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Abstract. A probabilistic algorithm, called the q-hook walk, is defined. For a given Young diagram,
it produces a new one by adding a random box with probabilities, depending on a positive parameter
q. The corresponding Markov chain in the space of infinite Young tableaux is closely related to
the knot invariant of Jones, constructed via traces of Hecke algebras. For q = 1, the algorithm is
essentially the hook walk of Greene, Nijenhuis, and Wilf. The g-hook formula and a q-deformation
of Young graph are also considered.
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1. Introduction

In the papers [1, 2] Greene, Nijenhuis, and Wilf suggested a probabilistic
algorithm, the so-called hook walk and used it for two purposes. The first was
a new simple proof of the hook formula of Frame et al. [3] for the number
fA of Young tableaux of a given shape A. The second one was a procedure for
efficient simulation of random Young tableaux with probabilities Ml = f\/|A|!,
depending only on their shape A. The aim of the present paper is both to extend
and generalize these results.

By the extension we mean that essentially the same hook walk can be used to
generate random Young tableaux with no more than m rows with probabilities
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We use the notation and terminology of [4]. In particular, |A| = A1 + • • • + Ar is
the number of boxes in a Young diagram A with row lengths AI, ..., Ar, h(b) is
the hook length of a box b e A, and c(6) is the content of b. In the limit m —> oo
the Plancherel measure arises:
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to each box b e M. Here b' and b" are the end boxes of the arm and the leg
of the hook of b; ba and bu are the last boxes of the first row and of the first
column of ^ (in Figure 5 below the diagram n is overturned). Let us recall that
the content c(6) of a box b e u is defined as c(6) = j — i, where i, j are the row
and column numbers of the box.

We are ready now to write down the multiplicities:
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and

Our version of the hook walk is slightly different from the original one; it was
inspired by that of Pittel [5].

All these results have natural q-analogs. We shall define the q-hook walk
procedure and show how it can be used to generate random Young tableaux
with probabilities

Consider the Young graph (lattice) Y. By definition, its vertices are Young
diagrams, and edges are those pairs of diagrams (v, u), for which v c u, and
|u| = |u| + 1. In other words, v is obtained from u by erasing a specified box
a e p. We are going to define the multiplicities mvu(q) of the corresponding
edges (v, z) in the Young graph. To this end, we shall associate an integer

Here, by definition, [k] = (1-qk)/(1-q) for k e N. In fact, we shall deal with the
more general family of random Young tableaux, depending on two parameters
q, t. It is worth remarking that exactly the same family arises in the description
of Markov traces for Hecke algebra generating the 2-variable Jones invariant of
knots and links [6].

Let us now describe the q-analog of the usual hook formula

Example 1. On Figure 1 the numbers r(b) are inscribed into corresponding boxes,
e.g., for the box b = (1, 2) we have 6' = (1, 4), b" = (2, 2) and ba = (1, 4), bw =
(3, 1) so that r(b) = -2. It follows, that for the diagram v = (4, 2, 1) obtained
by erasing the box a = (2, 3) the multiplicity is
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Figure 1. u = (4, 3, 1).

We define the q-analog fu(g) of the numbers fu recurrently : fa(q) = 1 for
the empty diagram u = 0 and

where v runs over diagrams, immediately preceeding u in the Young graph. It
is clear, that for q = 1 we have mvu(l) = 1 and fu(l) = fu.

THEOREM 1. There is a hook formula for f^q):

Here [n]! = lE-iM and n(u) = Ek=(k-1)uk for u = (u1, . . . ,ur) , cf.
[4]. Since multiplicities mvu(q) are rational in g, it is a bit surprising, that the
functions fu(q) are in fact polynomials. We shall prove the theorem, using a
g-hook walk procedure.

