ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Symmetric and quasi-symmetric functions associated to polymatroids

Harm Derksen

DOI: 10.1007/s10801-008-0151-2

Abstract

To every subspace arrangement X we will associate symmetric functions \?[ X] and \Bbb H[ X]. These symmetric functions encode the Hilbert series and the minimal projective resolution of the product ideal associated to the subspace arrangement. They can be defined for discrete polymatroids as well. The invariant \Bbb H[ X] specializes to the Tutte polynomial T[ X] {\mathcal{T}}[\mathbf{X}] . Billera, Jia and Reiner recently introduced a quasi-symmetric function \Cal F[ X] (for matroids) which behaves valuatively with respect to matroid base polytope decompositions. We will define a quasi-symmetric function G[ X] {\mathcal{G}}[\mathbf{X}] for polymatroids which has this property as well. Moreover, G[ X] {\mathcal{G}}[\mathbf{X}] specializes to \?[ X], \Bbb H[ X], T[ X] {\mathcal{T}}[\mathbf{X}] and \Cal F[ X].

Pages: 43–86

Keywords: keywords matroids; polymatroids; symmetric function; quasi-symmetric function; tutte polynomial; subspace arrangement; hyperplane arrangement

Full Text: PDF

References

1. Aguiar, M., Bergeron, N., Sottile, F.: Combinatorial Hopf algebras and generalized Dehn- Sommerville relations. Compos. Math. 142(1), 1-30 (2006)
2. Barvinok, A.: A Course in Convexity. Graduate Studies in Mathematics, vol.
54. AMS, Providence (2002)
3. Billera, L.J., Jia, X., Reiner, V.: A quasisymmetric function for matroids, European J. Comb. (2008, to appear).
4. Brylawski, T.H.: The Tutte-Grothendieck ring. Algebra Universalis 2, 375-388 (1972)
5. Brylawski, T.H.: Intersection Theory for graphs. J. Combin. Theory Ser. 3(2), 233-246 (1981)
6. Conca, A.: Linear spaces, transversal polymatroids and ASL domains. J. Algebraic Combin. 25(1), 25-41 (2007)
7. Conca, A., Herzog, J.: Castelnuovo-Mumford regularity of products of ideals. Collect. Math. 54(2), 137-152 (2003)
8. Crapo, H.: The Tutte polynomial. Aequationes Math. 3, 211-229 (1969)
9. Crapo, H., Schmitt, W.: A free subalgebra of the algebra of matroids, European J. Comb. 26(7) 1066- 1085
10. Crapo, H., Schmitt, W.: The free product of matroids. European J. Comb. 26(7), 1060-1065 (2005)
11. Crapo, H., Schmitt, W.: A unique factorization theorem for matroids. J. Comb. Theory, Series A 112(2), 222-249 (2005)
12. Derksen, H.: Hilbert series of subspace arrangements. J. Pure Appl. Algebra 209(1), 91-98 (2007)
13. Eisenbud, D.: Commutative Algebra with a View toward Algebraic Geometry. Graduate Texts in Mathematics, vol.
150. Springer, Berlin (1995)
14. Fulton, W.: Young Tableaux. London Mathematical Society Student Texts, vol.
35. Cambridge University Press, Cambridge (1997)
15. Gessel, I.: Multipartite P -partitions and inner products of skew Schur functions. In: Combinatorics and Algebra, Boulder, CO,
1983. Contemp. Math., vol. 34, pp. 289-317. Amer. Math. Soc., Providence (1984)
16. Gelfand, I., Krob, D., Lascoux, A., Leclerc, B., Retakh, V., Thibon, J.-Y.: Noncommutative symmetric functions. Adv. Math. 112(2), 218-348 (1995)
17. Goresky, M., MacPherson, R.: Stratified Morse Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol.
14. Springer, Berlin (1988)
18. Hazewinkel, M.: Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions, Monodromy and differential equations (Moscow, 2001). Acta Appl. Math. 75(1-3), 55-83 (2003)
19. Hazewinkel, M.: Symmetric functions, noncommutative symmetric functions and quasisymmetric functions. II. Acta Appl. Math. 85(1-3), 319-340 (2005)
20. Herzog, J., Hibi, T.: Discrete polymatroids. J. Algebraic Combin. 16, 239-268 (2002)
21. Hilbert, D.: Über die Theorie von algebraischen Formen. Math. Ann. 36, 313-373 (1890)
22. MacDonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. Clarendon Press, Oxford (1995)
23. Knuth, D.E.: The Art of Computer Programming, vol. 1, 3rd edn. Addison-Wesley, Reading (1997)
24. Lafforgue, L.: Pavages des simplixes, schémas de graphes recollés et compactification des PGLn+1 r / PGLr . Invent. Math. 136(1), 233-271 (1999)
25. Lafforgue, L.: Chirurgie des Grassmanniennes. CRM Monograph Series, vol.
19. American Mathematical Society, Providence (2003)
26. Luoto, K.: A matroid-friendly basis for quasisymmetric functions. J. Comb. Theory Ser. A 115(5), 777-787 (2008). [math.CO]
27. Milnor, J.W., Moore, J.C.: On the structure of Hopf algebras. Ann. Math. 81, 211-264 (1965)
28. Noble, S.D., Welch, D.J.A.: A weighted graph polynomial from chromatic invariants of knots. Ann. Inst. Fourier (Grenoble) 49(3), 1057-1087 (1999)
29. Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. Invent. Math. 56(2), 167-189 (1980)
30. Oxley, J.G.: Matroid Theory. Oxford University Press, New York (1992)
31. Sarmiento, I.: The polychromate and a chord diagram polynomial. Ann. Comb. 4, 227-236 (2000)
32. Schmitt, W.: Incidence Hopf algebras. J. Pure Appl. Algebra 96, 299-330 (1994)
33. Sidman, J.: On the Castelnuovo-Mumford regularity of subspace arrangements. Ph.D. Thesis, University of Michigan, 2002 J Algebr Comb (2009) 30: 43-86
34. Speyer, D.E.: A Matroid invariant via the K -theory of the Grassmannian. Preprint (2006).




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition