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Abstract Tutte’s 3-Flow Conjecture suggests that every bridgeless graph with no 3-
edge-cut can have its edges directed and labelled by the numbers 1 or 2 in such a
way that at each vertex the sum of incoming values equals the sum of outgoing val-
ues. In this paper we show that Tutte’s 3-Flow Conjecture is true for Cayley graphs
of groups whose Sylow 2-subgroup is a direct factor of the group; in particular, it
is true for Cayley graphs of nilpotent groups. This improves a recent result of Po-
točnik et al. (Discrete Math. 297:119–127, 2005) concerning nowhere-zero 3-flows
in abelian Cayley graphs.

Keywords Nowhere-zero flow · Cayley graph · Group centre · Sylow subgroup ·
Nilpotent group

1 Introduction

In 1972 Tutte proposed the following conjecture (see [1, unsolved problem 48])
which complements his two earlier conjectures on nowhere-zero flows on graphs,
the 5-Flow Conjecture [16] and the 4-Flow Conjecture [17].

Conjecture (3-Flow Conjecture) Every bridgeless graph with no 3-edge-cut has a
nowhere-zero 3-flow.
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The motivation for the conjecture came from Grötzsch’s theorem [5] stating that
every triangle-free planar graph is 3-colourable. By the plane duality, every bridgeless
planar graph with no 3-edge-cut has a nowhere-zero 3-flow. The 3-Flow Conjecture
thus extends the validity of the dual Grötzsch Theorem to arbitrary graphs.

The present status of the 3-Flow Conjecture can be briefly summarised as follows.
The conjecture has been verified for a number of infinite classes of graphs, including
the projective-planar graphs [14], Cartesian product graphs [6, 13], locally connected
graphs [2, 10], and the squares of graphs [18]. Furthermore, the conjecture can be re-
duced to 5-edge-connected 5-regular graphs [8, 9, 20], and is true for random graphs
[15].

As far as flows on highly symmetrical graphs are concerned, it is known that every
vertex-transitive graph of valency greater than three has a nowhere-zero 4-flow. This
is an easy consequence of the 4-Flow Theorem of Jaeger about flows in 4-edge-
connected graphs (see, for example, Jaeger [7, Theorem 4.7]) combined with the
fact that every k-valent vertex-transitive graph is k-edge-connected. By the 3-Flow
Conjecture, however, every vertex-transitive graph of valency at least four should
support a nowhere-zero 3-flow. It is therefore tempting to examine the existence of
nowhere-zero 3-flows on as many vertex-transitive graphs as possible.

Among vertex-transitive graphs, Cayley graphs are best understood, and therefore
are usually the first to be investigated. In spite of that, only Cayley graphs of abelian
groups are so far known to have nowhere-zero 3-flows (Potočnik et al. [11]). The
purpose of the present paper is to extend the result of [11] to a much wider class of
Cayley graphs.

Before stating our main result we make the observation that one only needs to
consider Cayley graphs of odd valency greater than four and groups of even order
(see the last paragraph of Sect. 2 for details). In particular, the set of generators for
such a Cayley graph necessarily includes an involution. We show that if an involution
in the generating set belongs to the group centre, then the graph admits a nowhere-
zero 3-flow (Theorem 3.3). A combination of this theorem with graph coverings and
induction leads to the following two results.

Theorem Let G be a finite group in which a Sylow 2-subgroup constitutes a direct
factor of the group. Then every Cayley graph Cay(G,S) of valency at least four has
a nowhere-zero 3-flow.

Corollary Every Cayley graph of valency at least four on a nilpotent group has a
nowhere-zero 3-flow.

2 Preliminaries

2.1 Graphs

All graphs in this paper will be finite, with multiple edges and loops permitted. We
describe graphs as quadruples K = (D,V, I,L) where D = D(K) is a finite set of
darts (directed edges), V = V (K) is a finite set of vertices, I :D → V is an incidence



J Algebr Comb (2009) 30: 103–111 105

function which with every dart associates its initial vertex, and L is an involution of
D which to every dart z assigns its inverse dart z−1. Each edge of K is formed by a
pair of mutually inverse darts. In other words, we may think of the dart-set of a graph
K as being obtained from its edge-set by replacing each edge of K (even a loop) with
a pair of darts that are incident with the same vertices but have opposite direction.
For an arbitrary vertex v, we let D(v) be the set of all darts emanating from v. The
cardinality of D(v) is the valency of v.

