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Abstract We present a multivariate generating function for all n × n nonnegative
integral matrices with all row and column sums equal to a positive integer t , the so
called semi-magic squares. As a consequence we obtain formulas for all coefficients
of the Ehrhart polynomial of the polytope Bn of n×n doubly-stochastic matrices, also
known as the Birkhoff polytope. In particular we derive formulas for the volumes of
Bn and any of its faces.
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1 Introduction

Let Bn denote the convex polytope of n×n doubly-stochastic matrices; that is, the set
of real nonnegative matrices with all row and column sums equal to one. The polytope
Bn is often called the Birkhoff-von Neumann polytope, the assignment polytope, or
simply the Birkhoff polytope. It is a well-known problem to compute the volume of
Bn and there is a fair amount of work on the topic (see [5, 11, 15] and the references
therein for information on prior work); in this paper, we present the first exact formula
for the volume of Bn. The formula will follow from a multivariate rational generating
function for all possible n × n integer nonnegative matrices with all row and column
sums equal to a positive integer t , the so called semi-magic squares [16, 22] (although
many authors refer to them as magic squares).

Before stating our main formula, we give a few necessary definitions and notation.
We call a directed spanning tree with all edges pointing away from a root � an �-
arborescence. The set of all �-arborescences on the nodes [n] = {1,2, . . . , n} will

J.A. De Loera (�) · F. Liu · R. Yoshida
University of California Davis, Davis, CA 95616, USA
e-mail: deloera@math.ucdavis.edu

mailto:deloera@math.ucdavis.edu


114 J Algebr Comb (2009) 30: 113–139

be denoted by Arb(�, n). It is well known that the cardinality of Arb(�, n) is nn−2.
For any T ∈ Arb(�, n), we denote by E(T ) the set of directed edges of T . As usual
let Sn be the set of all permutations on [n]. For any σ ∈ Sn, we associate σ with its
corresponding permutation matrix, i.e., the n×n matrix whose (i, σ (i)) entry is 1 and
zero otherwise. Throughout this paper, we will use σ to denote both a permutation
and the corresponding matrix and it should be clear which one it refers to according
to the context. The bracket operator 〈·, ·〉 denotes the dot product of two vectors.

It is well known that given a d-dimensional integral polytope P , that is a polytope
whose vertices have integer coordinates, for any positive integer t , the number e(P, t)

of lattice points contained in the t-th dilation, tP = {tX | X ∈ P }, is a polynomial
of degree dim(P ) in the variable t . Furthermore, the leading coefficient of e(P, t)

is the normalized volume of P in units equal to the volume of the fundamental do-
main of the affine lattice spanned by P (see Chapter 4 of [22] or the book [7]). This
polynomial is called the Ehrhart polynomial of P .

One can find an expression for the Ehrhart polynomial e(Bn, t) of Bn using the
multivariate generating function

f (tBn, z) =
∑

M∈tBn∩Zn2

zM

of the lattice points of tBn, where zM = ∏
1≤i,j≤n z

mi,j

i,j if M = (mi,j ) is an n by n

matrix in R
n2

. One can see that by plugging zi,j = 1 for all i and j in f (tBn, z), we
get e(Bn, t). Our main result is

Theorem 1.1 Given any positive integer t, the multivariate generating function for
the lattice points of tBn is given by the expression

f (tBn, z) =
∑

σ∈Sn

∑

T ∈Arb(�,n)

ztσ
∏

e/∈E(T )

1

(1 − ∏
zWT,eσ )

, (1.1)

where ztσ = ∏n
k=1 zt

k,σ (k).

Here WT,e denotes the n × n (0,−1,1)-matrix associated to the unique oriented
cycle in the graph T +e (see Definition 3.17 for details) and WT,eσ denotes the usual
matrix multiplication of WT,e and the permutation matrix σ .

As we apply Lemma 5.4 to Theorem 1.1, we obtain the desired corollary:

Corollary 1.2 For any choice of fixed � ∈ [n], the coefficient of tk in the Ehrhart
polynomial e(Bn, t) of the polytope Bn of n × n doubly-stochastic matrices is given
by the formula

1

k!
∑

σ∈Sn

∑

T ∈Arb(�,n)

(〈c, σ 〉)k tdd−k({〈c,WT,eσ 〉, e /∈ E(T )})∏
e/∈E(T )〈c,WT,eσ 〉 . (1.2)

In the formula WT,e is the n × n (0,−1,1)-matrix associated to the unique oriented
cycle in T + e as defined in Definition 3.17 and WT,eσ denotes the usual matrix
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multiplication of WT,e and the permutation matrix σ . The symbol tdj (S) is the j -th
Todd polynomial evaluated at the numbers in the set S (see Definition 5.1 for details).
Finally, c ∈ R

n2
is any vector such that 〈c,WT,eσ 〉 is non-zero for all pairs (T , e) of

an �- arborescence T and a directed edge e /∈ E(T ) and all σ ∈ Sn.
As a special case, the normalized volume of Bn is given by

vol(Bn) = 1

((n − 1)2)!
∑

σ∈Sn

∑

T ∈Arb(�,n)

〈c, σ 〉(n−1)2

∏
e/∈E(T )〈c,WT,eσ 〉 . (1.3)

We stress that each rational function summand of Formula (1.1) is given only in
terms of trees and cycles of a directed complete graph. Our proof of Theorem 1.1 is
based on the lattice point rational functions as developed in [4] with some help from
the theory of Gröbner bases of toric ideals as outlined in [23].

There is a large collection of prior work on this topic that we mention now to put
our result in perspective. In [5] the authors computed the exact value of the volume
and the Ehrhart polynomials for up to n = 10, which is the current record for exact
computation. The computations in [5] took several years of computer CPU (running
in a parallel machine setup) and our volume formula is so far unable to beat their
record without a much more sophisticated implementation. On the other hand, in two
recent papers, Canfield and McKay [9, 10] provide simple asymptotic formulas for
the volume of Bn as well as the number of lattice points of tBn. However, our closed
formula for the volume of Bn is nonetheless interesting for the following reasons.
First, as it was demonstrated in [1, 12], the faces of Bn are also quite interesting for
combinatorics and applications. For example all network polytopes appear as faces of
a large enough Bn. From our formula it is easy to work out volume formulas for any
concrete face of Bn. We demonstrate this possibility in the case of the well-known
CRYn polytope [12] whose volume is equal to the product of the first n − 1 Catalan
numbers (see [25]). Concretely, we obtain for the first time the Ehrhart polynomials
of facets of Bn and CRYn for n ≤ 7. In principle, this could be applied to derive
formulas for the number of integral flows on networks. Second, not only we can
derive formulas for the coefficients of the Ehrhart polynomial of Bn, but we can also
derive formulas for the integral of any polynomial function over Bn. We hope our
generating function will be useful for various problems over the set of all semi-magic
squares, at least for small values of n.

This paper is organized as follows: In Section 2 we begin with background ma-
terial that will be used in the later sections, including background properties of Bn,
a short discussion of Gröbner bases and triangulations, Brion’s theorem and gener-
ating functions for lattice points in polyhedra. In that section, we sketch the steps
we will follow to compute the generating function of lattice points inside cones. In
Section 3 we discuss the triangulations of the dual cone at each vertex of Bn which
we encode via Gröbner bases. From Brion’s formula we derive in Section 4 a sum of
rational functions encoding all the lattice points of the dilation tBn and thus a proof
of Theorem 1.1. In Section 5 we show how from Theorem 1.1 we can derive all the
coefficients of the Ehrhart polynomial of Bn after expressing the generating function
in terms of Todd polynomials. Finally, in Section 6, we explain how to obtain Ehrhart
polynomials and formulas of integration for any face of Bn.
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2 Background

For basic definitions about convex polytopes which are not stated in this paper, please
see [26]. Chapters 5 and 6 in [24] have a very detailed introduction to Bn and trans-
portation polytopes. For all the details and proofs about lattice point counting and
their multivariate generating functions see [3, 4, 7]. We begin with some useful facts
about the polytope Bn. It is well known that the vertices of Bn are precisely the n×n

permutation matrices. Permutation matrices are in bijection with matchings on the
complete bipartite graph Kn,n. The polytope Bn lies in the n2-dimensional real space

R
n2 = {n×n real matrices}, and we use M(i, j) to denote the (i, j)-entry of a matrix

M in the space. There is a graph theoretic description of the edges of Bn; they corre-
spond to the cycles in Kn,n. On the other hand, for each pair (i, j) with 1 ≤ i, j ≤ n,
the set of doubly-stochastic matrices with (i, j) entry equal to 0 is a facet (a maximal
proper face) of Bn and all facets arise in this way. It is also easy to see that the dimen-
sion of Bn is (n − 1)2 (i.e., the volume we wish to compute is the (n − 1)2-volume
of Bn regarded as a subset of n2-dimensional Euclidean space). Note that an n × n

doubly-stochastic matrix is uniquely determined by its upper left (n − 1) × (n − 1)

submatrix. The set of (n− 1)× (n− 1) matrices obtained this way is the set An of all
nonnegative (n − 1) × (n − 1) matrices with row and column sums ≤ 1 such that the
sum of all the entries is at least n − 2. An is affinely isomorphic to Bn and we often
compute in An instead of Bn because An is full-dimensional.

