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Abstract The paper is devoted to the generalization of Lusztig’s q-analog of weight
multiplicities to the Lie superalgebras gl(n,m) and spo(2n,M). We define such q-
analogs Kλ,μ(q) for the typical modules and for the irreducible covariant tensor
gl(n,m)-modules of highest weight λ. For gl(n,m), the defined polynomials have
nonnegative integer coefficients if the weight μ is dominant. For spo(2n,M), we
show that the positivity property holds when μ is dominant and sufficiently far from
a specific wall of the fundamental chamber. We also establish that the q-analog as-
sociated to an irreducible covariant tensor gl(n,m)-module of highest weight λ and
a dominant weight μ is the generating series of a simple statistic on the set of semi-
standard hook-tableaux of shape λ and weight μ. This statistic can be regarded as a
super analog of the charge statistic defined by Lascoux and Schützenberger.
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1 Introduction

There has been considerable interest recently in defining and studying q-analogs of
various coefficients in the representation theory of semisimple Lie algebras and, more
generally, of Kac-Moody algebras. An important such q-analog is the one defined by
Lusztig [20] for the dimension of the space of weight μ in the irreducible represen-
tation of a semisimple Lie algebra with highest weight λ. This q-analog is usually
denoted by Kλ,μ(q), and is known as a Kostka-Foulkes polynomial. Its importance
is highlighted by its occurrence in various contexts beside the original definition. For
instance, it was shown to be an affine Kazhdan-Lusztig polynomial (and therefore
has positive integer coefficients), it gives the expansion of a Hall-Littlewood polyno-
mial in the basis of irreducible characters, it encodes the Brylinski-Kostant filtration
of weight spaces, and is closely related to the so-called energy function in the rep-
resentation theory of affine algebras [18]. Other q-analogs studied recently include
the generalization of Lusztig’s q-analog to symmetrizable Kac-Moody algebras [25],
and various q-analogs of branching coefficients for semisimple Lie algebras (see [17]
and the references therein).

In this paper, we define and study a generalization of Lusztig’s q-analog of weight
multiplicities to the most fundamental Lie superalgebras, namely the general linear
superalgebras gl(n,m) and the orthosymplectic superalgebras spo(2n,M). A sub-
stantial interest in Lie superalgebras comes from mathematical physicists, due to var-
ious physical interpretations. In his fundamental paper, Kac [11] classified the simple
finite dimensional Lie superalgebras that are not Lie algebras. He also gave a formula
for the characters of the finite dimensional irreducible representations of these super-
algebras which are known as typical. Since Kac’s paper, the investigation centered
on character formulas for the atypical representations, and on extending Kashiwara’s
theory of crystals [13] to Lie superalgebras.

Our q-analog of weight multiplicities for the typical representations of Lie super-
algebras is based on a natural quantization of Kac’s character formula. More pre-
cisely, it is based on a q-partition function which, in a certain sense, is defined in
precisely the same way as its counterpart for semisimple Lie algebras, on which the
definition of Lusztig’s q-analog is based. We also define a q-analog for the irre-
ducible covariant tensor modules via a quantization of a character formula due to
Berele-Regev and Sergeev. The positivity of these q-analogs is proved by reducing it
to that of Lusztig’s q-analog.

It is well-known that Lusztig’s q-analog for the general linear groups is expressed
combinatorially via the Lascoux and Schützenberger charge statistic on semistandard
Young tableaux [16]. We derive here a similar statistic on the set of semistandard
hook-tableaux introduced in [1], and show that it can be used to express the q-analog
associated to an irreducible covariant tensor gl(n,m)-module.

Our q-analog Kλ,μ(q) for the orthosymplectic algebras does not have the posi-
tivity property in general. Nevertheless, we prove that the positivity holds in an im-
portant special case, which is related to a certain stabilization phenomenon occurring
when the dominant weight μ is sufficiently far from a specific wall of the fundamen-
tal chamber. It is interesting to note that the stabilized version of Lusztig’s q-analog
for the orthogonal and symplectic algebras can be computed via a combinatorial al-
gorithm; the reason is a connection with the energy function on affine crystals, which
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is explained in [18]. In general, there is no known combinatorial formula for Lusztig’s
q-analogs in types B − D; in particular, there is no generalization of the Lascoux-
Schützenberger charge. This suggests that our q-analogs for the orthosymplectic al-
gebras will also be hard to compute combinatorially.

It would be interesting to see whether any of the structures related to Lusztig’s
q-analog (affine Hecke algebras, Hall-Littlewood polynomials, the Brylinski-Kostant
filtration, the energy function) could be defined for Lie superalgebras. If so, we expect
them to be related in the same way to our q-analog.

2 Background

We recall in this section, some background on classical Lie superalgebras. The reader
is referred to [8] and [11] for a more detailed exposition.

2.1 The root systems for the Lie superalgebras gl(n,m) and spo(2n,M)

Let n and m be two positive integers. Let g = g0 ⊕ g1 be one of the Lie superal-
gebras gl(n,m), spo(2n,2m + 1), or spo(2n,2m) over C. Let h be a Cartan sub-
algebra of g0. The root system of g is graded so that the set of positive roots
�+ = �+

0 � �+
1 is the disjoint union of the set of positive even and positive odd

roots. Let {δn, . . . , δ1, δ1, . . . , δm} be a basis of h∗. We denote by 〈 · , · 〉 the inner
product defined on h∗ by

〈 δı, δj 〉 := δi,j , 〈 δr , δs 〉 := −δr,s , and 〈 δı, δr 〉 := 0 ,

where δu,v is the usual Kronecker symbol.
Among the different choices of a set of simple roots, one is called distinguished;

the corresponding odd simple root is the lowest weight for the action of g1 on g0. Our
definitions of q-analogs of weight multiplicities can be used for any choice of simple
roots. Nevertheless, the results in this paper are based on the distinguished simple
roots or on any set in their orbit under the action of the Weyl group of g0. For other
choices, minor modifications are required in the statement of some of our results. We
will now specify the distinguished simple roots, cf. [8, List of Tables]. For gl(n,m)

with n,m ≥ 1, they are

δn − δn−1 , . . . , δ2 − δ1 , δ1 − δ1 , δ1 − δ2 , . . . , δm−1 − δm .

For spo(2n,1) with n ≥ 1, the distinguished simple roots are

δn − δn−1 , . . . , δ2 − δ1 , δ1 .

For spo(2n,2m + 1) with n,m ≥ 1, the distinguished simple roots are

δn − δn−1 , . . . , δ2 − δ1 , δ1 − δ1 , δ1 − δ2 , . . . , δm−1 − δm , δm .

For spo(2n,2) with n ≥ 1, the distinguished simple roots are

δ1 − δn , δn − δn−1 , . . . , δ2 − δ1 , 2δ1 .
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For spo(2n,2m) with n ≥ 1, m ≥ 2, the distinguished simple roots are

δn − δn−1 , . . . , δ2 − δ1 , δ1 − δ1 , δ1 − δ2 , . . . , δm−1 − δm , δm−1 + δm .