Example 2. For a Young diagram u = (r1 + r2, r2) with n = r1 + 2r2 boxes let

Then mv,u(q) = ru(q) for v = (r1 + r2 - 1, r2) and mT,u(q) = q2 r 1 + 2pu(q) for
T = (T1 + r2, r2 - 1). The truncated part of the Young graph, consisting of
two-row diagrams and the corresponding multiplicities is indicated in Figure 2.

2. Main formulae

The main result of the paper is completely elementary. Fix a pair of sequences
of reals {xi}i=1 and {yi}i=0 such that
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Figure 2. g-branching for two-row diagrams.

and let z = Ci=1xi - Si = 1yi. Consider the following families of rational
functions of a variable q (each family contains d functions, indexed by k =
1, ...,d):

where

THEOREM 2. The sum in each family is identically equal to one:
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Specializing q in (10)-(14) to be one, we get the sequences (with k = 1, ..., d)

where 5 = E1<;<j <<*(*; - yi-1)(yj - x j ) .

COROLLARY 1.

The identities (24) and (27) were implicit in [1, 2]. They were first stated
explicitly and proved algebraically by Vershik [7]. Kirillov [8] had proved (24)-
(27) and announced (15).

An easy proof of Theorem 2 is given in Section 5. Another proof in Section
4 is based on the q-hook walk algorithm, which is the main subject of the paper.

3. q-hook walk

Consider a rectangle in the plane with vertices (u0, v0), (u0, vd), (ud, vd), (ud, v0),
(in Figure 3 u-axis is directed downwards and w-axis to the right). For a point
T with coordinates (u, v), we denote by c(T) = v - u its content.
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Figure 3. Complementary diagrams and a hook.

Let A be a Young diagram, inscribed in the rectangle and u = %-the comple-
mentary Young diagram (on Figure 3 it is overturned). We assume that Vd-1 < vd
and Ud-1 < ud, where vd-1 and ud_1 are lengths of the first row and of the first
column of A.

Let NO, MI, N1, ..., Md, Nd, be the consecutive vertices on the line, separating
diagrams A and X Denote by (ud_i, vi) the coordinates of Ni, i = 0, 1,..., d and
let Xi = c(Mi) — vi_1 - ud-i, yi = c(Ni) = vt - ud-i be the contents of the points
M, Ni. It is clear that the condition (9) is satisfied and z = Li=1 xi - £i=1 yi =
V0 - uo = c(O), where O is the upper left corner of the rectangle. For a true
Young diagram A the numbers ui, vi, xt, yt will be integers, but we shall use this
assumption in Sections 5, 6 only.

Consider now a pair of integers s, t with 1 < s < t < d. We describe an
(s, t)-hook H(a, t) with the corner in a point T with coordinates (ud-t, vs-1)-
By definition, H(s, t) = A u L is a union of two intervals: the arm of the hook
A = {(ud~t, v) : vs_1 < v < v t_1}, joining the vertex T with Mt and the kg
L — {(u, vs-1) : Ud-t < u < Ud-s}, joining T with Ms. The length of the hook
H(s, t) is equal to xt - xs.

We are in a position now to define the Markov chain which we call q-hook
walk. Its state space is the finite set X = {(a, t) e N x N : 1 < s < t < d}. The
dynamics of the chain will depend on a fixed parameter q > 0.

For the current state (s, t) consider the hook H(s, t) and note that a point
Q € H(s, t) with coordinates (u, v) is completely determined by its content
h = c(Q) = v - u. Choose a point Q 6 H(s, t) at random, with probability
Cqhdh, where C = (ln q)/(qxt - qxs) is the normalization constant (for q = 1 we
use the limiting homogeneous distribution dh/(xt - xs)). We construct the new
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Figure 4. Constructing new state.

state (s', t'), depending on Q. There are two possibilities (Figure 4):

(A) for Q e A and vm_1 < v < vm we set (s', t') = (s, m)
(L) if Q € L and ud_m < u < ud_m+1, then (sr, t') = (m, t).