Cones and Generating functions for lattice points For any polytope P ∈ R
d, we

would like to write a generating function for the following sum encoding the lattice
points of P

∑

α∈P∩Zd

zα,

where zα = z
α1
1 z

α2
2 · · · zαd

d . We give now a step-by-step description of how the gener-
ating function is constructed.

A cone is the set of all linear nonnegative combinations of a finite set of vectors. If
a cone contains no other linear subspace besides the origin then we say it is pointed.
Given a cone C ⊂ R

d , the dual cone to C is a cone C∗ = {y ∈ R
d | 〈x, y〉 ≥ 0, ∀x ∈

C}. The following lemma states some properties of dual cones. (See Theorem 9.1
in [21] for a proof).

Lemma 2.1 Let C be a pointed cone in R
n, and let D = C∗ be its dual cone. Then

the following properties hold

(1) C is the dual cone of D, namely C = D∗ = (C∗)∗.
(2) If C is a full dimensional pointed cone, then so is D. Moreover, if {Fi} is the set

of facets of C, then D is precisely the cone generated by the set of rays {Ri}
satisfying, for any i,

Ri is perpendicular to Fi, and for any ray R of C not on Fi : 〈R,Ri〉 > 0.

(2.1)
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Now if P is a polytope and v is a vertex of P, the supporting polyhedron of P at
v is

S(P, v) = v + {u ∈ R
d : v + δu ∈ P for all sufficiently small δ > 0},

and the supporting cone of P at v is defined as C(P,v) = S(P, v) − v.

For a set A ⊂ R
d , the indicator function [A] : R

d → R of A is defined as

[A](x) =
{

1 if x ∈ A,

0 if x �∈ A.

The algebra of polyhedra P(Rd) is the vector space over Q spanned by the indica-
tor functions [P ] of all polyhedra P ⊂ R

d . The algebra of polytopes PP (Rd) is the
subspace spanned by the indicator functions of the polytopes in R

d . The algebra of
cones PC(Rd) is the subspace spanned by the indicator functions of the polyhedral
cones in R

d . A linear transformation

� : P(Rd) → V,

where V is a vector space over Q is called a valuation. Similarly, linear transforma-
tions defined on PP (Rd) and PC(Rd) are also called valuations [4].

One important tool for counting lattice points is the ability of expressing the indi-
cator function of a simplicial cone as an integer linear combination of the indicator
functions of unimodular simplicial cones. Given a cone K ⊂ R

d , we say that the fi-
nite family of cones Ki , i ∈ I = {1,2, . . . , l} is a decomposition of K if there are
numbers εi ∈ {−1,1} such that

[K] =
∑

i∈I

εi[Ki].

Theorem 2.2 (Theorem 3.1 and its proof in [4]) There is a map F which, to each
rational polyhedron P ⊂ R

d , associates a unique rational function f (P, z) in d

complex variables z ∈ C
d, z = (z1, . . . , zd), such that the following properties are

satisfied:

(i) The map F is a valuation.
(ii) If P is pointed, there exists a nonempty open subset Up ⊂ C

d, such that∑
α∈P∩Zd zα converges absolutely to f (P, z) for all z ∈ UP .

(iii) If P is pointed, then f (P, z) satisfies

f (P, z) =
∑

α∈P∩Zd

zα

for any z ∈ C
d where the series converges absolutely.

(iv) If P is not pointed, i.e., P contains a line, then f (P, z) = 0.

Because the rational function f (P, z) encodes the lattice points of P , we call
f (P, z) the multivariate generating function of the lattice points (MGF) of P . The
rational function has an expression as a sum of simple terms, but to describe them we
need the following facts.
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Theorem 2.3 (Brion, 1988; Lawrence, 1991, see [4, 6] for proofs) Let P be a ratio-
nal polyhedron and let V (P ) be the vertex set of P . Then,

f (P, z) =
∑

v∈V (P )

f (S(P, v), z).

This theorem reduces the problem of finding the MGF of a rational polyhedron
P to that of finding the MGF of the supporting polyhedra at each vertex of P . If the
vertex of the supporting polyhedron is integral we can simply assume the vertex is
the origin and work instead with supporting cones.

Corollary 2.4 If P an integral polyhedron, i.e., all the vertices of P are integral
vertices, then

f (P, z) =
∑

v∈V (P )

zvf (C(P,v), z).

Although it is in general more complicated to give the MGF of an arbitrary cone,
if the cone is unimodular, its MGF has a simple form:

Lemma 2.5 (Lemma 4.1 in [4]) If K is a d-dimensional pointed cone in R
n gener-

ated by the rays {ri}1≤i≤d , where the ri ’s form a Z-basis of the lattice Z
n ∩ span(K)

(span(K) is the d-subspace where K lies), then we say K is a unimodular cone and
we have that

f (K, z) =
d∏

i=1

1

1 − zri
.

Barvinok gave an algorithm to decompose any pointed cone C as a signed sum of
simple unimodular cones [4] and thus deriving an expression for f (P, z) as a sum of
terms like those in Lemma 2.5. In principle, one needs to keep track of lower dimen-
sional cones in the decomposition for writing an inclusion-exclusion formula of the
MGF f (C, z). Fortunately, by using the Brion’s polarization trick (see Remark 4.3
in [4]), one only needs to consider full-dimensional cones. This trick involves using
dual cones of a decomposition of the dual cone to C instead of directly decomposing
C. The main idea is to note that the duals of low dimensional cones are not pointed
and thus, from Part (iv) of Theorem 2.2, their associated rational functions vanish.

Now we are ready to sketch the main steps of Barvinok’s algorithm to compute
f (C, z) (see [4] for details):

Algorithm
Input: a rational full-dimensional pointed cone C.

Output: the MGF of C : f (C, z).

(1) Find the dual cone D = C∗ to C.
(2) Apply the Barvinok decomposition to D into a set of unimodular cones Di which

have the same dimension as D (ignoring all the lower dimensional cones).
(3) Find the dual cone Ci to each Di . The cone Ci will be unimodular as well.
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(4) f (C, z) = ∑
i εif (Ci, z), where εi is +1 or −1 determined by Barvinok decom-

position.

This algorithm is still not right for us; the algorithm is for full-dimensional cones,
however, the cones we need to study are not full-dimensional since the Birkhoff poly-
tope is not full-dimensional. Also, Lemma 2.1 provides us a way to compute the rays
of C∗ if C is full-dimensional and pointed. Hence, it will be nice if we can make
our cones full-dimensional. What we will do is properly project cones into a lower
dimensional space so that they become full-dimensional.

Definition 2.6 Let V ⊂ R
n and W ⊂ R

m be vector spaces with full rank lattices
LV := V ∩ Z

n and LW := W ∩ Z
m, respectively. A linear map φ from V to W is a

good projection if φ gives a bijection between LV and LW . Note that because of the
linearity of φ, the lattices LV and LW have the same rank.

Lemma 2.7 Suppose V,W are as in Definition 2.6 and φ is a good projection from
V to W. Because φ is a linear map, we can consider φ as given by a certain m × n

matrix φ = (φi,j ). We define a map � : C
m → C

n by mapping y = (y1, . . . , ym) ∈ C
m

to z = (z1, . . . , zn) ∈ C
n, where

zj =
m∏

i=1

y
φi,j

i .

Then the following statements hold.

(1) dim(V ) = dim(W).

(2) φ gives an isomorphism between V and W that preserves the lattice. Therefore,
there exists an inverse (linear) map φ−1 from W to V that preserves the lattice
as well. Thus, φ−1 is also a good projection from W to V.

(3) C is a unimodular cone in V if and only if φ(C) is a unimodular cone in W.

(4) For any α ∈ Z
n and y ∈ C

m, if β = φ(α) and z = �(y), then yβ = zα.

(5) For any pointed rational polyhedron P ∈ V, the series
∑

β∈φ(P )∩Zm yβ converges
absolutely if and only if the series

∑
α∈P∩Zn �(y)α converges absolutely. Fur-

thermore, we have

f (φ(P ),y) = f (P,�(y)). (2.2)

(6) Let P1,P2, . . . ,Pk be pointed rational polyhedra in V, and a1, . . . , ak ∈ C, then

f (P, z) =
∑

aif (Pi, z) ⇔ f (φ(P ),y) =
∑

aif (φ(Pi),y).

Proof The proofs of (1), (2) and (3) follow from the fact that good projections give
lattices of same rank and thus isomorphic vector spaces. For the proof of (4), β =
φ(α) implies that βi = ∑n

j=1 φi,jαj . Thus,

zα =
n∏

j=1

z
αj

j =
n∏

j=1

m∏

i=1

y
φi,j αj

i =
m∏

i=1

n∏

j=1

y
φi,j αj

i =
m∏

i=1

y

∑n
j=1 φi,j αj

i =
m∏

i=1

y
βi

i = yβ.
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Because φ is a good projection, the lattice in P and the lattice in φ(P ) are in one-
to-one correspondence under φ. Therefore, to prove (4), it is enough to show that if
β = φ(α) and z = �(y), then yβ = zα. β = φ(α) implies that βi = ∑n

j=1 φi,jαj .