Let A by an arbitrary abelian group, written additively. We define an A-flow on K

as a function ξ :D(K) → A satisfying the following two conditions:

(F1) ξ(z−1) = −ξ(z), for each dart z ∈ D(K),
(F2)

∑
z∈D(v) ξ(z) = 0, for each vertex v ∈ V (K).

A flow ξ is said to be nowhere-zero if ξ(z) �= 0 for each dart z ∈ D(K). A nowhere-
zero k-flow is a Z-flow which takes values in the set {±1, . . . ± (k − 1)}. Clearly, a
graph which has a nowhere-zero k-flow also has a nowhere-zero (k + 1)-flow.

Note that for any two A-flows ξ and τ on a graph K the functions −ξ and ξ + τ

are again A-flows. Nevertheless, the sum of nowhere-zero flows need not be nowhere-
zero.

It is often convenient to describe a flow on a graph as a sum of flows on subgraphs.
In doing that, we will automatically view each flow on a subgraph as a flow defined
on the whole graph but with zero values outside the subgraph.

For further information on nowhere-zero flows the reader may consult Diestel [3,
Chapter 6], Jaeger [7], or Zhang [19].

2.2 Groups

All groups considered in this paper will be finite, with the unique exception of the
group of integers Z. A group G is a direct product of subgroups H and K pro-
vided that both H and K are normal in G, the product HK is the whole of G, and
H ∩ K = 1. If this is the case, then each of H and K is a direct factor of G. The
centre of a group G, denoted by Z(G), is the set of all elements of G that commute
with every element of G. Elements that belong to Z(G) are called central. It is well
known that Z(G) is a characteristic subgroup of G, one which is invariant under all
automorphisms of G, and that every subgroup of the centre is a normal subgroup of
the whole group.

A group G is called a p-group for a prime p if each element of G has order some
power of p. It is well known that the order of each finite p-group is a power of p,
and vice versa. Furthermore, every finite p-group has a non-trivial centre; in fact, it
contains a central element of order p.

Assume that G has order pmn where n is not divisible by p. Then G always
contains a subgroup of order pm, called a Sylow p-subgroup. It is well known that
each p-subgroup of G is contained in some Sylow p-subgroup and that any two
Sylow p-subgroups are conjugate in G.

A group G is said to be nilpotent if it contains a normal series G = G0 �
G1 � · · · � Gs = 1 of normal subgroups such that each Gi/Gi+1 is contained in
Z(G/Gi+1). Equivalently, a group is nilpotent if and only if starting from G one can
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reach the trivial group by a repeated factorisation by the centre. It is well known that
a subgroup and a homomorphic image of each nilpotent group are again nilpotent.
Moreover, every finite nilpotent group is a direct product of its Sylow subgroups. In
particular, every finite p-group is nilpotent.

More details on the presented group theory material can be found in any standard
group theory textbook, see for example, [12].

2.3 Cayley graphs

Let G be a group and let S = (s1, s2, . . . , sn) be a sequence of elements of G − {1}
such that the mapping si �→ s−1

i permutes the entries of S. We call S a connection
sequence for G. (Note that we allow connection sequences to contain repeated el-
ements.) Define the Cayley graph Cay(G,S) of G with connection sequence S by
taking the vertices of Cay(G,S) to be the elements of G and the darts of Cay(G,S)

to be the ordered pairs (g, si) where g ∈ G and si ∈ S. An arbitrary dart (g, si)

will have initial vertex g and terminal vertex gsi ; its inverse is defined by setting
(g, si)

−1 = (gsi, s
−1
i ). Thus the Cayley graph Cay(G,S) is regular of valency |S|.

Note that a Cayley graph is connected if and only if the elements of the connection
sequence generate the whole Cayley group G. Although it is natural to concentrate
on connected Cayley graphs, it is often convenient to deal with Cayley subgraphs that
need not be connected. Therefore we allow our Cayley graphs to be disconnected.