We give below the sets of positive roots for gl(n,m) and spo(2n,M) correspond-
ing to the distinguished simple roots.

gl(n,m) , n,m ≥ 1 �+
0 =

{
δj − δı | 1 ≤ i < j ≤ n

δr − δs | 1 ≤ r < s ≤ m

}
�+

1 =
{
δı − δr | 1 ≤ i ≤ n

1 ≤ r ≤ m

}

spo(2n,2m + 1) ,

n ≥ 1, m ≥ 0
�+

0 =

⎧⎪⎪⎨
⎪⎪⎩

2δı | 1 ≤ i ≤ n

δj ± δı | 1 ≤ i < j ≤ n

δr | 1 ≤ r ≤ m

δr ± δs | 1 ≤ r < s ≤ m

⎫⎪⎪⎬
⎪⎪⎭

�+
1 =

{
δı ± δr , δı | 1 ≤ i ≤ n

1 ≤ r ≤ m

}

spo(2n,2) , n ≥ 1 �+
0 =

{
2δı | 1 ≤ i ≤ n

δj ± δı | 1 ≤ i < j ≤ n

}
�+

1 = {δ1 ± δı | 1 ≤ i ≤ n}

spo(2n,2m) ,
n ≥ 1, m ≥ 2

�+
0 =

⎧⎨
⎩

2δı | 1 ≤ i ≤ n

δj ± δı | 1 ≤ i < j ≤ n

δr ± δs | 1 ≤ r < s ≤ m

⎫⎬
⎭ �+

1 =
{
δı ± δr | 1 ≤ i ≤ n

1 ≤ r ≤ m

}

Here, as well as throughout the paper, we adopt the convention that a set of ele-
ments which depend on some index in an empty range is empty. For instance, in the
case of spo(2n,1) we have

�+
0 = {2δı, δj ± δı | 1 ≤ i < j ≤ n} , �+

1 = {δı | 1 ≤ i ≤ n} .

Denote by ρ+ and ρ− the half sum of positive even and positive odd roots, respec-
tively. Then set ρ := ρ+ − ρ−.

For any β ∈ h∗ such that β = β
(0)
n δn + · · · + β

(0)

1
δ1 + β

(1)
1 δ1 + · · · + β

(1)
m δm, we

will write β = (β(0);β(1)), where β(0) = (β
(0)
n , . . . , β

(0)

1
) and β(1) = (β

(1)
1 , . . . , β

(1)
m ).

For any κ = (κ1, . . . , κp) ∈ Z
p, define |κ| := κ1 + · · · + κp. We denote by W the

Weyl group of g0, and write 	 for the corresponding length function. For any w ∈ W,

we set ε(w) := (−1)	(w). The Weyl group acts on h∗. As usual, for any w ∈ W and
β ∈ h∗, we denote by w(β) the action of the element w on β . The dot action of W on
h∗ is defined by w ◦ β := w(β + ρ) − ρ.

2.2 Classical root subsystems

The set of positive even roots �+
0 is the set of positive roots for the Lie algebra g0.

Moreover, g0 can be identified with a direct sum gn ⊕ gm of two Lie algebras of
classical type with ranks n and m. This splitting is shown in the table below for the
superalgebras we are interested in; in all cases, we have n,m ≥ 1.

g gl(n,m) spo(2n,1) spo(2n,2m + 1) spo(2n,2m)
g0 = gn ⊕ gm gl(n) ⊕ gl(m) sp(2n) sp(2n) ⊕ so(2m + 1) sp(2n) ⊕ so(2m)
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Write �+
n and �+

m for the sets of positive roots of gn and gm, respectively. Then
�+

0 = �+
n � �+

m. Let Wn and Wm be the Weyl groups associated to the root systems
of gn and gm. They contain subgroups Sn and Sm isomorphic to the symmetric groups
of rank n and m. Write ε(0) and ε(1) for the signatures defined on Wn and Wm. We
have W = Wn ×Wm, and ε(w) = ε(w(0)) ε(w(1)) for any w = (w(0);w(1)) ∈ W . The
half sums of positive roots ρ

(0)
+ and ρ

(1)
+ of �+

n and �+
m verify ρ+ = (ρ

(0)
+ ;ρ(1)

+ ).

We define the dot action of Wn on the dual Cartan subalgebra of gn by u ◦ η(0) :=
u

(
η(0) + ρ

(0)
+

)
− ρ

(0)
+ . The dot action of Wm on the dual Cartan subalgebra of gm is

defined similarly.
Let Pn and Pm be the sets of integral weights of gn and gm, respectively. Write P +

n

and P +
m for the subsets of dominant integral weights of Pn and Pm. Let P(n,m) ⊂ h∗

be the set of integral weights of g, which can be regarded as the Cartesian product of
Pn and Pm. Denote by P +(n,m) ⊂ P(n,m) the subset of dominant integral weights
of g, namely the set of weights λ = (λ(0);λ(1)) ∈ P(n,m) such that λ(0) ∈ P +

n and
λ(1) ∈ P +

m (see Remark 2.3.1).
For the sake of completeness, we recall the explicit description of the weights

λ(0) = (λ
(0)
n , . . . , λ

(0)

1
) in P +

n and λ(1) = (λ
(1)
1 , . . . , λ

(1)
m ) in P +

m . In the case of

gl(n,m), we have λ
(0)

k
∈ Z for k = 1, . . . , n, and λ

(0)
n ≥ · · · ≥ λ

(0)

1
. The condition

for λ(1) is completely similar. In the case of spo(2n,M), we have λ
(0)

k
∈ Z for

k = 1, . . . , n, and λ
(0)
n ≥ · · · ≥ λ

(0)

1
≥ 0; thus, λ(0) is a partition with at most n

parts. Similarly, λ
(1)
k for k = 1, . . . ,m are either all in Z or all in 1

2 + Z; we also

require λ
(1)
1 ≥ · · · ≥ λ

(1)
m ≥ 0 if gm = so2m+1, and λ

(1)
1 ≥ · · · ≥ λ

(1)
m−1 ≥

∣∣∣λ(1)
m

∣∣∣ ≥ 0 if
gm = so2m.

The dominant weight λ ∈ P +(n,m) is called typical if

〈λ + ρ, α 〉 �= 0 for any odd positive root α ∈ �
+
1 ,

where �
+
1 := �+

1 for g = gl(n,m), and �
+
1 := {δı ± δr | 1 ≤ i ≤ n,1 ≤ r ≤ m} for

g = spo(2n,2m + 1) and g = spo(2n,2m). A dominant weight which is not typical
is called atypical.

Let Wstab be the largest subgroup in W which stabilizes �+
1 .