Thus,

zα =
n∏

j=1

z
αj

j =
n∏

j=1

m∏

i=1

y
φi,j αj

i =
m∏

i=1

n∏

j=1

y
φi,j αj

i =
m∏

i=1

y

∑n
j=1 φi,j αj

i =
m∏

i=1

y
βi

i = yβ.

The first part of (5) follows immediately from (4). Let Y be the set of y ∈ C
m

for which the series
∑

β∈φ(P )∩Zm yβ converges absolutely and Z be the set of z ∈
C

n for which the series
∑

α∈P∩Zn zα converges absolutely. By the first part of (4),
�(Y) ⊂ Z. By Theorem 2.2, f (P, z) = ∑

α∈P∩Zn zα for any z ∈ Z. In particular,
f (P, z) = ∑

α∈P∩Zn zα for any z ∈ �(Y). Hence, for any y ∈ Y.

f (P,�(y)) =
∑

α∈P∩Zn

�(y)α =
∑

β∈φ(P )∩Zm

yβ.

We use Theorem 2.2 again to conclude that f (P,�(y)) is the rational function
f (φ(P ),y) associated to φ(P ).

Given (2), we only need to check one direction in (6). Suppose f (P, z) =∑
aif (Pi, z). We can apply (2.2) to both sides to obtain f (φ(P ),y) =∑
aif (φ(Pi),y). �

Using Lemma 2.7, we modify Barvinok’s algorithm and sketch a method to con-
struct f (C, z) for supporting cones C at vertices of Bn. We will try to follow this
sequence of steps in Section 3:

(CMGF) Method for constructing the multivariate generating function for lattice
points of a cone
Input: a rational (not necessarily full-dimensional) pointed cone C ⊂ R

n.

Output: the MGF of C : f (C, z).

(0) Let V be the subspace spanned by C in R
n. Find a subspace W of R

m together
with a good projection φ from V to W. Let C = φ(C).

(1) Find a dual cone D to C.
(2) Decompose D into addition and subtraction of unimodular cones Di which have

the same dimension as D, ignoring all the lower dimensional cones.
(3) Find dual cone Ci of each Di . Note, that Ci is also unimodular. Let Ci =

φ−1(Ci).

(4) f (C, z) = ∑
i εif (Ci, z), where εi is +1 or −1 determined by the signed de-

composition.

In the next section, we will apply the method (CMGF) step-by-step to the support-
ing cone at the vertex I , the identity permutation. We will get the MGF of this sup-
porting cone and, by applying the action of the symmetric group Sn, we can deduce
the MGF of all other supporting cones of vertices of Bn and thus, by Theorem 2.3,
the MGF of Bn. We will see later, in Section 5, that the knowledge of f (P, z) as a
sum of rational functions yields a rational function formula for the volume of P .
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Triangulations and Gröbner bases of toric ideals For step (2) in our step-by-step
construction of the generating function, we will show (Lemma 3.4) that in fact any
triangulation of the dual cone of the supporting cone of a vertex already gives a set
of unimodular cones (hence, the εi ’s in Step (4) are all +1). A triangulation of a cone
C is a special decomposition of a cone as the union of simplicial cones with disjoint
interiors whose union covers completely the cone C. In this article we use polynomial
ideals to codify the triangulations, namely toric ideals and their Gröbner bases. See
Chapter 8 in [23] for all details. Here are the essential notions:

Fix a set A = {a1, a2, . . . , an} ⊂ Z
d . For any u = (u1, u2, . . . , un) ∈ Z

n, we let

uA := u1a1 + u2a2 + · · · + unan.

For any u∈Z
d , we denote by supp(u) := {i | ui �= 0} the support of u. Every u∈Z

d

can be written uniquely as u = u+ − u−, where u+ and u− are nonnegative and have
disjoint support.

Definition 2.8 The toric ideal of A, IA ⊂ k[x] := k[x1, x2, . . . , xn] is the ideal gen-
erated by the binomials

IA := 〈xu+ − xu− | uA = 0〉.

Given a real vector λ = (λ1, . . . , λn) in R
n, we can define a monomial order >λ

such that for any a, b ∈ Z
n
≥0, their monomials satisfy xa >λ xb if 〈a,λ〉 > 〈b,λ〉 and

ties are broken via the lexicographic order. Using the ordering of monomials we can
select the initial monomial of a polynomial f with respect to >λ, i.e., the highest
term present. We will denote it by in>λ(f ). For an ideal I contained in C[x1, .., xn] its
initial ideal is the ideal in>λ(I ) generated by the initial monomials of all polynomials
in I . A finite subset of polynomials G = {g1, ..., gn} of an ideal I is a Gröbner basis
of I with respect to >λ if in>λ(I ) is generated by {in>λ(g1), ..., in>λ(gn)}. In other
words, G is a Gröbner basis for I if the initial monomial of any polynomial in I is
divisible by one of the monomials in>λ(gi). It can be proved from the definition that
a Gröbner basis is a generating set for the ideal I . As we will state later, each Gröbner
basis of the toric ideal IA yields a regular triangulation of the convex hull of A. The
fact that triangulations constructed using Gröbner bases are regular will not be used
in our construction.

A subdivision of A is a collection T of subsets of A, called cells, whose con-
vex hulls form a polyhedral complex with support Q = conv(A). If each cell in T

is a simplex, then T is called a triangulation of A. Every vector λ = (λ1, . . . , λn)

in R
n induces a subdivision of A = {a1, . . . , an} as follows. Consider the polytope

Qλ = conv({(a1, λ1), . . . , (an, λn)}) which lies in R
d+1. Generally, Qλ is a poly-

tope of dimension dim(conv(A)) + 1. The lower envelope of Qλ is the collection of
faces of the form {x ∈ Qλ|〈c, x〉 = c0} with Qλ contained in the halfspace 〈c, x〉 ≤ c0

where the last coordinate cd+1 is negative. The lower envelope of Qλ is a polyhedral
complex of dimension dim(conv(A)). We define Tλ as the subdivision of A whose
cells are the projections of the cells of the lower envelope of Qλ. In other words,
{ai1, ai2, . . . , aik } is a cell of Tλ if {(ai1, λi1), (ai2, λi2), . . . , (aik , λik )} are the vertices
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of a face in the lower envelope of Qλ. The subdivision Tλ is called a regular sub-
division of A. We remark that just as a triangulation can be uniquely specified by
its maximal dimensional simplices, it can also be uniquely expressed by its mini-
mal non-faces (minimal under containment). Now we are ready to state the algebra-
triangulation correspondence:

Theorem 2.9 (See proof in Chapter 8 of [23]) Let A be an n × d matrix with integer
entries, whose row vectors {a1, . . . , an} span an affine space of dimension d − 1.
Let IA be the toric ideal defined by A. Then, the minimal non-faces of the regular
triangulation of A associated to the vector λ can be read from the generators of
the radical of the initial ideal of the Gröbner basis of IA with respect to the term
order >λ. More precisely, for λ generic, the radical of the initial ideal of IA equals

〈xi1xi2 · · ·xis : {i1, i2, . . . , is} is a minimal non-face of Tλ〉 =
⋂

σ∈Tλ

〈xi : i �∈ σ 〉.

The crucial fact we will use is that the maximal simplices of the regular triangula-
tion Tλ are transversals to the supports of the monomials from the initial ideal of the
Gröbner basis. In the next section, we will apply Theorem 2.9 to create a triangulation
of the dual cones.

To the readers who are unfamiliar with commutative algebra language, using a
Gröbner basis to describe a triangulation may not feel totally necessary or clear. Thus,
we explain here the advantages of doing it this way. First, traditionally checking that
a set of simplices is a triangulation of A is not trivial since one has to verify they
have disjoint interiors (which requires a full description of all linear dependences
of the rays) and that the union of the simplicial cones fully covers the convex hull
of A. But, having a Gröbner basis avoids checking these two tedious geometric facts.
Second, the initial monomials of the Gröbner bases are precisely the minimal non-
faces of the triangulation Tλ, which are complementary to the maximal simplicial
cones of the triangulation. From the point of view of efficiency, the encoding of a
simplicial complex via its non-faces is sometimes much more economic than via its
maximal facets. For more on the theory of triangulations see [14].

3 The MGF of the supporting cone of Bn at the vertex I

Due to the transitive action of the symmetric group on Bn it is enough to explain
a method to compute the MGF of the supporting cone at the vertex associated to
the identity permutation (we denote this by I ) and then simply permute the results.
Nevertheless it is important to stress that, although useful and economical, there is no
reason to use the same triangulation at each vertex. Similarly, the triangulations we
use are all regular, but for our purposes there is no need for this property either.

There are n2 facets of Bn : for any fixed (i, j) : 1 ≤ i, j ≤ n, the collection of
permutation matrices P satisfying P(i, j) = 0 defines a facet Fi,j of Bn. Hence,
every permutation matrix is on exactly n(n−1) facets and the vertex I is on the facets
Fi,j , i �= j. Let Cn be the supporting cone at the identity matrix I, then the set of
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facets of Cn is {Fi,j − I }1≤i,j≤n,i �=j . (Note that we need to subtract the vertex I from
Fi,j because the supporting cone is obtained by shifting the supporting polyhedron at
the vertex I to the origin.) We are going to apply our method CMGF to find the MGF
of Cn.

