is the
unique element of order 2 in G. By [12, Theorem 4.2], (C', E, E') is trivial.
Hence (C, D, D') must also be trivial.

Suppose \D\ - (n ± A)/2 and \C\ = (n± 2A)/2. Then using Proposition 1.1
(ii) and (iv), we see that

(Note that 0 = 0.) Therefore, n = (A2 + AVA2 + 32)/4. It is easily checked that
A2 + 32 is a perfect square iff A = 2 or 7. As 0 = 0, A is even, so 7 can be
dropped. But when A = 2, n = 4 and |D| = 1. Again, (C, D, D') must be trivial.

D

The above theorem only gives us necessary conditions for the parameters.
As constructed in [12], there are some nontrivial partial difference triples with
parameters given in (a). It is natural to ask if there are nontrivial partial
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difference triples with parameters given in (b), (c), or (d). Lemma 3.2 provides
a useful clue for the following examples.

Example 5. Let G = Z8.

(i) Set C = {0, 1, 2, 5}, D = {1, 7} and D' = {3, 5}. Then (C, D, D') form a
(8; 4, 2; 2, 2)-partial difference triple,

(ii) Set C = {1, 3}, D = {2, 3, 5, 6} and D' = {1, 2, 6, 7}. Then (C, D, D') is
a (8; 2, 4; 2, 2)-partial difference triple and (G\C, D, D') is a (8; 6, 4; 6,
6)-partial difference triple.

Remark.

(I) The parameters in (i) and (ii) correspond respectively to (b) and (d) given
in Theorem 3.1. However, we have not yet been able to find a nontrivial
example with its parameters given in (c).

(II) The semi-Cayley graphs obtained from the partial difference triples in (i)
and (ii) are isomorphic and equal to one of the two well-known (16, 6, 2,
2)-strongly regular graphs.

In [12], de Resmini and Jungnickel ask if (n; c, d; A, /x) is of the form (2m2 +
2m + 1;m2,m2 + m;m2 - l,m2) for all nontrivial partial difference triples. It is
clear that examples quoted above say otherwise. Next, we shall improve Theorem
3.1. If |G| = 2m2,as we have pointed out earlier, /3 can be assumed 0. By
defining x = 2D - G and y = 2C - G, equation (2) becomes

4. Strongly regular Cayley graphs

In this section, we consider nontrivial strongly regular Cayley graphs with respect
to a 2-group H which has a cyclic subgroup of index 2. In [12], it is proved
that there is no nontrivial strongly regular Cayley graph with respect to H if
|H| > 64. Here, we shall apply some results proved in Section 3 and a theorem
on difference sets to give another proof of the above result. Moreover, we
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Observe that all the coefficients in x, y are ±1. Any x, y satisfying the above
equation form a pair of periodic Golay complementary sequences of length 2m2

(see [1, 6]). Using the nonexistence results of Golay complementary sequences
by Arasu and Xiang [1], we obtain the following:

THEOREM 3.2. Let p be a prime congruent to 3 modulo 4 and m = pr u where p, u
are relatively prime. If u2 < pr, then there is no nontrivial partial difference triple in
any cyclic group of order 2m2.
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shall prove that the above result is also true for \H\ < 64 unless H is as given
in Example 6.

Let G be a cyclic subgroup of index 2 in H. As we have discussed in Section
1, a (2n, k, A, ̂ -strongly regular Cayley graph with respect to H corresponds

to a subset 5 of H satisfying e £ S, S*"1* = 5 and S2 = pH + /3S + 76 where
/3 = X — n and 7 = k-p. Fix an element h e H\G, we can then write S = D\JCh
where C, D are subsets of G. It is easy to see that

Note that (C, D, hDh - 1) is in fact a (n; c, d; A, ̂ )-partial difference triple where
c = \C\ and d = \D\. By Theorem 3.1 (c.f. the proof of [12, Theorem 5.6]),
we conclude that up to complementation, n = 2m2, c + d = 2m2 ± m and
A = n = m2 ± m for some m = 22a > 2. Hence, we have

In the literature, any set 5 which satisfies the above equation is called a
(22s+2, 22s+1 ± 2s, 22s ± 2s)-difference set in H. For reference, please see [2]
and [8]. Next, we recall a result due to Turyn [14].

LEMMA 4.1. Let K be a cyclic 2-group and z = Z)96^ agg e Z[K] with 0 < ag < M.
If there exist integers m and c such that zz(-1) = cK + m2, then M > m.

THEOREM 4.1. Let H be a group of order 22s+2. Suppose H has a normal subgroup
U of order 2T where r < s. Then no (22s+2, 22s+1 ±2s, 22s ±2 s)-difference set S exists

in H if H/U is a cyclic or a dihedral group. If we further assume S = S, then
the same result is true if H/U is a quaternion group or isomorphic to Z2 x Z22s-r+1.