Remarks 2.2.1 (1) For g = gl(n,m) and spo(2n,2), the set �+
1 is stable under the

action of the Weyl group W . Therefore, we have Wstab = W.

(2) For g = spo(2n,2m + 1) with m ≥ 0 and g = spo(2n,2m) with m ≥ 2, the set
of odd positive roots �+

1 is not stable under the action of W . In this case, we have
Wstab = Sn × Wm ⊂ W.

2.3 Typical representations and character formula

To each λ ∈ P +(n,m) is associated an irreducible g-module of highest weight λ that
will be denoted by V (λ). In the sequel, we will only consider dominant weights for
which V (λ) is finite dimensional. We write P +

f (n,m) for the subset of P +(n,m)

consisting of such weights. For g = gl(n,m), we have P +
f (n,m) = P +(n,m).
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Remark 2.3.1 In [11], the condition that V (λ) is finite dimensional is incorporated in
the definition of a dominant weight.

For g = spo(2n,M), the dominant weight λ = (λ(0);λ(1)) must verify an ad-
ditional condition in order to guarantee finite dimensionality of V (λ). In order
to explain it, we use the explicit description of λ(0) = (λ

(0)
n , . . . , λ

(0)

1
) and λ(1) =

(λ
(1)
1 , . . . , λ

(1)
m ) in Section 2.2. Given this description, the irreducible spo(2n,M)-

module V (λ) is finite dimensional if and only if

λ
(1)
j = 0 for any j > λ

(0)

1
. (1)

In particular, (1) is verified when λ
(0)

1
≥ m.

The module V (λ) is called typical when λ is typical, and atypical otherwise. For
any integral weight μ ∈ P(n,m), write V (λ)μ for the weight subspace of weight μ

in V (λ). Then Kλ,μ = dimV (λ)μ is finite. The character of V (λ) is defined by

char V (λ) :=
∑

μ∈P(n,m)

Kλ,μ eμ.

Set

∇ :=
∏

α∈�+
1
(eα/2 + e−α/2)∏

α∈�+
0
(eα/2 − e−α/2)

= e−ρ

∏
α∈�+

1
(1 + e−α)∏

α∈�+
0
(1 − e−α)

.

Kac has proved that there exists an analog of the Weyl character formula for the
typical finite dimensional simple modules V (λ).

Theorem 2.3.2 [11] Consider λ ∈ P +
f (n,m) a typical dominant weight for g. Then

char V (λ) = ∇
∑
w∈W

ε(w)ew(λ+ρ).

Now define the partition function P based on the expansion
∏

α∈�+
1
(1 + eα)∏

α∈�+
0
(1 − eα)

=
∑

β∈P(n,m)

P (β) eβ. (2)

As a corollary of Theorem 2.3.2, we deduce that the multiplicities Kλ,μ for a typical
weight λ can be expressed in terms of the partition function P , just like in the case of
the semisimple Lie algebras.

Corollary 2.3.3 Consider λ ∈ P +
f (n,m) a typical weight and μ ∈ P(n,m). Then

Kλ,μ =
∑
w∈W

ε(w) P (w ◦ λ − μ).
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Remarks 2.3.4 (1) When λ is atypical, the character formula of Theorem 2.3.2 does
not hold in general (see [14]). The problem of determining the characters of the atyp-
ical irreducible gl(n,m)-modules has been intensively addressed in the literature.
There exist in this case numerous character formulas of Weyl type appropriate to
some particular atypical dominant weights [2, 4, 6, 7, 10, 12, 21, 24]. Unfortunately
none of these formulas is known to hold in full generality. A general algorithm for
computing the characters of the atypical irreducible gl(n,m)-modules has been first
given by Serganova [22, 23]. In [5], Brundan has also linked the computation of these
characters to the determination of the canonical bases of certain Uq(gl(∞))-modules.

(2) For g = gl(n,m), we have w(ρ−) = ρ− for any w ∈ W . Hence, for any β ∈
P(n,m), we have w ◦ β = w(β + ρ+) − ρ+; in other words, ρ can be replaced
by ρ+ in the dot action of W . Similarly, when g = spo(2n,M), we have w ◦ β =
w(β + ρ+) − ρ+ for any β ∈ P(n,m) and w ∈ Wstab. Observe that the last statement
does not hold in general for w ∈ W \ Wstab.

(3) By restricting from g to g0, we can see that Kλ,μ = Kλ,w(μ) for any w ∈ W .

Another important consequence of Theorem 2.3.2 is a branching rule for the
restriction of the typical module V (λ) with λ ∈ P +

f (n,m) from g to g0. For any
γ ∈ P +(n,m), write V g0(γ ) for the irreducible finite dimensional g0-module of
highest weight γ , and set

mλ,γ := [V (λ) : V g0(γ )] ;
namely, m

g

λ,μ is the number of irreducible components isomorphic to V g0(γ ) in the

restriction V (λ)↓g
g0 . Set

∏
α∈�+

1

(1 + eα) =
∑

κ∈P(n,m)

c(κ) eκ . (3)

Proposition 2.3.5 (cf. Proposition 2.11 in [11]) Consider λ ∈ P +
f (n,m) a typical

weight and γ ∈ P +(n,m). Then

mλ,γ =
∑
w∈W

ε(w)c(w ◦ λ − γ ) .

2.4 Irreducible covariant tensor modules for gl(n,m)

In this paragraph, we consider g = gl(n,m). Then the set of positive odd roots can be
written �+

1 = {αi,r | 1 ≤ i ≤ n,1 ≤ r ≤ m}, where αi,r := δı − δr . The superalgebra
gl(n,m) admits a natural irreducible module V with dimension m + n and highest
weight δn; this module may be atypical. For any positive integer k, the tensor power
V ⊗k is completely reducible [24]. Moreover the irreducible modules appearing in its
decomposition have highest weights of the form λ = (λ(0);λ(1)) such that

• ∣∣λ(0)
∣∣ + ∣∣λ(1)

∣∣ = k;
• λ(0) is a partition with n parts (possibly equal to 0);
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• λ(1) has at most m nonzero parts;
• denoting the conjugate (λ(1))′ of λ(1) by μ = (μ1, . . . ,μm), we have μ1 ≤ λ

(0)
min,

where λ
(0)
min is the smallest nonzero part of λ(0) if λ(0) �= ∅, whereas λ

(0)
min := 0

otherwise.

These highest weights can be identified with (n,m)-hook Young diagrams by asso-
ciating to the pair λ = (λ(0);λ(1)) a diagram Y(λ) obtained by juxtaposing the Young
diagrams of λ(0) and μ = (λ(1))′ as illustrated in the example below. The combina-
torics of hook Young diagrams was first studied in [2].

Example 2.4.1 The hook Young diagram Y(λ) for λ(0) = (9,7,5) and λ(1) =
(4,3,3,2) (thus (n,m) = (3,4) and μ = (4,4,3,1)) is indicated below.