3.1 Step 0: A good projection

Cn, as well Bn, lie in the n2-dimensional space R
n2 = {n × n real matrices}. But

they lie in different affine subspaces (the vertex of Cn is the origin). Let Vn be the
subspace of R

n2
spanned by Cn. It is easy to see that

Vn = {M ∈ R
n2 |

n∑

k=1

M(i, k) =
n∑

k=1

M(k, j) = 0,∀i, j}. (3.1)

Let Wn be the vector space R
(n−1)2 = {(n − 1) × (n − 1) real matrices}. We define

a linear map φ from R
n2

to Wn by ignoring the entries in the last column and the
last row of a matrix in R

n2
, that is, for any M, we define φ(M) to be the matrix

(M(i, j))1≤i,j≤n−1. One can check that the restriction φ to Vn is a good projection
from Vn to Wn. Let

Cn := φ(Cn).

Also, let F i,j = φ(Fi,j ) and P = φ(P ), for any permutation matrix P on [n].
(These are actually the facets and vertices of An, which is the full-dimensional ver-
sion of Bn, as we explained at the beginning of Section 2.) By the linearity of φ the
facets of Cn are {F i,j − I }1≤i,j≤n,i �=j , and F i,j is defined by the collection of P ’s
where P ’s are permutation matrices (on [n]) satisfying P(i, j) = 0.

3.2 Step 1: The dual cone Dn to Cn

The cone Cn is full dimensional in W = R
(n−1)2

. Hence, we can use Lemma 2.1 to
find its dual cone. We will first define a cone, and then show it is the dual cone to Cn.

Definition 3.1 Dn is the cone spanned by rays {Mi,j }1≤i,j≤n,i �=j , where Mi,j is the
(n − 1) by (n − 1) matrix such that

(i) the (i, j)-entry is 1 and all other entries equal zero, if i �= n and j �= n;
(ii) the entries on the ith row are all −1 and all other entries equal zero, if i �= n

and j = n;
(iii) the entries on the j th column are all −1 and all other entries equal zero, if i = n

and j �= n.
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Example 3.2 (Example of Mi,j when n = 3) Here we present each 2 by 2 matrix
Mi,j as a row vector, which is just the first and second row of the matrix listed in this
order.

M1,3 : −1 −1 0 0

M2,3 : 0 0 −1 −1

M3,1 : −1 0 −1 0

M3,2 : 0 −1 0 −1

M1,2 : 0 1 0 0

M2,1 : 0 0 1 0

Lemma 3.3 Dn is the dual cone to Cn inside the vector space Wn.

Proof For any i, j ∈ [n] and i �= j, we need to check that condition (2.1) is satisfied.
Note that a ray of Cn is given by the vector P −I , for P a permutation matrix adjacent
to the identity permutation. Thus it is enough to show that for any permutation matrix
P on [n], we have 〈Mi,j ,P 〉 ≥ 〈Mi,j , I 〉 and the equality holds if and only if P is on
F i,j , or equivalently, P is on the facet Fi,j . We have the following three situations
for verification:

(i) If i �= n and j �= n, 〈Mi,j ,P 〉 is 0 if P is on Fi,j and is 1 if P is not on Fi,j .

(ii) If i �= n and j = n, 〈Mi,j ,P 〉 is −1 if P is on Fi,j and is 0 if P is not on Fi,j .

(iii) If i = n and j �= n, it is the same as (ii).

Therefore, Dn is the dual cone to Cn. �

3.3 Step 2: The triangulations of Dn

As we mentioned in the last section, we will use the idea of toric ideal to find a
triangulation of the dual cone Dn to decompose Dn into unimodular cones.

Lemma 3.4 Let M be the configuration of vectors {Mi,j }1≤i,j≤n,i �=j and [M] de-
note the matrix associated to M, i.e, the rows of [M] are the vectors in M written
as row vectors. The matrix [M] is totally unimodular, i.e., for any (n − 1)2 linearly
independent Mi,j ’s, they span a unimodular cone. It follows that all triangulations
of the cone Dn have the same number of maximal dimensional simplices.

Proof Up to a rearrangement of rows the matrix [M] will look as follows: The first
few rows are the negatives of the vertex-edge incidence matrix of the complete bi-
partite Kn−1,n−1, then under those rows we have n − 1 cyclically arranged copies of
an (n − 2) × (n − 2) identity matrix. It is well known that the vertex-edge incidence
matrix of the complete bipartite Kn−1,n−1 is totally unimodular. Moreover it is also
known, see e.g., Theorem 19.3 in [21], that a matrix A is totally unimodular if each
collection of columns of A can be split into two parts so that the sum of the columns
in one part minus the sum of the columns in the other part is a vector with entries
0,+1, and −1. This characterization of totally unimodular matrices is easy to verify
in our matrix [M] because whatever partition that works for the column sets of the
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vertex-edge incidence matrix of the complete bipartite Kn−1,n−1 works also for the
corresponding columns of M, because of the diagonal structure of the rows below it.

The fact that all triangulations have the same number of maximal simplices follows
from the unimodularity as proved in Corollary 8.9 of [23]. �

Therefore, any triangulation of Dn gives a decomposition of Dn into a set of uni-
modular cones. Since M defines the vertex figure of Dn, it is sufficient to triangulate
the convex hull of M. Hence, we consider the toric ideal

IM := 〈xu+ − xu− | uM = 0〉
of M inside the polynomial ring k[x] := k[xi,j : 1 ≤ i, j ≤ n, i �= j ]. Note that here
u∈Z

n(n−1) is an n(n − 1) dimensional vector indexed by {(i, j) : i, j ∈ [n], i �= j}.
Recall that a circuit of IA is an irreducible binomial xu+ − xu−

in IA which has
minimal support. Another result follows immediately from Lemma 3.3, Lemma 3.4
and [23, Proposition 4.11,Proposition 8.11]:

Lemma 3.5 The set CM of circuits of the homogeneous toric ideal IM is in fact a
universal Gröbner basis UM for IM.

For any partition of [n] = S ∪ T , we denote by uS,T ∈ Z
n(n−1) the n(n − 1)-

dimensional vector, where

uS,T (i, j) =

⎧
⎪⎨

⎪⎩

1, if i ∈ S, j ∈ T ,

−1, if i ∈ T , j ∈ S,

0, otherwise.

One can easily check that uS,T has the following two properties:

uS,T (i, j) + uS,T (j, i) = 0, for any i �= j . (3.2)

uS,T (i, j) + uS,T (j, k) + uS,T (k, i) = 0, for any distinct i, j and k. (3.3)

We define

PS,T := xu+
S,T − xu−

S,T =
∏

s∈S,t∈T

xs,t −
∏

s∈S,t∈T

xt,s ,

where u+
S,T (i, j) =

{
1, if i ∈ S, j ∈ T ,

0, otherwise,
and u−

S,T (i, j) =
{

1, if i ∈ T , j ∈ S,

0, otherwise.

Proposition 3.6 The set of circuits of IM consists of all the binomials PS,T ’s:

CM = {PS,T | S ∪ T is a partition of [n]}.
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Example 3.7 For n = 3, we have

CM = {P{1},{2,3} = x1,2x1,3 − x2,1x3,1,

P{2,3},{1} = x2,1x3,1 − x1,2x1,3,

P{2},{1,3} = x2,1x2,3 − x1,2x3,2,

P{1,3},{2} = x1,2x3,2 − x2,1x2,3,

P{3},{1,2} = x3,1x3,2 − x1,3x2,3,

P{1,2},{3} = x1,3x2,3 − x3,1x3,2}.

We break the proof of Proposition 3.6 into several lemmas. Before we state and
prove the lemmas, we give a formula for the entries in

uM =
∑

i,j∈[n],i �=j

u(i, j)Mi,j .

For any i, j ∈ [n − 1], at most three members of M are nonzero at (i, j)-entry:
Mi,j (i, j) = 1 (this one does not exist if i = j ), Mi,n(i, n) = −1, and Mn,j (n, j) =
−1. Hence,

(uM)(i, j) =
{

−u(i, n) − u(n, j) i = j ;
u(i, j) − u(i, n) − u(n, j) i �= j.

Therefore, we have the following lemma.

Lemma 3.8

uM = 0 if and only if

{
u(i, n) + u(n, i) = 0, ∀i ∈ [n − 1];
u(i, j) − u(i, n) − u(n, j) = 0, ∀i �= j ∈ [n − 1].

Lemma 3.9 For any partition of [n] = S ∪ T , we have that uS,T M = 0. Hence PS,T

is in the toric ideal IM.

Proof It directly follows from (3.2), (3.3), and Lemma 3.8. �

Lemma 3.10 For any nonzero u∈Z
n(n−1) satisfying uM = 0, i.e., xu+ − xu− ∈ IM,

there exists a partition of [n] = S ∪ T , so that supp(uS,T ) ⊂ supp(u).

Proof We first show that there exists t ∈ [n], such that either (t, n) or (n, t) is in the
support supp(u) of u. Let (i, j) ∈ supp(u), if either i or j is n, then we are done.
Otherwise, by Lemma 3.8, we must have either (i, n) or (n, j) in supp(u).