Note that the difference (t — s) is decreasing a.s., while a < t. After at most
d moves, the q-hook walk will reach the subset X0 = {(k, k): k = 1,..., d} and
will remain in the final state (k, k) thereafter. We shall show in the next section
that the numbers (10)-(14) are exactly the probabilities for the g-hook walk to
stop in a final state (k, k) for appropriate initial distribution on X. Let us now
describe these distributions.

Let II(a, t) = {(u, v) : ud-s <u < ud_s+1 vt_1 < v < vt} be a rectangle inside
the diagram A (see Figure 5). We call

the q-area of II (a, i) and consider it as statistical weight of a state (a, t) e X
(Figure 5). For any subset Y c X we have a distribution Py on Y with proba-
bilities

where SY = Z)(»,j)ey Si,j(q). We are interested in four particular cases:

Remark, that Sx is the same as S(q) in (14).
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Figure 5. Partition of u = L into rectangles.

4. Proof of the main theorem

In this section we shall prove Theorem 2, using q-hook walk algorithm. It follows
immediately from:

THEOREM 3. Assume that the initial distribution for the q-hook walk is one of
(28)-(31). Then the corresponding probabilities of final states (k, k) are given by
the formulae (11)-(14).

Proof. Denote by p ( i , j ) (q) , r ( i , j ) (q), c(i,j)(q), p ( i , j ) (q) the probabilities of the final
state (k, k) for q-hook walk with initial distributions on the subsets

correspondingly. We are going to prove the identities nk(q) = 7(1,d)(q), rk(q) =
r(1,d)(q), ck(q) = c(1,d)(q), pk(q) = p(1,d)(q).                                                                  D

LEMMA 1. The following recurrence relations hold:
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where

Proof. All the identities follow from the Bayes' formula. For instance, the random
point Q in the hook H(i, j) belongs to its leg with probability (qXi - qzi,j) / (qXi -qXj)
and to its arm with probability (qzi,j - qxj)/(qXi - qxj). One can easily see that
the conditional probabilities to finish the q-hook walk in the state (k, k) are

r(i+1,j)(q) and C(i,j-1)(q) correspondingly. In the same way, the formula (33)
corresponds to the partition Y(i, j) = {(i, j)} U yr(i+1,j), (34) corresponds to the
partition Y(i,j) = {(i, j)} UY(i,j-1) and the formula (35) below corresponds to
the partition Y(i,j) = Y(1,j-1) u y(1,j).

Using the induction by (j - i), one can easily verify that

and the first three identities (15), (17), and (18) follow.
To prove the identity (19), we shall use the recurrence relation

where Sj(q) = SYj, with Yj = {(s, t) : 1 < s < t < j}, and Sj(g) is defined
by qz1,j . S'j+l(q) = qz1,j+1 • Sj(q). The identity (35) is nothing other than the

Bayes' theorem applied to the partition of the set Y(1,j) into two "hypotheses":
Y(1,j) = Y(1,j-1)U Yr(1,j) . Assume,that

It is easy to check that this is equal to

Substituting this expression in (35), we find out that
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and the latter formula is proved by induction argument. For j = d the right-hand
side coincides with (14) and the theorem is proved. D

5. Random Young tableaux

In this section we describe explicitly random Young tableaux with transition
probabilities (11) and (12). To this end we need a few facts from the symmetric
function theory.

Let A = R[p1,p2,...] be the algebra of polynomials in infinite number of
variables p1, p2, ... For Young diagrams A = (A1, A2, ...) and p = (lm1, 2m2, ...)
with the same number of boxes n let pp = pm1pm2..., zp = 1m1m1!2

m2m2!... and
define the Schur function by Frobenius identity

where Xp is the value of the irreducible character XA of the symmetric group 5n

on a permutation with mk cycles of length k, k = 1,2, ... . We shall use the
well-known identity

where p runs over all Young diagrams arising from v by adding a box.
Consider two sequences a = (a1, a2, ...), B = (B1, B2, ...) of noincreasing

nonnegative real numbers and assume that 7 = 1-Lai-LBi is also nonnegative.
Substituting P1 = 1 and

in (36) defines the extended Schur function sl(a; 0). If 7 = 0, the functions s\(a; 0)
are the same as those defined in [4]. It is easy to check, that s\(a;l3') > 0 for
all A. Since s ( 1 )(a;B) = p1(a;B) = 1, it follows from (37) that

and we can define Markov measure M(a;B) on the space T of infinite Young
tableaux t = (A1, A 2 , . . . , A n , . . . ) by transition probabilities