Observe that there is no box at the intersection of the (n+1)-st row and the (m+1)-st
column. By the convention stated earlier, we can write λ = 9δ3 + 7δ2 + 5δ1 + 4δ1 +
3δ2 + 3δ3 + 2δ4.

The tensor power V ⊗k contains typical and atypical irreducible components. De-
fine

Y+
k (n,m) := {

λ = (λ(0), λ(1)) | V (λ) appears as an irreducible component of

a tensor powerV ⊗k
}
.

Set Y+(n,m) = ⋃
k≥0 Y+

k (n,m).

Consider λ ∈ Y+(n,m). Set

∇0 := e−ρ+
∏

α∈�+
0

(1 − e−α)−1 ,

and write �+
1,λ for the subset of �+

1 containing the roots αi,r such that Y(λ) has a
box at the intersection of its i-th row and its r-th column. There exists a character
formula of Weyl type for V (λ) due to Berele-Regev [2] and Sergeev [24].
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Theorem 2.4.2 The character of the covariant tensor module V (λ) is given by

char V (λ) = ∇0

∑
w∈W

ε(w)w

(
eλ+ρ+

∏
α∈�+

1,λ

(1 + e−α)

)
.

Set ∏
α∈�+

1,λ

(1 + e−α) =
∑

κ∈P(n,m)

cλ(κ) eκ . (4)

We deduce from the previous theorem the following expression for the multiplicities
mλ,γ .

Corollary 2.4.3 For any λ ∈ Y+(n,m) and any γ ∈ P +(n,m), the multiplicity mλ,γ

of V g0(γ ) in V (λ) is given by

mλ,γ =
∑
w∈W

ε(w)cλ(λ − w ◦ γ ) .

Remarks 2.4.4 (1) When �+
1,λ = �+

1 , the partition functions c and cλ coincide.
Moreover, we have c(w(κ)) = c(κ) for any κ ∈ P(n,m) and any w ∈ W. Thus the ex-
pression of the multiplicity mλ,γ in the Corollary 2.4.3 coincides with that in Propo-
sition 2.3.5.

(2) We cannot derive from the character formula in Theorem 2.4.2 a simple ex-
pression for the multiplicity Kλ,μ similar to the one for λ typical in Corollary 2.3.3.

3 Lusztig q-analogs and q-partition functions

3.1 Lusztig q-analogs for the Lie algebras gn and gm

Denote by Pn,q and Pm,q the q-partition functions defined by

1∏
α∈�+

n
(1 − qeα)

=
∑

η(0)∈Zn

Pn,q(η(0)) eη(0)

,

1∏
α∈�+

m
(1 − qeα)

=
∑

η(1)∈Zm

Pm,q(η(1)) eη(1)

.

(5)

Consider two weights γ = (γ (0);γ (1)) and μ = (μ(0);μ(1)) in P(n,m). Set

K
gn

γ (0),μ(0) (q) :=
∑

u∈Wn

ε(0)(u) Pn,q(u ◦ γ (0) − μ(0)),

K
gm

γ (1),μ(1) (q) :=
∑

v∈Wm

ε(1)(v) Pm,q(v ◦ γ (1) − μ(1)).
(6)

These polynomials are Lusztig q-analogs for the Lie algebras gn and gm.
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Theorem 3.1.1 (Lusztig [20]) Assume that γ,μ ∈ P +(n,m). Then the polynomials
K

gn

γ (0),μ(0) (q) and K
gm

γ (1),μ(1) (q) have nonnegative integer coefficients.

We will also need the stabilized form of the Lusztig q-analog corresponding to gn.

We define

K
gn,stab
γ (0),μ(0) (q) :=

∑
u∈Sn

ε(0)(u) Pn,q(u ◦ γ (0) − μ(0)) . (7)

Observe that the sum runs over the symmetric group on n letters. For g = gl(n,m), we
have gn � gl(n) and thus K

gn,stab
γ (0),μ(0) (q) = K

gn

γ (0),μ(0) (q). For g = spo(2n,M), we have
gn � sp2n. Write ω for the n-th fundamental weight of gn, which can be identified
with (1, . . . ,1;0, . . . ,0) ∈ P +(n,m). Recall from Section 2.1 that |κ| denotes the
sum of the parts of the partition κ . The following lemma has been proved in [18].

Lemma 3.1.2 For any integer k ≥
∣∣γ (0)

∣∣−∣∣μ(0)
∣∣

2 , we have K
gn

γ (0)+kω,μ(0)+kω
(q) =

K
gn,stab
γ (0),μ(0) (q). In particular, K

gn,stab
γ (0),μ(0) (q) ∈ Z≥0[q] when γ (0),μ(0) ∈ P +

n .

3.2 The Lusztig q-analog for g0

We define the q-partition function Fq similarly to (5), by

1∏
α∈�+

0
(1 − qeα)

=
∑

η∈P(n,m)

Fq(η) eη . (8)

Definition 3.2.1 For any γ,μ ∈ P(n,m), the polynomial K
g0
γ,μ(q) is given by

Kg0
γ,μ(q) :=

∑
w∈W

ε(w) Fq(w(γ + ρ+) − μ − ρ+) .

The stabilized polynomial K
g0,stab
γ,μ (q) is given by

Kg0,stab
γ,μ (q) :=

∑
w∈Wstab

ε(w) Fq(w(γ + ρ+) − μ − ρ+) .

Since w(ρ−) = ρ− for any w ∈ Wstab, one can also replace ρ+ by ρ in the latter
formula.

For a dominant weight γ , the polynomial K
g0
γ,μ(q) is a q-analog for the dimension

K
g0
γ,μ of the weight space μ in the g0-module of highest weight γ . From the con-

siderations in Section 2.2, Theorem 3.1.1, and Lemma 3.1.2, we deduce easily the
following proposition.

Proposition 3.2.2 For γ = (γ (0);γ (1)) and μ = (μ(0);μ(1)) in P(n,m), we have,
with the above notation, the factorizations

Kg0
γ,μ(q) = K

gn

γ (0),μ(0) (q) × K
gm

γ (1),μ(1) (q), Kg0,stab
γ,μ (q) = K

gn,stab
γ (0),μ(0) (q) × K

gm

γ (1),μ(1) (q) .
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In particular, K
g0,stab
γ+ω,μ+ω(q) = K

g0,stab
γ,μ (q). Furthermore, K

g0
γ,μ(q) and K

g0,stab
γ,μ (q)

belong to Z≥0[q] when γ and μ are dominant.

Consider ξ ∈ P(n,m). There exists a straightening procedure for the polynomials
K

g0
ξ,μ(q).

Lemma 3.2.3 Consider μ ∈ P +(n,m) and ξ ∈ P(n,m). Then

K
g0
ξ,μ(q) =

{
ε(τ )K

g0
γ,μ(q) if ξ = τ(γ + ρ+) − ρ+ with τ ∈ W and γ ∈ P +(n,m)

0 otherwise.