By Lemma 3.8 again, we conclude that (t, n) ∈ supp(u) if and only if (n, t) ∈
supp(u). Let T = {t | (t, n) ∈ supp(u) and/or (n, t) ∈ supp(u)} and S = [n] \ T . Both
S and T are nonempty. Thus S ∪ T is a partition of [n]. We will show that S ∪ T is
the partition needed to finish the proof.
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supp(uS,T ) = {(s, t) | s ∈ S, t ∈ T } ∪ {(t, s) | s ∈ S, t ∈ T }. Hence, we need to
show that ∀s ∈ S,∀t ∈ T , both (s, t) and (t, s) are in supp(u). If s = n, it follows im-
mediately from the definition of T . If s �= n, (s, n) �∈ supp(u) since s �∈ T . Therefore,
(uM)(s, t) = u(s, t) − u(n, t), which implies that (s, t) ∈ supp(u). We can similarly
show that (t, s) ∈ supp(u) as well. �

Lemma 3.11 Let u∈Z
n(n−1) be satisfying uM = 0, and supp(u) = supp(uS,T ) for

some partition of [n] = S ∪ T , then ∃c ∈ Z such that u = cuS,T .

Proof Because uS,T = −uT ,S, we can assume that n ∈ S. Fix t0 ∈ T , and let c :=
u(n, t0), we will show that u = cuS,T . Basically, we need to show that ∀s ∈ S and
∀t ∈ T , u(s, t) = u(n, t0) and u(t, s) = −u(n, t0). We will show it case by case, by
using Lemma 3.8 and the fact that u(s, n) = u(n, s) = 0 when s �= n and u(t0, t) = 0
when t �= t0.

• If s = n, t = t0 : u(s, t) = u(n, t0) and u(t, s) = u(t0, n) = −u(n, t0).

• If s = n, t �= t0 : u(s, t) = u(n, t) = u(t0, t) − u(t0, n) = u(n, t0) and u(t, s) =
u(t, n) = −u(n, t) = −u(n, t0).

• If s �= n, t = t0 : u(s, t) = u(s, t0) = u(s, n) + u(n, t0) = u(n, t0) and u(t, s) =
u(t0, s) = u(t0, n) + u(n, s) = −u(n, t0).

• If s �= n, t �= t0 : u(s, t) = u(s, n) + u(n, t) = u(n, t0) and u(t, s) = u(t, n) +
u(n, s) = −u(n, t0).

�

Proof of Proposition 3.6 By Lemma 3.9, Lemma 3.10 and Lemma 3.11, we know
that

CM ⊂ {PS,T | S ∪ T is a partition of [n]}.
Now we only need to show that for any partition S ∪ T , there does not exist another
partition S′ ∪ T ′ such that supp(uS′,T ′) is strictly contained in supp(uS,T ). Suppose
we have two such partitions and let (i, j) ∈ supp(uS,T ) \ supp(uS′,T ′). Then i and
j are both in S′ or T ′. Without loss of generality, we assume they are both in S′.
Let t ∈ T ′, then (i, t) and (j, t) are both in the support of uS′,T ′ , thus in the support
of uS,T . But the fact that (i, j) ∈ supp(S,T ) indicates that one of i and j is in S and
the other one is in T . Wherever t is in, we cannot have both (i, t) and (j, t) in the
support of uS,T . Therefore, we proved that each PS,T is a circuit. �

Corollary 3.12 For any � ∈ [n],
Gr� := {PS,T | S ∪ T is a partition of [n] s.t. � ∈ S}

is a Gröbner basis of M with respect to any term order < satisfying x�,j > xi,k, for
any i �= �. Thus, the set of initial monomials of the elements in Gr� are

Ini(Gr�) := {
∏

s∈S,t∈T

xs,t | S ∪ T is a partition of [n] s.t. � ∈ S}.
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Example 3.13 For n = 3, � = 3 :

Gr� = {P{2,3},{1} = x2,1x3,1 − x1,2x1,3,

P{1,3},{2} = x1,2x3,2 − x2,1x2,3,

P{3},{1,2} = x3,1x3,2 − x1,3x2,3}

and

Ini(Gr�) = {x2,1x3,1, x1,2x3,2, x3,1x3,2}.

Recall that Arb(�, n) is the set of all �-arborescences on [n]. For any T ∈
Arb(�, n), we define the support of T to be supp(T ) := {(i, j) | i is the parent of j

in T }, and let M(T ) = {Mi,j | (i, j) ∈ supp(T )} be the corresponding subset of M
defined in Lemma 3.4. (Note that the support of T is actually the same as the edge
set E(T ) of T . We call it support here to be consistent with the definitions of other
supports.)

Proposition 3.14 For any arborescence T on [n], we define DT to be the cone gen-
erated by the rays in the set M \ M(T ), i.e., DT = cone(M \ M(T )).

Fix any � ∈ [n]. The term order and Gröbner basis described in Corollary 3.12
give us a triangulation of Dn :

T ri� := {DT | T ∈ Arb(�, n)}.

Proof From the theory of Gröbner bases of toric ideals in Theorem 2.9, the maximal
simplices are given by the set of transversals, all minimal sets σ ⊂ {(i, j) | i �= j ∈
[n]} such that σ ∩ supp(m) �= ∅,∀m ∈ Ini(Gr�). Now due to the fact that each of the
initial monomials are in bijection to the cuts of the complete graph, the transversals
are indeed given by all possible arborescences

{supp(T ) | T ∈ Arb(�, n)}.

One direction is easy: given any arborescence T on [n] with root �, one sees that
supp(T ) is a transversal. We show the other direction: given a transversal σ, we can
draw a directed graph Gσ according to σ, i.e., supp(Gσ ) = σ. We let T be the set of
all i’s such that there does not exist a directed path from � to i. T is empty, because
otherwise m = ∏

s �∈T ,t∈T xs,t ∈ Ini(Gr�) but σ ∩ supp(m) = ∅. Therefore, for any
vertex i, there exists a directed path from � to i. This implies that there is an �-
arborescence as a subgraph of Gσ . However, by the minimality of σ, Gσ has to be
this arborescence.

Finally, from Theorem 2.9 we know that the complement of these transversals is
precisely the set of simplices of the triangulation. �
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Fig. 1 3-arborescences

Example 3.15 For n = 3, � = 3, there are only three trees for K3, thus the three
3-arborescences TA,TB,TC for K3 are depicted in Figure 1.

T ri� = {DTA
= cone(M \ M(TA)) = cone({M1,3,M2,3,M3,1,M1,2})

DTB
= cone(M \ M(TB)) = cone({M1,3,M2,3,M3,2,M2,1})

DTC
= cone(M \ M(TC)) = cone({M1,3,M2,3,M1,2,M2,1})},

where Mi,j is defined as in Example 3.2.

3.4 Step 3: The dual cone to DT

We have given triangulations T ri� of Dn. By Lemma 3.4, we know this gives a de-
composition of Dn into a set of unimodular cones DT , one for each arborescence T .
Hence we can proceed to find the dual cone to each DT inside Wn.

Recall that Vn is the subspace spanned by the supporting cone Cn at the vertex I

and can be described by (3.1). We will define cone CT , for each T ∈ Arb(�, n), in
the subspace Vn, then show that CT := φ(CT ) is the dual cone to DT .

Definition 3.16 For any directed edge e = (s, t) (s is pointed to t) we define the
weight of e to be the n × n matrix w(e) ∈ R

n2
, whose (s, t)-entry is 1, (t, t)-entry is

−1, and all the remaining entries are zeros.
Given T an arborescence on [n] with root �, let v be a vertex of T . Then there is

a unique path from � to v. We define the weight wT (v) of v with respect to T to be
the summation of the weights of all the edges on this path.

Definition 3.17 Let T be an arborescence on [n] with root �. For each directed edge
e = (i, j) not in T , i.e., e �∈ E(T ), we define

WT,e := wT (s) − wT (t) + w(e).
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More precisely, the entries of WT,e are

WT,e(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if i �= j and (i, j) ∈ cycle(T + e) has the same
orientation as e,

−1, if i �= j and (i, j) ∈ cycle(T + e) has the opposite
orientation as e,

−1, if i = j and i is a vertex in two edges of cycle(T + e) with
both edges having same orientation as e.,

1, if i = j and i is a vertex in two edges of cycle(T + e), with
both edges having opposite orientation of e.,

0, in all other cases.

where cycle(T + e) denote the unique cycle created by adding e to T .
Let CT be the cone generated by the set of rays {WT,e | e �∈ E(T )} and CT be its

projection under φ (the map that ignores the last row and last column of an n × n

matrix):

CT := cone({WT,e | e �∈ E(T )}), CT := φ(CT ).

Proposition 3.18

(1) Each WT,e is in the subspace

Vn = {M ∈ R
n2 |

n∑

k=1

M(i, k) =
n∑

k=1

M(k, j) = 0,∀i, j}.

Hence, CT is in Vn.

(2) CT is the dual cone to DT in the vector space Wn = R
(n−1)2

.

Proof

(1) We observe that for each row or column of WT,e, there are either one 1, one −1
and the other entries are zeros or all entries are zeros.