If a Cayley graph Cay(G,S) has odd valency, then S must contain an involution.
It follows that if G has odd order, then any Cayley graph of G has even valency.
Since every graph with all vertices of even valency has a nowhere-zero 2-flow ([3,
Proposition 6.4.1]), every Cayley graph of a group of odd order has a nowhere-zero
2-flow. Thus in the study of nowhere-zero 3-flows on Cayley graphs it is sufficient
to restrict to Cayley graphs Cay(G,S) where G has even order and S contains an
involution.

3 Cayley graphs with central involutions

In this section we show that every Cayley graph of valency at least four whose con-
nection sequence contains a central involution admits a nowhere-zero 3-flow. Before
proving this result we need to look at 3-flows on certain cubic subgraphs called closed
ladders.

Let Ln denote the Cartesian product Pn−1�K2 of the path Pn−1 of length n − 1
with the complete graph K2 of order two (for the definition of the Cartesian product
of graph we refer the reader to [1, p. 96]). Assume that V (Pn−1) = {0,1, . . . , n − 1}
and V (K2) = {0,1}. By adding the edges (n − 1,0)(0,0) and (n − 1,1)(0,1) to Ln

we obtain the graph Cn�K2 where Cn is the circuit of length n. We call the latter
graph the circular ladder and denote it by CLn. If the edges (n − 1,0)(0,1) and
(n − 1,1)(0,0) are added to Ln, the Moebius ladder MLn is obtained. For n = 1
these definitions imply that CL1 has two loops joined by a bridge while ML1 has
three parallel edges. Any graph isomorphic to either CLn or MLn for some n will be
referred to as a closed ladder.
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The following proposition explains how closed ladders are related to central invo-
lutions. Before stating the result we only recall that Dn denotes the dihedral group of
order 2n generated by two elements s and t satisfying the relations sn = 1, t2 = 1,
and tst = s−1.

Proposition 3.1 Let Cay(G,S) be a connected cubic Cayley graph such that S con-
tains a central involution of G. Then G is isomorphic to one of following groups: Z2n,
Zn × Z2, D2n or Dn × Z2. In each case, Cay(G,S) is a closed ladder.

Proof Since Cay(G,S) is a cubic graph, S contains either one or three involutions,
one of which is an involution c ∈ Z(G). If S consists of three involutions, say, x, y,
and c, then either G ∼= D2n or G = Dn × Z2 depending on whether c does or does
not belong to 〈x, y〉. If S = (x, x−1, c) where x is an element of order greater than
2, then G ∼= Z2n provided that c ∈ 〈x〉, or G ∼= Zn × Z2 otherwise. The reader can
readily verify that in all these cases Cay(G,S) is a closed ladder. �

It is well known that a cubic graph has a nowhere-zero 3-flow if and only if it
is bipartite (see, for example, Diestel [3, Proposition 6.4.2]). Furthermore, it is clear
from the definition that the circular ladder CLn is bipartite if and only if n is even
while the Moebius ladder MLn is bipartite if and only if n is odd. By combining
these two facts we obtain the following lemma.

Lemma 3.2 Every closed ladder has a nowhere zero 3-flow or has a 3-flow where
the zero value occurs on an arbitrary single rung.

Proof It is sufficient to realise that any circular ladder CLn with one rung removed
is homeomorphic to CLn−1, and similarly, any Moebius ladder MLn with one rung
removed is homeomorphic to MLn−1. �

Now we are ready for the main result of this section.

Theorem 3.3 Let Cay(G,S) be a Cayley graph of valency at least four such that S

contains a central involution. Then Cay(G,S) has a nowhere zero 3-flow.

Proof Let Q = Cay(G,S) and let c be a central involution of G contained in S. If
the valency of Q is even, then Q obviously admits a nowhere-zero 3-flow. So let the
valency of Q be odd. In this case, S contains two connection subsequences S1 and S2
with S1 ∩ S2 = {c} such that the graphs Q1 = Cay(G,S1) and Q2 = Cay(G,S2) are
cubic. Since the graph Cay(G,S − (S1 ∪ S2)) has even valency, it is sufficient to find
a nowhere-zero 3-flow on the Cayley graph Cay(G,S1 ∪S2) = Q1 ∪Q2 of valency 5.
Without loss of generality we may assume that Q = Q1 ∪ Q2 and that this graph is
connected (in other words, S1 ∪ S2 generates the whole of G).