In particular the coefficients of K
g0
ξ,μ(q) are integers with the same sign.

Proof The proof follows easily from the equality K
g0
τ(γ+ρ+)−ρ+,μ(q) = ε(τ )K

g0
γ,μ(q)

for any τ ∈ W . �

Remark 3.2.4 Set

K
g0
γ,μ(q) :=

∑
w∈W

ε(w) Fq(w(γ + ρ) − μ − ρ).

For g = gl(n,m) and spo(2n,2), W stabilizes the set of positive odd roots �+
1 . Thus

we have K
g0
γ,μ(q) = K

g0
γ,μ(q). This equality does not hold for the other superalgebras

spo(2n,M). This will cause some complications in Section 5.

3.3 A q-partition function associated to g

We define the following natural q-analog, denoted by Pq , of the partition function P
in (2). This q-partition function will be used below to define our q-analogs of weight
multiplicities for the Lie superalgebras gl(n,m) and spo(2n,M).

Definition 3.3.1 The q-partition function Pq is given by
∏

α∈�+
1
(1 + qeα)∏

α∈�+
0
(1 − qeα)

=
∑

β∈P(n,m)

Pq(β) eβ .

Let us justify why Pq is a natural q-analog, in the spirit of the q-partition functions
in (5), due to Lusztig. As Kac pointed out in [11], P (β) counts the number of ways
to express β as

∑
α∈�+ nαα with nα in {0,1} for α in �+

1 , and nα in Z≥0 for α in
�+

0 . Thus, the sequences π = (nα)α∈�+ are generalizations of the Kostant partitions
relevant to (5). We can define the length of the Kostant partition π , as usual, by
	(π) := ∑

α∈�+ nα . Then Pq(β) = ∑
π q	(π), precisely as the q-partition functions

in (5) can be expressed.
We define the q-partition function cq similarly to (3), by

∏
α∈�+

1

(1 + qeα) =
∑

κ∈P(n,m)

cq(κ) eκ . (9)
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Then, for any β ∈ P(n,m), we have

Pq(β) =
∑

κ+η=β

cq(κ) Fq(η) . (10)

4 Some q-analogs of weight multiplicities for gl(n,m)

In this section we consider g = gl(n,m). For any dominant weight λ which is ei-
ther typical or belongs to Y+(n,m), and any weight μ ∈ P(n,m), we introduce a
q-analog Kλ,μ(q) for the weight multiplicity Kλ,μ. We prove that this q-analog has
nonnegative integer coefficients when μ ∈ P +(n,m).

4.1 Typical modules

We start by defining Kλ,μ(q) for typical modules similarly to (6).

Definition 4.1.1 Consider a typical dominant weight λ and μ ∈ P(n,m). The poly-
nomial Kλ,μ(q) is given by

Kλ,μ(q) :=
∑
w∈W

ε(w) Pq(w ◦ λ − μ) ,

where Pq is the q-partition function in Definition 3.3.1.

According to Corollary 2.3.3, we have Kλ,μ(1) = Kλ,μ, so Kλ,μ(q) is a q-analog
for the multiplicity of μ in V (λ). We clearly have Kλ,μ(q) ∈ Z[q].

Now observe that for any α = (α(0);α(1)) ∈ �+
1 , we have

∣∣α(0)
∣∣ = 1. This implies

that if κ = (κ(0);κ(1)) ∈ P(n,m) is expressed as a sum of distinct positive odd roots,
then the number of summands is equal to 0 or

∣∣κ(0)
∣∣ . Thus, with the notation in (3)

and (9), we obtain cq(κ) = q
∣∣κ(0)

∣∣
c(κ).

By the definition (8) of the partition function Fq, we can have Fq(η) �= 0 for
some η = (η(0);η(1)) ∈ Pn,m only if

∣∣η(0)
∣∣ = ∣∣η(1)

∣∣ = 0. Based on the previous obser-
vations, (10) can be rewritten

Pq(β) = q
∣∣β(0)

∣∣ ∑
κ∈P(n,m)

c(κ) Fq(β − κ) for any β = (β(0);β(1)) ∈ P(n,m). (11)

The following theorem can be regarded as an analog of Theorem 3.1.1 for the Lie
superalgebra gl(n,m).

Theorem 4.1.2 Consider a typical dominant weight λ and μ in P(n,m). Then

Kλ,μ(q) = q
∣∣λ(0)

∣∣−∣∣μ(0)
∣∣ ∑
γ∈P+(n,m)

mλ,γ Kγ (0),μ(0) (q)Kγ (1),μ(1) (q) . (12)

In particular, Kλ,μ(q) belongs to Z≥0[q] when μ is dominant.
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Proof We derive from (11) the equality

Kλ,μ(q) =
∑
w∈W

ε(w)
∑

κ∈P(n,m)

c(κ) q
∣∣β(0)

∣∣ Fq(w(λ + ρ) − (μ + κ + ρ)) ,

where β = w(λ+ρ)− (μ+ρ) in the second sum. This notably implies that
∣∣β(0)

∣∣ =∣∣λ(0)
∣∣ − ∣∣μ(0)

∣∣, since W = Sn × Sm. So we obtain

Kλ,μ(q) = q
∣∣λ(0)

∣∣−∣∣μ(0)
∣∣ ∑
w∈W

ε(w)
∑

κ∈P(n,m)

c(κ) Fq(w(λ + ρ − w−1(κ)) − (μ + ρ)) .

For any w ∈ W and any κ ∈ P(n,m), we have c(κ) = c(w(κ)) because �+
1 is stable

under the action of the Weyl group W. Thus, by setting ξ := w−1(κ) in the previous
expression, we can write

Kλ,μ(q) = q
∣∣λ(0)

∣∣−∣∣μ(0)
∣∣ ∑
w∈W

ε(w)
∑

ξ∈P(n,m)

c(ξ) Fq(w(λ + ρ − ξ) − (μ + ρ))

= q
∣∣λ(0)

∣∣−∣∣μ(0)
∣∣ ∑
ξ∈P(n,m)

c(ξ)K
g0
λ−ξ,μ(q) ,

where the polynomials K
g0
λ−ξ,μ(q) are those in Definition 3.2.1. Now by Lemma

3.2.3, we have K
g0
λ−ξ,μ(q) = 0, or there exists w ∈ W and γ ∈ P +(n,m) such that

γ = w−1 ◦ (λ − ξ). In the latter case, we have ξ = λ + ρ − w(γ + ρ), and it follows
that

Kλ,μ(q) = q
∣∣λ(0)

∣∣−∣∣μ(0)
∣∣ ∑
w∈W

ε(w)
∑

γ∈P+(n,m)

c(λ + ρ − w(γ + ρ))Kg0
γ,μ(q) .