(2) CT is the cone generated by the set of rays {φ(WT,e) | e �∈ E(T )}, and DT is
the cone generated by the set of rays {Mi,j | (i, j) �∈ supp(T )}. Recall φ is the
map that ignores the entries in the last column and the last row of a matrix in
Vn ⊂ R

n2
. Hence, we have

φ(WT,e)(k, �) = WT,e(k, �),∀1 ≤ k, � ≤ n − 1.

To check whether CT is the dual cone to DT , it is enough to check for
any directed edge e = (s, t) �∈ E(T ) and any (i, j) �∈ supp(T ), we have
〈φ(WT,e),Mi,j 〉 is positive when (i, j) = (s, t) and is 0 otherwise. In fact, we
will show that 〈φ(WT,e),Mi,j 〉 = δ(i,j),(s,t). There are three situations.

• If i �= n and j �= n, then 〈φ(WT,e),Mi,j 〉 = φ(WT,e)(i, j) = WT,e(i, j).

• If i = n and j �= n, then 〈φ(WT,e),Mi,j 〉 = ∑n−1
k=1(−φ(WT,e)(k, j)) =∑n−1

k=1(−WT,e(k, j)) = WT,e(n, j) = WT,e(i, j).
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• If i �= n and j = n, similarly we have 〈φ(WT,e),Mi,j 〉 = WT,e(i, j).

Hence, for every situation 〈φ(WT,e),Mi,j 〉 = WT,e(i, j). However, since the
only edge in cycle(T + e) not in T is e, WT,e(i, j) = δ(i,j),(s,t).

�

Example 3.19 When n = 3, � = 3, as before we will present WT,e as a row vec-
tor, which is just the first, second and last row of the matrix in order. For the 3-
arborescence TA in Figure 1, we have four directed edges to be added, the edges
(1,2), (1,3), (3,1) and (2,3).

WTA,(1,2) : −1 1 0 1 −1 0 0 0 0
WTA,(1,3) : −1 0 1 1 −1 0 0 1 −1
WTA,(2,3) : 0 0 0 0 −1 1 0 1 −1
WTA,(3,1) : 0 0 0 −1 1 0 1 −1 0
Similarly we have edges (1,3), (2,1), (2,3) and (3,2) to be added onto the 3-

arborescence TB in Figure 1 and edges (1,2), (1,3), (2,1) and (2,3) for the 3-
arborescence TC.

WTB,(1,3) : −1 0 1 0 0 0 1 0 −1
WTB,(2,1) : −1 1 0 1 −1 0 0 0 0
WTB,(2,3) : −1 1 0 0 −1 1 1 0 −1
WTB,(3,2) : 1 −1 0 0 0 0 −1 1 0
WTC,(1,2) : −1 1 0 0 0 0 1 −1 0
WTC,(1,3) : −1 0 1 0 0 0 1 0 −1
WTC,(2,1) : 0 0 0 1 −1 0 −1 1 0
WTC,(2,3) : 0 0 0 0 −1 1 0 1 −1

3.5 Step 4: The multivariate generating function of Cn

Because each DT in the triangulation of Dn is unimodular, so is the dual cone CT

of DT . By Lemma 2.7, we conclude that CT is unimodular and that the following
proposition holds:

Proposition 3.20 Fixing � ∈ [n], the multivariate generating function of Cn is given
by

f (Cn, z) =
∑

T ∈Arb(�,n)

∏

e/∈E(T )

1

(1 − ∏
zWT,e

)
. (3.4)

One observes that Equation (3.4) is independent of the choice of �. Thus we have the
following equality.

Corollary 3.21 For any �1, �2 ∈ [n],
∑

T ∈Arb(�1,n)

∏

e/∈E(T )

1

(1 − ∏
zWT,e

)
=

∑

T ∈Arb(�2,n)

∏

e/∈E(T )

1

(1 − ∏
zWT,e

)
.
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4 A rational function formula for f (tBn, z)

In the last section, we obtained a formula for the multivariate generating function of
the supporting cone Cn of the vertex I of Bn. Because of the symmetry of vertices of
the Birkhoff polytope we can get the MFG of the supporting cone of any other vertex
of Bn.

Corollary 4.1 The multivariate generating function for the lattice points of the sup-
porting cone Cn(σ ) at the vertex σ , for σ a permutation in Sn, is given by

f (Cn(σ ), z) =
∑

T ∈Arb(�,n)

∏

e/∈E(T )

1

(1 − ∏
zWT,eσ )

, (4.1)

where WT,eσ is the matrix obtained from usual matrix multiplication of WT,e and
the permutation matrix σ.

Proof [Proof of Theorem 1.1] Note that for any positive integer t, the supporting
cone of tBn at vertex tσ is still the same supporting cone Cn(σ ) of Bn at the vertex σ.

Then the theorem follows from Corollary 2.4 and Corollary 4.1. �

We conclude this section with an example of Theorem 1.1 for our running exam-
ple.

Example 4.2 When n = 3, � = 3, the three 3-arborescences are shown in Figure 1.
In example 3.19, we have already calculated WT,e’s. By plugging them in, we get the
three parts of the products of rational functions contributing to f (C3, z):

∏

e/∈E(TA)

1

(1 − ∏
zWTA,e

)
= 1

1 − z1,2z2,1z
−1
1,1z

−1
2,2

× 1

1 − z1,3z3,2z2,1z
−1
1,1z

−1
2,2z

−1
3,3

× 1

1 − z2,3z3,2z
−1
2,2z

−1
3,3

× 1

1 − z2,2z3,1z
−1
2,1z

−1
3,2

,

∏

e/∈E(TB)

1

(1 − ∏
zWTB,e

)
= 1

1 − z1,3z3,1z
−1
1,1z

−1
3,3

× 1

1 − z1,2z2,1z
−1
1,1z

−1
2,2

× 1

1 − z2,3z3,1z1,2z
−1
1,1z

−1
2,2z

−1
3,3

× 1

1 − z1,1z3,2z
−1
1,2z

−1
3,1

,

and

∏

e/∈E(TC)

1

(1 − ∏
zWTC,e

)
= 1

1 − z1,2z3,1z
−1
1,1z

−1
3,2

× 1

1 − z1,3z3,1z
−1
1,1z

−1
3,3

× 1

1 − z2,1z3,2z
−1
2,2z

−1
3,1

× 1

1 − z2,3z3,2z
−1
3,3z

−1
2,2

.
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Thus, ztI f (C3, z) equals the sum of the three rational functions multiplied by
(zt

1,1z
t
2,2z

t
3,3).

In order to compute the same for other vertices we simply permute the results:

ztσ f (C3(σ ), z)

= (zt
1,σ (1)z

t
2,σ (2)z

t
3,σ (3))

× (
1

1 − z1,σ (2)z2,σ (1)z
−1
1,σ (1)z

−1
2,σ (2)

× 1

1 − z1,σ (3)z3,σ (2)z2,σ (1)z
−1
1,σ (1)z

−1
2,σ (2)z

−1
3,σ (3)

× 1

1 − z2,σ (3)z3,σ (2)z
−1
2,σ (2)z

−1
3,σ (3)

× 1

1 − z2,σ (2)z3,σ (1)z
−1
2,σ (1)z

−1
3,σ (2)

+ 1

1 − z1,σ (3)z3,σ (1)z
−1
1,σ (1)z

−1
3,σ (3)

× 1

1 − z1,σ (2)z2,σ (1)z
−1
1,σ (1)z

−1
2,σ (2)

× 1

1 − z2,σ (3)z3,σ (1)z1,σ (2)z
−1
1,σ (1)z

−1
2,σ (2)z

−1
3,σ (3)

× 1

1 − z1,σ (1)z3,σ (2)z
−1
1,σ (2)z

−1
3,σ (1)

+ 1

1 − z1,σ (2)z3,σ (1)z
−1
1,σ (1)

z−1
3,σ (2)

× 1

1 − z1,σ (3)z3,σ (1)z
−1
1,σ (1)

z−1
3,σ (3)

× 1

1 − z2,σ (1)z3,σ (2)z
−1
2,σ (2)z

−1
3,σ (1)

× 1

1 − z2,σ (3)z3,σ (2)z
−1
3,σ (3)z

−1
2,σ (2)

).

Finally, the summation of all six ztσ f (C3(σ ), z) gives f (tB3, z).

5 The Coefficients of the Ehrhart polynomial of the Birkhoff polytope

In section 5.2 of [4], Barvinok and Pommersheim derive a formula for the number of
lattice points of a given integral convex polytope P in terms of Todd polynomial by
residue computation of the MGF of P. When P is an integral polytope, their formula
explicitly indicates formulas for the coefficients of the Ehrhart polynomial e(P, t)

of P . Especially, this gives us a formula for the volume vol(P ) of P , applying it we
can get Theorem 1.2. We start this section by briefly recalling related results in [4].