Proof. Let us write m for 2B. Suppose such S exists. Let p : Z [ H ] -» Z[H/U] be
the ring homomorphism induced by the natural epimorphism. Then by equation

(18), we have p~SpS ( -1 ) = (m2 ± m)\U\H/U + m2. Note that the coefficients in
pS lies between 0 and \U\ < m. In particular, it follows from Lemma 4.1 that
H/U cannot be cyclic.

For other cases, we fix a cyclic subgroup V of index 2 in H/U and an element
a £ V. Clearly, we can write pS = x + ya where x, y € Z [ V ] c Z [ H / U ] .

If H/U is a dihedral group, then it is easy to check that xx ( -1) + yy ( -1) =
(m2 ± m)\U\V + m2 and xy = [(m2 ± m)\U\/2]V. To get a contradiction, we
extend V to a cyclic group K of order 2|V|._Let b e K\V and z = x + y(-1)b.
It is easy to check that zz(-1) = (m2 ± m)\U\K + m2. Again, this is impossible
as by the construction, the coefficients of z are between 0 and \U\.
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In these two cases, nontrivial strongly regular Cayley graphs with respect to H
do exist.

Example 6.

(a) For H = (g, h \ g8 = h2 = e, hgh - 1 = g3), the subset S = {g, g7, h, gh, g2h,
g5h} generates a (16, 6, 2, 2)-strongly regular Cayley graph.

(b) For H = (g, h \ g8 = h2 = e, hgh-1 = g5) , the subset S = {g2, g3, g5, g6, gh,
g3h} generates a (16, 6, 2, 2)-strongly regular Cayley graph.

Remark. The Cayley graphs obtained in Example 6 are isomorphic.

Summarizing, we obtain the following theorem.

THEOREM 4.2. There is no nontrivial strongly regular Cayley graph with respect to
any 2-group H with a cyclic subgroup of index 2 except when H = (g, h \ g8 = h2 =
e, hgh-1 = g3) or (g, h\ g8 = h2 = e, hgh-1 = g5).

Acknowledgment

The authors would like to thank Prof. D. Jungnickel for reading through the
original manuscript and for his helpful comments.

References

1. K.T. Arasu and Q. Xiang, "On the existence of periodic complementary binary sequences,"
submitted.

2. T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Cambridge University Press, Cambridge,
1986.

3. W.G. Bridges and R.A. Mena, "Rational G-matrices with rational eigenvalues," J. Combin. Theory
Series A, 32 (1982), 264-280.

4. P.J. Cameron and J.H. van Lint, Graphs, Codes and Designs, Cambridge University Press, Cam-
bridge, 1980.

408

For the other cases, we need the assumption S(-1) = S. Observe that in
this case, we have x(-1) = x and a-1y(-1) = ya. Consequently, we conclude
xx(-1) + yy(-1) = (m2 ± m)\U\V + m2 and xy = [(m2 ± m)\U\/2]V. Using a
similar argument as before, our desired results follow. D

By checking all 2-groups with a cyclic subgroup of index 2 (see [7, Satz 1.14.9]
or [12, Result 5.5]), only the following two groups do not satisfy the condition
of Theorem 4.1:

(a) H=(g,h\g* = h2 = e, hgh - 1 = g3) and
(b) H = (g, h | g8 = h2 = e, hgh-1 = g5).



PARTIAL DIFFERENCE TRIPLES

5. D. Ghinelli and S. Lowe, "On multipliers of partial addition sets," Geometriae Dedicate 40 (1991),
53-58.

6. M.J.E. Golay, "Complementary series," IRE Trans. on Information Theory IT-7 (1961), 82-87.
7. B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
8. E.S. Lander, Symmetric Designs: An Algebraic Approach, Cambridge University Press, Cam-

bridge, 1983.
9. S.L. Ma, "Partial difference sets," Discrete Math. 52 (1984), 75-89.

10. S.L. Ma, "On association schemes, Schur rings, strongly regular graphs and partial difference
sets," Ars Combin. 27 (1989), 211-220.

11. D. Maru£i£, "Strongly regular bicirculants and tricirculants," Ars Combin. 25 C (1988), 11-15.
12. M.J. de Resmini and D. Jungnickel, "Strongly regular semi-Cayley graphs," J. Algebraic Combin.,

1 (1992), 171-195.
13. V. Tan, "On divisible difference sets," M. Phil. Thesis, National University of Singapore, 1990.
14. R.J. Turyn, "Character sums and difference sets," Pacific J. Math. 15 (1965), 319-346.

409