Since c(ξ) = c(w−1(ξ)) for any w ∈ W and ξ ∈ P(n,m), we obtain

Kλ,μ(q) = q
∣∣λ(0)

∣∣−∣∣μ(0)
∣∣ ∑
γ∈P+(n,m)

∑
w∈W

ε(w)c(w ◦ λ − γ )Kg0
γ,μ(q) .

Now by Proposition 2.3.5, we derive

Kλ,μ(q) = q
∣∣λ(0)

∣∣−∣∣μ(0)
∣∣ ∑
γ∈P+(n,m)

mλ,γ Kg0
γ,μ(q).

Finally, the desired equality and the positivity for μ dominant immediately follow
from Proposition 3.2.2. �

Remark 4.1.3 Recalling the q-partition functions cq and Fq defined in (9) and (8),
we note that, in practice, it is useful to calculate Kλ,μ(q) by combining Definition
4.1.1 with (10), as follows:

Kλ,μ(q) =
∑
w∈W

∑
κ∈P(n,m)

ε(w) cq(κ) Fq(w ◦ λ − μ − κ) . (13)
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Recalling the notation in (5), also observe that

Fq(η) = Pn,q(η(0)) × Pm,q(η(1)) .

We implemented a Maple procedure based on this approach, which is part of a
package made available at math.albany.edu/math/pers/lenart/ and lmpa.univ-littoral.
fr/~lecouvey/. The package also contains procedures which compute the q-analogs
for the orthosymplectic superalgebras defined in Section 5. The partition functions
Pn,q and Pm,q are computed by using Gelfand-Tsetlin patterns of type A − D [3] to
represent Kostant partitions, and by generating these patterns recursively. An efficient
implementation is used in order to reduce the computational complexity.

Example 4.1.4 Using our Maple procedure, we computed K(3,1,−2;4,2,−8),(0,0,0;0,0,0)(q)

for gl(3,3):

2q22 +8q21 +22q20 +40q19 +57q18 +61q17 +52q16 +33q15 +16q14 +5q13 +q12 .

According to Theorem 2.3.2, we can also define the graded character of the typical
module V (λ) by

charq V (λ) := ∇(q)
∑
w∈W

ε(w)ew(λ+ρ) , (14)

where

∇(q) := e−ρ

∏
α∈�+

1
(1 + qe−α)∏

α∈�+
0
(1 − qe−α)

.

The coefficients of the expansion of charq V (λ) in the basis of formal exponentials
also yield q-analogs of weight multiplicities. It is easy to verify that these q-analogs
coincide with the polynomials Kλ,μ(q), namely we have

charq V (λ) =
∑

μ∈P(n,m)

Kλ,μ(q) eμ .

By Theorem 4.1.2, we then obtain the following expression for charq V (λ):

charq V (λ) =
∑

μ∈P(n,m)

q
∣∣λ(0)

∣∣−∣∣μ(0)
∣∣ ∑
γ∈P+(n,m)

mλ,γ Kg0
γ,μ(q) eμ. (15)

4.2 Irreducible covariant tensor modules

For ν a typical dominant weight, it is possible to define the q-analogs Kν,μ(q)

directly from Corollary 2.3.3 or by introducing the graded character charq V (ν).

Now assume λ ∈ Y+(n,m). In this case, we have seen (cf. Remark 2.4.4 (2)) that
there is no analog of Corollary 2.3.3 for the multiplicities Kλ,μ. Therefore, we define
a graded version of the character in Theorem 2.4.2.

http://math.albany.edu/math/pers/lenart/
http://lmpa.univ-littoral.fr/~lecouvey/
http://lmpa.univ-littoral.fr/~lecouvey/
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Definition 4.2.1 Let

charq V (λ) := ∇0(q)
∑
w∈W

ε(w)w

(
eλ+ρ+

∏
α∈�+

1,λ

(1 + qe−α)

)
,

where

∇0(q) := e−ρ+
∏

α∈�+
0

(1 − qe−α)−1 .

Based on the above graded character, we define the q-analog in the obvious way.

Definition 4.2.2 The polynomials Kλ,μ(q) are given by

charq V (λ) =
∑

μ∈P(n,m)

Kλ,μ(q) eμ .

Clearly, Kλ,μ(1) is equal to Kλ,μ.

Theorem 4.2.3 We have

charq V (λ) =
∑

μ∈P(n,m)

∑
γ∈P+(n,m)

q
∣∣λ(0)

∣∣−∣∣μ(0)
∣∣
mλ,γ Kg0

γ,μ(q) eμ .

In particular, the polynomials Kλ,μ(q) also verify (12), and thus have nonnegative
integer coefficients when μ ∈ P +(n,m).

Proof The arguments of the proof are close to those used in the proof of Theorem
4.1.2. By (4), we can write

∏
α∈�+

1,λ

(1 + qe−α) =
∑

κ∈P(n,m)

q
∣∣κ(0)

∣∣
cλ(κ) e−κ .

By the definition (8) of the q-partition function Fq, we then derive

charq V (λ) =
∑

ξ∈P(n,m)

∑
κ∈P(n,m)

∑
w∈W

ε(w)q
∣∣κ(0)

∣∣
cλ(κ) Fq(ξ) ew(λ+ρ+−κ)−ξ−ρ+ .

By setting μ := w(λ + ρ+ − κ) − ξ − ρ+, this yields

charq V (λ) =
∑

κ∈P(n,m)

q
∣∣κ(0)

∣∣
cλ(κ)

×
∑

μ∈P(n,m)

∑
w∈W

ε(w) Fq(w(λ + ρ+ − κ) − μ − ρ+) eμ.

Thus, we derive

charq V (λ) =
∑

κ∈P(n,m)

∑
μ∈P(n,m)

q
∣∣κ(0)

∣∣
cλ(κ)K

g0
λ−κ,μ(q) eμ.
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By Lemma 3.2.3, we have K
g0
λ−κ,μ(q) = 0, or there exists w ∈ W and γ ∈ P +(n,m)

such that γ = w−1(λ + ρ+ − κ) − ρ+. Then we have κ = λ + ρ+ − w(γ + ρ+). In
particular,

∣∣κ(0)
∣∣ = ∣∣λ(0)

∣∣ − ∣∣μ(0)
∣∣ and it follows that

charq V (λ) =
∑

μ∈P(n,m)

q
∣∣λ(0)

∣∣−∣∣μ(0)
∣∣

×
∑

γ∈P+(n,m)

∑
w∈W

ε(w)cλ(λ + ρ+ − w(γ + ρ+))Kg0
γ,μ(q) eμ.