Definition 5.1 Consider the function

G(τ ; ξ1, . . . , ξd) =
d∏

i=1

τξi

1 − exp(−τξi)
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in d + 1 (complex) variables τ and ξ1, . . . , ξl . The function G is analytic in a neigh-
borhood of the origin τ = ξ1 = . . . = ξd = 0 and therefore there exists an expansion

G(τ ; ξ1, . . . , ξd) =
+∞∑

j=0

τ j tdj ({ξi |1 ≤ i ≤ d}),

where tdj ({ξi |1 ≤ i ≤ d}) = tdj (ξ1, ξ2, . . . , ξd) is a homogeneous polynomial of de-
gree j , called the j -th Todd polynomial in ξ1, . . . , ξd . It is well-know that tdj ({ξi |1 ≤
i ≤ d}) is a symmetric polynomial with rational coefficients. See page 110 in [18] for
more information on Todd polynomials.

Example 5.2 Here are the first three Todd polynomials when d = 3:

td3(x1, x2, x3) = (1/24) (x1 + x2 + x3) (x1x2 + x2x3 + x3x1) ,

td2(x1, x2, x3) = (1/12)x2
2 + (1/4)x3x1 + (1/12)x3

2 + (1/12)x1
2 + (1/4)x2x3

+ (1/4)x1x2,

td1(x1, x2, x3) = (1/2) x1 + (1/2) x2 + (1/2) x3, and as usual td0(x1, x2, x3) = 1.

Lemma 5.3 (See Algorithm 5.2 in [4]) Suppose P ⊂ R
N is a d-dimensional integral

polytope and the multivariate generating function of P is given by

f (P, z) =
∑

i

εi

zai

i

(1 − zbi,1) · · · (1 − zbi,d )
, (5.1)

where εi = {−1,1}, ai, bi,1, . . . , bi,d ∈ Z
N , the ai ’s are all vertices (with multiple

occurrences) of P , and cone (bi,1, . . . , bi,d ) is unimodular, for each i. For any choice
of c ∈ R

N such that 〈c, bi,j 〉 �= 0 for each i and j, we have a formula for the number
of lattice points in P :

|P ∩ Z
N | =

∑

i

εi∏d
j=1〈c, bi,j 〉

d∑

k=0

(〈c, ai〉)k
k! tdd−k(〈c, bi,1〉, . . . , 〈c, bi,d〉). (5.2)

Indeed, if we make the substitution xi = exp(τci) Formula (5.1) can be rewritten
as

f (P, z) = 1

τd

∑

i

εi

τ d exp(〈c, ai〉
(1 − exp(〈c, bi,1〉) · · · (1 − exp(〈c, bi,d〉) . (5.3)

Each fraction is a holomorphic function in a neighborhood of τ and the d-th co-
efficient of its Taylor series is a linear combination of Todd polynomials. Thus its
d-coefficient of the Taylor series is

1

(〈c, bi,1〉) · · · (〈c, bi,d〉)
d∑

k=0

(〈c, ai〉)k
k! tdd−k(〈c, bi,1〉, . . . , 〈c, bi,d〉). (5.4)
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Formula (5.2) is the result of adding these contributions for each rational fraction
summand.

It is clear that if Formula (5.1) is the MGF of an integral polytope P, then we have
the MGF of any of its dilations:

f (tP, z) =
∑

i

εi

ztai

(1 − zbi,1) · · · (1 − zbi,d )
. (5.5)

Hence, by using Lemma 5.3, we get the Ehrhart polynomial of P.

Lemma 5.4 Suppose P ⊂ R
N is a d-dimensional integral polytope and the mul-

tivariate generating function of P (produced by Barvinok’s algorithm) is given by
(5.1). For any choice of c ∈ R

N such that 〈c, bi,j 〉 �= 0 for each i and j, the Ehrhart
polynomial of P is

e(P, t) =
d∑

k=0

tk

k!
∑

i

εi∏d
j=1〈c, bi,j 〉

(〈c, ai〉)k tdd−k(〈c, bi,1〉, . . . , 〈c, bi,d〉). (5.6)

In particular, we get a formula for the volume of P :

vol(P ) = 1

d!
∑

i

εi

(〈c, ai〉)d∏d
j=1〈c, bi,j 〉

. (5.7)

Proof Formula (5.6) follows directly from Lemma 5.3 and our earlier discussion.
Formula (5.7) follows from the facts that the leading coefficient of e(P, t) is vol(P )

and the 0-th Todd polynomial is always the constant 1, which can be shown from the
Taylor expression of the function G(τ, ξ1, . . . , ξd) defining the Todd polynomials. �

Proof of Corollary 1.2 It follows from Lemma 5.4 and Theorem 1.1. �

To help our readers we wrote an interactive MAPLE implementation of Formula
(1.2) in the case of B3. It is available at http://www.math.ucdavis.edu/~deloera/
RECENT_WORK/volBirkhoff3.

Clearly, it would be desirable to apply a suitable variable substitution of ci,j so that
the expression of the volume has as few terms as possible (preferably keeping the size
of ci,j small), with the hope of speeding up the calculations or even in the hope of
finding a purely combinatorial summation. We leave this challenge to the reader and
conclude with a variable exchange that gives the volume in just two variables (it is
possible to leave it as a univariate rational function from the substitution ci,j = itj ).
If we set ci,j = si tj clearly there will be no cancellations. For example for the case
n = 3, the volume of B3 equals.

1/24

(
st+s2 t2+s3t3

)4

(
st2+s2 t−st−s2 t2

)(
s2t3+s3 t2−s2 t2−s3 t3

)(
st3+s3 t2+s2 t−st−s2 t2−s3t3

)(
s2 t2+s3 t−s2 t−s3 t2

)

+ 1/24

(
st+s2 t3+s3 t2

)4

(
st3+s2 t−st−s2 t3

)(
s2 t2+s3 t3−s2 t3−s3 t2

)(
st2+s3 t3+s2 t−st−s2 t3−s3 t2

)(
s2 t3+s3t−s2 t−s3 t3

)

http://www.math.ucdavis.edu/~deloera/RECENT_WORK/volBirkhoff3
http://www.math.ucdavis.edu/~deloera/RECENT_WORK/volBirkhoff3
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+ 1/24

(
st2+s2 t+s3 t3

)4

(
st+s2 t2−st2−s2 t

)(
s2 t3+s3 t−s2 t−s3 t3

)(
st3+s3t+s2 t2−st2−s2t−s3 t3

)(
s2 t+s3 t2−s2 t2−s3 t

)

+ 1/24

(
st2+s2t3+s3 t

)4

(
st3+s2 t2−st2−s2t3

)(
s2 t+s3 t3−s2 t3−s3 t

)(
st+s3 t3+s2 t2−st2−s2 t3−s3 t

)(
s2 t3+s3t2−s2 t2−s3 t3

)

+ 1/24

(
st3+s2 t+s3 t2

)4

(
st+s2 t3−st3−s2 t

)(
s2 t2+s3 t−s2 t−s3 t2

)(
st2+s3t+s2 t3−st3−s2t−s3 t2

)(
s2 t+s3 t3−s2 t3−s3 t

)

+ 1/24

(
st3+s2t2+s3 t

)4

(
st2+s2 t3−st3−s2t2

)(
s2 t+s3 t2−s2 t2−s3 t

)(
st+s3 t2+s2 t3−st3−s2 t2−s3 t

)(
s2 t2+s3t3−s2 t3−s3 t2

)

+ 1/24

(
st+s2 t2+s3 t3

)4

(
st2+s2 t−st−s2 t2

)(
st3+s3 t−st−s3 t3

)(
s2 t3+s3 t+st2−st−s2 t2−s3 t3

)(
st+s3 t2−st2−s3 t

)

+ 1/24

(
st+s2 t3+s3 t2

)4

(
st3+s2 t−st−s2 t3

)(
st2+s3 t−st−s3 t2

)(
s2 t2+s3 t+st3−st−s2 t3−s3 t2

)(
st+s3 t3−st3−s3 t

)

+ 1/24

(
st2+s2 t+s3 t3

)4

(
st+s2 t2−st2−s2 t

)(
st3+s3 t2−st2−s3 t3

)(
s2t3+s3 t2+st−st2−s2t−s3 t3

)(
st2+s3 t−st−s3 t2

)

+ 1/24

(
st2+s2 t3+s3 t

)4

(
st3+s2 t2−st2−s2t3

)(
st+s3 t2−st2−s3t

)(
s2t+s3 t2+st3−st2−s2t3−s3 t

)(
st2+s3 t3−st3−s3 t2

)

+ 1/24

(
st3+s2 t+s3 t2

)4

(
st+s2 t3−st3−s2 t

)(
st2+s3 t3−st3−s3 t2

)(
s2t2+s3 t3+st−st3−s2t−s3 t2

)(
st3+s3 t−st−s3 t3

)

+ 1/24

(
st3+s2 t2+s3 t

)4

(
st2+s2 t3−st3−s2t2

)(
st+s3 t3−st3−s3t

)(
s2t+s3 t3+st2−st3−s2t2−s3 t

)(
st3+s3 t2−st2−s3 t3

)

+ 1/24

(
st+s2 t2+s3 t3

)4

(
st3+s3 t−st−s3 t3

)(
s2 t3+s3 t2−s2 t2−s3 t3

)(
st2+s3 t−st−s3 t2

)(
s2 t+s3 t2−s2 t2−s3 t

)