From Proposition 3.1 we see that the components of each of Q1 and Q2 are iso-
morphic closed ladders. We call them c-ladders of Q. Since S1 ∩S2 = {c}, any c-edge
of Q belongs to two different c-ladders whereas each of the remaining edges belongs
to a single c-ladder.
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If one of the c-ladders, say a component of Q1, admits a nowhere-zero 3-flow,
then so does Q1 and, in fact, so does the whole Q, because Q − E(Q1) is a 2-factor
of Q. Thus we may assume that none of the c-ladders admits a nowhere-zero 3-flow.
By Lemma 3.2, however, each of them has a 3-flow where the zero value occurs on a
single rung. We use these flows to build up a nowhere-zero 3-flow on Q inductively.

We construct an increasing series T1 ⊂ T2 ⊂ · · · ⊂ Ti ⊂ · · · of subgraphs of Q

where each Ti is a union of i distinct c-ladders, and on each Ti we describe a 3-flow
φi satisfying the following conditions:

(1) At most one edge of Ti carries zero under φi , and if so, then it is a c-edge.
(2) Each edge contained in two c-ladders of Ti carries a non-zero value under φi .

For T1 we take an arbitrary c-ladder and define φ1 to be any 3-flow guaranteed
by Lemma 3.2. Assume that the subgraph Ti and the flow φi have already been
constructed for some i ≥ 1. We now define Ti+1 and φi+1. There are two cases to
consider.

Case 1 The flow φi is nowhere-zero on Ti . If Ti = Q, then φi is the sought nowhere-
zero 3-flow on Q, and the proof is finished. Otherwise, take any unused c-ladder L

and set Ti+1 = Ti ∪ L. To define φi+1, remove from L all the rungs with non-zero
values under φi thereby obtaining a subgraph L′. If L′ has no rungs, then it is 2-valent
and therefore admits a nowhere-zero 3-flow. If L′ does retain some rungs, then it is
homeomorphic to a closed ladder, and by Lemma 3.2 it admits a 3-flow with at most
one zero edge. Denoting by ρ any of these flows and setting φi+1 = φi +ρ we obtain
a 3-flow on Ti+1 which satisfies Conditions (1) and (2) above.

Case 2 There is a unique edge s in Ti whose value under φi is zero. By Condition (1),
s is a c-edge, and by Condition (2), there is a c-ladder M that contains s and is not
completely contained in Ti . Set Ti+1 = Ti ∪ M . To define φi+1, remove from M all
the rungs that carry non-zero values under φi . Since the rung s is not removed, the
resulting graph M ′ is homeomorphic to a closed ladder.

If s is the only rung of M ′, then M ′ is homeomorphic to either ML1 or CL1.
In the former case, M ′ has a nowhere-zero 3-flow, say σ , and we can set φi+1 =
φi + σ . In the latter case, pick any other rung of M , say r , and consider the subgraph
M ′ ∪ r . Since M ′ ∪ r is homeomorphic to CL2, it has a nowhere-zero 3-flow, say
τ . Clearly, τ can be chosen in such a way that the values of φ + τ on r belong to
the set {1,−1,2,−2}. This allows us to set φi+1 = φi + τ . In either case, φi+1 is a
nowhere-zero 3-flow on Ti+1, so Conditions (1) and (2) above are fulfilled.

If M ′ has more than one rung, it admits a 3-flow ψ with at most one zero edge
such that the values on s are non-zero. By setting φi+1 = φi + ψ we again obtain a
3-flow satisfying Conditions (1) and (2) above.

Since the graph is finite and the sequence (Ti) is strictly increasing, there is an
index m such that Tm is all of Q. Thus the procedure described in Case 1 and Case 2
will terminate, and since any c-edge is contained in exactly two c-ladders, it will do
so with a nowhere-zero 3-flow on Q. This completes the proof. �
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The main result of Potočnik et al. [11] can now be easily derived from Theo-
rem 3.3.

Theorem 3.4 Every Cayley graph Cay(G,S) of valency at least four with G abelian
has a nowhere-zero 3-flow.