Since λ + ρ+ − w(γ + ρ+) = λ − w ◦ γ, this yields the theorem by using Corollary
2.4.3. �

Remark 4.2.4 The methods used in this paragraph to define q-analogs of weight mul-
tiplicities corresponding to the irreducible covariant tensor modules can be extended
to any highest weight gl(n,m)-module V (λ) whose character is given by a Weyl-type
character formula of the form

char V (λ) = ∇0

∑
w∈W

ε(w)w

(
eλ+ρ+

∏
α∈S+

1,λ

(1 + e−α)

)
,

where S+
1,λ is a subset of �+

1 depending on λ (cf. [21]). The polynomials Kλ,μ(q)

are then defined as the coefficients of the expansion of the corresponding graded
character in the basis of formal exponentials. They are also expressed as in (12),
and therefore have nonnegative coefficients when μ ∈ P +(n,m). Such a situation
also occurs, for instance, when V (λ) is a singly atypical module, that is, when there
exists a unique root αλ in �+

1 such that 〈λ + ρ, αλ 〉 = 0. In this case, we have
S+

1,λ = �+
1 \ {αλ} (see [6, 7]).

4.3 Charge statistic on semistandard hook-tableaux

We now briefly recall some background on the quantum superalgebra Uq(gl(n,m))

and the notion of a crystal basis (cf. [13]) introduced by Benkart, Kang and Kashi-
wara [1]. The reader is referred to the latter paper for a complete exposition. One asso-
ciates to the Lie superalgebra gl(n,m) its quantized enveloping algebra Uq(gl(n,m)),
which is a Hopf algebra. This algebra possesses an irreducible module Vq of dimen-
sion m + n. The tensor powers V ⊗k

q for k ∈ Z≥0 are completely reducible. The ir-
reducible modules appearing in their decompositions into irreducible components
are the highest weight Uq(gl(n,m))-modules Vq(λ) with λ ∈ Y+(n,m). To each
λ ∈ Y+(n,m) is associated a Uq(gl(n,m))-crystal B(λ). This is an oriented graph
with arrows colored with the set of colors {n − 1, . . . ,1,0,1, . . . ,m − 1}. The ver-
tices of B(λ) are labelled by semistandard hook-tableaux of shape λ on the totally
ordered alphabet An,m := {n < · · · < 1 < 1 < · · · < m}. Here, by a semistandard
hook-tableau of shape λ, we mean a filling of the Young diagram Y(λ) (see Example
2.4.1) with letters of An,m subject to the following conditions.
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(1) The letters in each row are increasing from left to right. Repetition of barred
letters is permitted, but repetition of unbarred letters is not.

(2) The letters in each column are increasing from top to bottom. Repetition of un-
barred letters is permitted, but repetition of barred letters is not.

Example 4.3.1 The following tableau is a semistandard hook-tableau of shape λ =
(λ(0), λ(1)) for (n,m) = (3,4), λ(0) = (7,6,4), and λ(1) = (4,3,3,2).

The crystal B(λ) has also the structure of a Uq(g0)-crystal obtained by deleting
the arrows colored 0. Write B◦(λ) for the crystal obtained in this way. Then, for any
γ ∈ P +(n,m), the multiplicity mλ,γ is equal to the number of connected components
in B◦(λ) of highest weight γ .

Write Bg0(γ ) for the abstract Uq(g0)-crystal of highest weight γ. Since g0 =
gl(n) ⊕ gl(m), we have Bg0(γ ) = Bgln (γ (0)) × Bglm(γ (1)), i.e., we obtain the direct
product of the Uq(gln)-crystal Bgln (γ (0)) and the Uq(glm)-crystal Bglm(γ (1)). In par-
ticular, the corresponding vertices are labelled by the pairs of tableaux (T (0), T (1))

such that T (0) (resp. T (1)) is semistandard on {n, . . . ,1} (resp. on {1, . . . ,m}) of shape
γ (0) (resp. γ (1)). In [16], Lascoux and Schützenberger proved that the Lusztig q-
analog corresponding to the general linear group can be expressed as the generating
series for a special statistic ch on semistandard tableaux called charge (see [19] for a
complete exposition). By the previous arguments and Proposition 3.2.2, this implies
the following proposition.

Proposition 4.3.2 Consider γ,μ ∈ P +(n,m). Then

Kg0
γ,μ(q) =

∑
(T (0),T (1))∈Bg0 (γ )μ

qch(T (0))+ch(T (1)) ,

where Bg0(γ )μ is the set of vertices in Bg0(γ ) with weight μ.

Now consider Tγ ∈ B◦(λ) a highest weight vertex of weight γ. Then, the con-
nected component B(Tγ ) of B◦(λ) containing Tγ is isomorphic to Bg0(γ ). Let θ be
the corresponding isomorphism. Consider T ∈ B(Tγ ) and set θ(T ) = (T (0), T (1)). It
is easy to check that T (0) is the tableau obtained by deleting the unbarred letters in T .

To obtain T (1), we first delete the barred letters in T . This gives a skew tableau that
we can conjugate (i.e., reflect in a diagonal), in order to obtain a skew semistandard
tableau T ′. Then T (1) is obtained by rectifying T ′ via Schützenberger’s jeu de taquin
(e.g., see [9, 15]).
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It is then natural to define the charge of the semistandard hook-tableau T by
ch(T ) := ch(T (0))+ ch(T (1)), where T (0) and T (1) are obtained by the previous pro-
cedure. Since, polynomials Kλ,μ(q) with λ ∈ Y+(n,m) verify (12), we obtain the
following theorem.

Theorem 4.3.3 Let λ ∈ Y+(n,m) and μ ∈ P +(n,m) be two dominant weights. Then

Kλ,μ(q) = q
∣∣λ(0)

∣∣−∣∣μ(0)
∣∣ ∑
T ∈SSHT(λ)μ

qch(T ) ,

where SSHT(λ)μ is the set of semistandard hook-tableaux of shape λ and weight μ.

Remark 4.3.4 The results in this section can be derived simply based on the com-
binatorial description in [2] of the polynomial representations of the (non-quantum)
general linear superalgebra in terms of hook-tableaux, that is, without using the quan-
tum superalgebra and the crystals in [1]. Indeed, all that is needed is the procedure
described above to find the tableaux T (0) and T (1) associated to a semistandard hook-
tableau T by the map θ ; this procedure does not depend on the corresponding crystal
structure. The role of crystals is to make the procedure more transparent.

5 Some q-analogs of weight multiplicities for spo(2n,M)

In this section, we assume that g = spo(2n,2m + 1) or g = spo(2n,2m). We in-
troduce q-analogs Kλ,μ(q) for the multiplicities Kλ,μ corresponding to a typical
weight λ ∈ P +

f (n,m). Although the family of q-analogs Kλ,μ(q) for such λ and
μ ∈ P +(n,m) contains polynomials with negative coefficients, this family possesses
a natural subfamily (the stabilized Kλ,μ(q)) for which the positivity property holds.

5.1 The polynomials Kλ,μ(q)

We define the q-analog Kλ,μ(q) similarly to Definition 4.1.1.

Definition 5.1.1 For any weight λ ∈ P +(n,m) and any μ ∈ P(n,m), the polynomial
Kλ,μ(q) is given by

Kλ,μ(q) :=
∑
w∈W

ε(w) Pq(w ◦ λ − μ) ,

where Pq is the q-partition function in Definition 3.3.1.