+ 1/24

(
st+s2 t3+s3 t2

)4

(
st2+s3 t−st−s3 t2

)(
s2 t2+s3 t3−s2 t3−s3 t2

)(
st3+s3 t−st−s3 t3

)(
s2 t+s3 t3−s2 t3−s3 t

)

+ 1/24

(
st2+s2 t+s3 t3

)4

(
st3+s3 t2−st2−s3t3

)(
s2 t3+s3 t−s2 t−s3 t3

)(
st+s3 t2−st2−s3 t

)(
s2 t2+s3 t−s2 t−s3 t2

)

+ 1/24

(
st2+s2 t3+s3t

)4

(
st+s3 t2−st2−s3 t

)(
s2 t+s3 t3−s2 t3−s3t

)(
st3+s3t2−st2−s3 t3

)(
s2 t2+s3 t3−s2 t3−s3t2

)

+ 1/24

(
st3+s2 t+s3 t2

)4

(
st2+s3 t3−st3−s3t2

)(
s2 t2+s3 t−s2 t−s3 t2

)(
st+s3 t3−st3−s3 t

)(
s2 t3+s3 t−s2 t−s3 t3

)

+ 1/24

(
st3+s2 t2+s3t

)4

(
st+s3 t3−st3−s3 t

)(
s2 t+s3 t2−s2 t2−s3t

)(
st2+s3t3−st3−s3 t2

)(
s2 t3+s3 t2−s2 t2−s3t3

) .

6 Integration of polynomials and volumes of faces of the Birkhoff polytope

In this final section we look at two more applications of Theorem 1.1, going beyond
the computation of Ehrhart coefficients.

The first application is to the integration of polynomials over Bn. The main ob-
servation is that, once we know a unimodular cone decomposition for the supporting
cones at all vertices of Bn, a formula for the integral (see Formula (6.1)) follows from
Brion’s theorem on polyhedra [2, 8].

Theorem 6.1 Suppose P ⊂ R
N is a d-dimensional integral polytope and the multi-

variate generating function of P is given precisely by Formula (5.1), i.e., we have full
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knowledge of a unimodular cone decomposition for each of P ’s supporting cones and
its rays bi,j and vertices ai . Then for any choice of y ∈ R

N such that 〈y, bi,j 〉 �= 0 for
each i and j, we get a formula for the integral the p-th power of a linear form over P

∫

P

〈y, x〉pdx = (−1)d

(p + 1)(p + 2) . . . (p + d)

∑

i

εi

(〈y, ai〉)p+d

∏d
j=1〈y, bi,j 〉

. (6.1)

Notice that although each term in the sum has poles, the poles cancel and the
sum is an analytic function of y. Since the pth-powers of linear forms generate the
whole vector spaces of polynomials, one obtains, from Theorem 1.1, a formula of
integration for the polynomial functions over Bn (or for that matter, for any integral
polytope for which we understand its cone decomposition).

The next application is to the computation of Ehrhart polynomials of faces of
Bn. One can easily obtain from Theorem 1.1 similar formulas for the nonnegative
integral semi-magic squares with structural zeros or forbidden entries (i.e. fixed en-
tries are equal zero). Note that any face F of Bn, being the intersection of finitely
many facets, is determined uniquely by the set of entries forced to take the value
zero. To obtain a generating function for the dilations of a face F of Bn, f (tF, z),
we start from our formula for f (tBn, z) in Theorem 1.1. For those variables xij

mandated to be zero, we select a vector λ with entries λij ≥ 0 so that the substi-
tution xij := sλij does not create a singularity (this λ exists e.g., by taking random
values from the positive orthant). Call g(tF, z, s) the result of doing this substitu-
tion on f (tBn, z). We will eventually set s = 0, but first, let us check that this will
give no singularities. s can only appear in the numerator with a nonnegative expo-
nent. It can potentially create a singularity if it appears in a factor of the denom-
inator with negative exponent. But, if this occurs, s can be factored out and put
with a positive exponent in the numerator. Thus, we can safely resolve the singu-
larity. Now, we set s = 0 in g(tF, z, s), those terms that had a power of s in the
numerator disappear. We obtain a multivariate sum of rational functions that gives us
only the desired lattice points inside tF . We have now two examples of this method.
First we apply it to obtain a table with the Ehrhart polynomials for a (any) facet of
B3,B4,B5,B6.

n Ehrhart polynomial of a facet of Bn

3 1 + 11
6 t + t2 + 1

6 t3

4 1 + 471
140 t + 1594

315 t2 + 73
16 t3 + 161

60 t4 + 83
80 t5 + 61

240 t6 + 1
28 t7 + 11

5040 t8

5 1 + 1752847
360360 t + 904325

77616 t2 + 147579347
8072064 t3 + 8635681

415800 t4 + 6412937357
359251200 t5 + 18455639

1555200 t6

+ 1611167963
261273600 t7 + 95702009

38102400 t8 + 365214839
457228800 t9 + 5561

28350 t10 + 52388227
1437004800 t11 + 42397

8553600 t12

+ 4342517
9340531200 t13 + 22531

838252800 t14 + 188723
261534873600 t15

6 1 + 87450005
13728792 t + 102959133218657

4947307485120 t2 + 14843359499161
322075353600 t3 + 230620928072832499

3011404556160000 t4 + 237290485580450429
2365321396838400 t5

+ 15435462135033037
144815595724800 t6 + 108878694347719

1164067946496 t7 + 439368248888657369
6402373705728000 t8 + 44766681773591807

1054508610355200 t9

+ 434798171323757
19527937228800 t10 + 1047553900202141

105450861035520 t11 + 250284934507924171
66283398365184000 t12 + 28330897394929

23176013414400 t13

+ 2229552439625171
6628339836518400 t14 + 6610306048279

84360688828416 t15 + 215934508972451
14060114804736000 t16 + 2045239925737

814847562547200 t17

+ 1729908621731
5121898964582400 t18 + 21042914689

572447531335680 t19 + 6138921521069
1946321606541312000 t20 + 139856666897

681212562289459200 t21

+ 47580345877
4995558790122700800 t22 + 4394656999

15667888932657561600 t23 + 9700106723
2462096832274759680000 t24
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With the same method we have also computed, for the first time, the Ehrhart
polynomials for the Chan-Robbins-Yuen polytopes CRY3,CRY4,CRY5,CRY6, and
CRY7 (see [12]):

n Ehrhart polynomial of the Chan-Robbins-Yen polytopes

3 1 + 11
6 t + t2 + 1

6 t3

4 1 + 157
60 t + 949

360 t2 + 4
3 t3 + 13

36 t4 + 1
20 t5 + 1

360 t6

5 1 + 2843
840 t + 1087

224 t2 + 16951
4320 t3 + 723869

362880 t4 + 1927
2880 t5 + 2599

17280 t6 + 113
5040 t7 + 257

120960 t8 + 1
8640 t9 + 1

362880 t10

6 1 + 1494803
360360 t + 15027247

1965600 t2 + 361525133
43243200 t3 + 364801681

59875200 t4 + 45175393
14370048 t5 + 4314659

3628800 t6 + 4392257
13063680 t7

+ 781271
10886400 t8 + 75619

6531840 t9 + 15257
10886400 t10 + 22483

179625600 t11 + 29
3628800 t12 + 23

66718080 t13 + 1
111196800 t14

+ 1
9340531200 t15

7 1 + 571574671
116396280 t + 41425488163

3760495200 t2 + 88462713645601
5866372512000 t3 + 26256060764993

1852538688000 t4 + 433329666631051
44460928512000 t5

+ 615428916451
120708403200 t6 + 97984316095277

47076277248000 t7 + 7939938012827
11769069312000 t8 + 66150911695291

376610217984000 t9

+ 71471423831
1931334451200 t10 + 4077796979

643778150400 t11 + 8513133061
9656672256000 t12 + 468626303

4707627724800 t13 + 26270857
2897001676800 t14

+ 124270847
188305108992000 t15 + 2371609

62768369664000 t16 + 1182547
711374856192000 t17 + 593

10944228556800 t18

+ 149789
121645100408832000 t19 + 2117

121645100408832000 t20 + 1
8688935743488000 t21

We conclude with some remarks. First, it is natural to ask whether one can derive
our volume formula from a perturbation of the Birkhoff polytope and then applying
Lawrence’s formula for simple polytopes [20]. We found such a proof using a pertur-
bation suggested by B. Sturmfels, but the proof presented here yields more results,
for example, Corollaries 3.21 and 4.1 can only be obtained this way. Second, it is
well known that Brion’s and Lawrence’s formulas can be proved from the properties
of characteristic functions of polyhedra under polarity (see e.g. Corollary 2.8 in [4]
or Theorem 3.2 [6]). On the other hand P. Filliman [17, 19] expressed the characteris-
tic function of any convex polytope P containing the origin as an alternating sum of
simplices that share supporting hyperplanes with P . The terms in the alternating sum
are given by a triangulation of the polar polytope of P . Filliman’s machinery yields
in a limiting case Lawrence’s volume formulas. Different choices of triangulation of
the polar of P yield different volume formulas for P . Using Filliman’s duality G. Ku-
perberg found (unpublished) other special volume formulas that follow from pulling
triangulations of the dual of Bn.
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