See [6] for the connection with describing characters and factor representations
of the infinite symmetric group and Hecke algebra. Here we are interested only
in several particular cases.
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LEMMA 2. (Macdonald [4], 1.3, ex. 1-3). If a - {qk(1 - q)/(l - qm)}m-1, B= 0,
then

If a = {(l-q)qk}k=0,B = 0, then

If a = {(1 - t)/(l - q)qk}k=0, B = {t(1 - q)qk}k=0, then

If a = 0, B = {qk(1 - q) / (1 - qm)}k=0, then

COROLLARY 2. Let X be the Young diagram of Section 3 and A be obtained from
A by adding a box, adjacent to the vertex Mk. The transition probabilities

in cases (38)-(41) are equal to fk(q), tk(q), (1-t)rk(q)+tr'k.(q), Ck(q) correspondingly.

The corollary gives an independent proof of formulae (16)-(18), provided all
{xi}) {Hi} in (9) are integers. Since the functions (11)-(12) are rational, the
formulae (16)-(18) for the general case also follow.

6. q-hook formula

In this section we show that Theorem 1 is a consequence of (19). Let us denote
by n the complementary diagram I (with n = |u| boxes) in Figure 5 and let v
be the diagram, obtained from u by erasing a box with a corner in the point
Mk, 1 <k <d. Note that all the diagrams below are true Young diagrams, with
integer values of Xj, yj for all j.

For the moment, let us denote the right-hand side of (8) by gu(q); we have to
show that gu(q) = fu(q), where fu(q) was defined recurrently in Section 1. The
first step is computation of the quotient gv(q)/gt(q).
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LEMMA 3

Proof. By definition of n(n) (See [4]), n(v) - n((j,) = Ud-k - ud + 1. All factors
of the type [h(b)] in the left-hand side cancel, exept those sitting in the row and
in the column of p, containing the box to be erased. The quotient for the row
is equal to

and for the column it is

so the lemma follows.
Since Li = 1(yi - Xi) = vk-1 — V0, one can easily see that

Since yo — ud - V0 and Xk = vk_1 - ud-k we can rewrite Lemma 3 as

and hence

LEMMA 4. Let mvu(q) be the multiplicities defined in (6). Then

Proof. The formula follows from the identity
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Figure 6. Another q-branching for two-row diagrams.

To prove the latter, note that

where 60 is the box in the lower left corner of the rectangle II(i, j). For the
box 60 we have c(6a) - c(6') = yi-1 - yo, c(6w) - c(b") = Xj - (yd - 1) so that
r(6o) = (yi-i + Xj) - (yo + yd) + 1. In the same way, for the box a in u\v we have
c(ba) - c(b') = xk- (y0 + 1), c(bw) - c(b") = xk- (yd -1) and r(a) = 2xk - (y0 + yd).
Hence, r(b0) - r(a) = (yi-1 + yj) -2xk +1 and (43) follows. D

COROLLARY 3

Now it is clear from (19), that gu(q) satisfy the same recurrent relations (7), as
fu(q), hence gu(q) = fu(q) and Theorem 1 is proved.

It is worth remarking that multiplicities (6) provide by no means a unique
way of constructing the q-analog of the Young graph. For instance, one can
easily check that a q-deformation of the truncated Young triangle, shown in
Figure 6, also provides the same q-hook formula (8) as in Theorem 1. In fact,
the branching in this figure is the two-row part of a branching providing q-hook
formula for any Young diagram.
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