Proof The conclusion is obvious for Cayley graphs of even valency. If the valency is
odd, S must contain an involution. As G is abelian, the involution is central, and the
result immediately follows from Theorem 3.3. �

4 Main result

A serious disadvantage of Theorem 3.3 is that its statement depends on the structure
of the connection sequence (generating set) rather than on the Cayley group only.
The purpose of this section is to overcome this flaw by combining Theorem 3.3 with
graph coverings, group factorisation, and induction.

A covering projection of graphs K and K ′ is a graph epimorphism f :K → K ′
which for each vertex u of K maps the edges incident with u bijectively onto the
edges incident with f (u). In this case, K is a covering graph of K ′, and K ′ is a
quotient of K . (For more information about coverings the reader is referred to [4,
Chapter 2].)

Coverings can be used as an effective tool in many areas of graph theory, including
the study of flows on graphs. In particular, if a quotient K ′ of a graph K is endowed
with a nowhere-zero A-flow φ, then φ can be lifted via the covering projection f to
a nowhere-zero A-flow φ̃ on K . Indeed, it is sufficient to set φ̃(x) = φ(f (x)) for any
dart x of K . Obviously, if φ is a nowhere-zero k-flow, so will be the lifted flow φ̃.

Assume now that K = Cay(G,S) is a Cayley graph, H is a normal subgroup of G,
and that q:G → G/H is the corresponding quotient homomorphism of groups. De-
fine the sequence S/H of elements of G/H by setting S/H = (q(s); s ∈ S). If s �= t

but q(s) = q(t), we represent q(s) and q(t) as distinct members of S/H . We can now
construct the Cayley graph Cay(G/H,S/H) provided that the sequence S/H does
not contain the identity of the group G/H , that is, provided that S contains no element
of H . In this case the quotient homomorphism q naturally extends to a graph homo-
morphism q: Cay(G;S) → Cay(G/H,S/H). Since |S/H | = |S|, it is easy to see that
q is a covering projection. Note that the quotient Cayley graph Cay(G/H,S/H) may
have parallel edges even when Cay(G,S) was simple.

The above considerations can be summarised as follows.

Proposition 4.1 Let G be a group and H a normal subgroup of G. Let S be a connec-
tion sequence containing no element of H . If Cay(G/H,S/H) has a nowhere-zero
k-flow, then so does Cay(G,S).

Now we are in the position to prove our main result.

Theorem 4.2 Let G be a finite group in which a Sylow 2-subgroup constitutes a
direct factor of G. Then every Cayley graph Cay(G,S) of valency at least four has a
nowhere-zero 3-flow.
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Proof Let H be a Sylow 2-subgroup of G, and assume that H is a direct factor of
G. Then there is a normal subgroup K ≤ G of odd order such that HK = G and
H ∩K = 1. If H = 1, then G itself has odd order and Cay(G,S) has even valency. In
this case Cay(G,S) has a nowhere-zero 2-flow, and there is nothing to prove. Thus
we can assume that H �= 1 (implying that G has even order), and that Cay(G,S) has
odd valency (implying that S contains an involution). We now proceed by induction
on the order of H .

If |H | = 2, then the generator h of H is the only involution of G; in particular,
h ∈ Z(G). By our assumption, S contains an involution. So h belongs to S, and the
result follows from Theorem 3.3.

For the induction step assume that |H | > 2. Since H is a direct factor of G, the
centre of H is contained in the centre of G, and hence H contains a central involution
c of G. If c belongs to the connection sequence, then Cay(G,S) has a nowhere-zero
3-flow on the basis of Theorem 3.3. If not, then 〈c〉 = C is a normal subgroup of G not
intersecting S. We now consider the Cayley graph Cay(G/C,S/C). Clearly, H/C is
a Sylow 2-subgroup of G/C and also is a direct factor of G/C. By the induction
hypothesis, Cay(G/C,S/C) has a nowhere-zero 3-flow, and by Proposition 4.1 the
same is true for Cay(G,S). �

Theorem 4.2 has the following important corollary.

Theorem 4.3 Every Cayley graph of valency at least four on a nilpotent group has a
nowhere-zero 3-flow.

Proof The result immediately follows from Theorem 4.2 and from the fact that every
finite nilpotent group is the direct product of its Sylow subgroups (see [12, Theorem
5.31]). �
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