When λ ∈ P +
f (n,m) is typical, the polynomials Kλ,μ(q) coincide with the coeffi-

cients appearing in the expansion of the graded character

charq V (λ) = ∇(q)
∑
w∈W

ε(w)ew(λ+ρ).
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We have then Kλ,μ(1) = Kλ,μ, and therefore Kλ,μ(q) is a q-analog for the dimension
of the weight space μ in the finite dimensional module V (λ). Observe that the hy-
pothesis μ ∈ P +

f (n,m) does not suffice to guarantee that Kλ,μ(q) belongs to Z≥0[q],
as illustrated by the following example.

Example 5.1.2 Consider spo(2n,2m + 1) for n = 1 and m = 2. We have ρ =
(−2;1,0) + h, where h = ( 1

2 ; 1
2 , 1

2 ). We verify that λ = (2;1,1) is in P +
f (n,m),

and let μ = (0;2,1) in P +(n,m). We calculate Kλ,μ(q) based on a formula identical
to (13), as shown in the table below. The only weights κ for which we have nonzero
terms in the right-hand side of (13) are (1;−1,0), (2;−1,−1), and (2;−1,0). The
columns labeled u and v correspond to those w = (u;v) in W = Wn ×Wm for which
Fq(w ◦ λ − μ − κ) �= 0. In accordance with standard notation, s1 is the generator
of Wn. Also note that, if we view w as a signed permutation of 1, . . . , n + m, then
hw := w(h) − h is a sequence of −1’s and 0’s, where we have a −1 in position i
precisely when w contains ı.

κ cq (κ) η := w ◦ λ − μ − κ u ε(u) Pn,q (η(0)) v ε(v) Pm,q (η(1))

(1;−1,0) q w(0;2,1) + (1;−2,−1) + hw s1 −1 Id 1
(2;−1,−1) q2 w(0;2,1) + (0;−2,0) + hw Id 1 Id q

(2;−1,0) q2 w(0;2,1) + (0;−2,−1) + hw Id 1 Id 1

Hence, we have K(2;1,1),(0;2,1)(q) = q3 + q2 − q . Another example is
K(5,4,4;3,2,0),(3,2,1;1,1,0)(q) for spo(2n,2m + 1) with n = m = 3, which was com-
puted with our Maple procedure:

3q31 + 14q30 + 52q29 + 148q28 + 373q27 + 817q26 + 1640q25 + 3000q24

+ 5132q23 + 8174q22 + 12283q21 + 17338q20 + 23138q19 + 28977q18

+ 34022q17 + 36993q16 + 36953q15 + 33259q14 + 26478q13 + 18045q12

+ 10121q11 + 4332q10 + 1211q9 + 97q8 − 65q7 − 17q6 + q5 .

5.2 Stabilized q-analogs

We now define the subfamily of the polynomials Kλ,μ(q) for which the positivity
property holds.

Definition 5.2.1 For λ ∈ P +(n,m) and μ ∈ P(n,m), the polynomial Kstab
λ,μ (q) is

given by

Kstab
λ,μ (q) :=

∑
w∈Wstab

ε(w) Pq(w ◦ λ − μ) .

Note that the sum in the definition of Kstab
λ,μ (q) runs over Wstab, and λ is not

assumed to be either typical or in P +
f (n,m). Moreover, we have Kstab

λ+ω,μ+ω(q) =
Kstab

λ,μ (q), where ω = (1, . . . ,1;0, . . . ,0) ∈ P +(n,m). This justifies our terminology.

Lemma 5.2.2 Given λ ∈ P +(n,m) and μ ∈ P(n,m), there exists k0 ∈ Z≥0 such that,
for any nonnegative integer k ≥ k0, the following conditions are verified:
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(1) λ + kω ∈ P +
f (n,m);

(2) λ + kω is typical;
(3) Kλ+kω,μ+kω(q) = Kstab

λ,μ (q).

Proof The first two parts of the lemma are fairly obvious, so we discuss the third part
only. Write λ + kω = ν = (ν(0);ν(1)). By the definition of the q-partition function
Fq, we have Fq(β) = 0 when

∣∣β(0)
∣∣ < 0. Consider w = (w(0),w(1)) ∈ W such that

w /∈ Wstab. Since w(0) /∈ Sn, the signed permutation w(0) changes the sign of at least
one coordinate in ν(0) + ρ(0). Thus we have

∣∣w(λ(0) + kω(0) + ρ(0)) − (μ(0) + kω(0) + ρ(0))
∣∣ <

∣∣λ(0)
∣∣ − ∣∣μ(0)

∣∣ − 2k .

Then for any integer k ≥
∣∣λ(0)

∣∣−∣∣μ(0)
∣∣

2 , we have Fq(w ◦ ν − μ) = 0, and therefore
Kλ+kω,μ+kω(q) = Kstab

λ,μ (q). �

Remarks 5.2.3 (1) Penkov and Serganova [21] gave a character formula for a simple
Lie superalgebra and a corresponding generic weight λ. Their definition of a generic
weight is analogous to the conditions (1)–(3) in Lemma 5.2.2.

(2) By Lemma 5.2.2, for any λ ∈ P +(n,m) and any μ ∈ P(n,m), the polynomial
Kstab

λ,μ (q) can be regarded as a q-analog for the multiplicity of the weight μ + k0ω in
the finite dimensional module V (λ + k0ω).

(3) Suppose that λ ∈ P +(n,m) and μ ∈ P(n,m) are such that Kλ+ω,μ+ω(q) =
Kλ,μ(q). Then for any nonnegative integer k, we have Kλ+kω,μ+kω(q) = Kλ,μ(q).

Thus Kλ,μ(q) = Kstab
λ,μ (q).

Theorem 5.2.4 Consider λ,μ ∈ P +(n,m). Then Kstab
λ,μ (q) belongs to Z≥0[q].

The proof uses the following easy lemma.

Lemma 5.2.5 Consider λ,γ ∈ P +(n,m) and let

mstab
λ,γ :=

∑
w∈Wstab

ε(w) c(w(λ + ρ+) − γ − ρ+) .

Then mstab
λ,γ ∈ Z≥0.

Proof of Lemma 5.2.5 We observe that c(κ) = 0 for any κ ∈ P(n,m) such that∣∣κ(0)
∣∣ < 0. By using arguments similar to those in the proof of Lemma 5.2.2 (3),

there exists a nonnegative integer k such that mstab
λ,γ = mλ+kω,γ+kω . �

Proof of Theorem 5.2.4 From the description of �+
1 and (10), we obtain

Pq(β) =
∑

κ∈P(n,m)

q
∣∣κ(0)

∣∣
c(κ) Fq(β − κ) for any β = (β(0);β(1)) ∈ P(n,m) .
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Recall also that w ◦β = w(β +ρ+)−ρ+ for any w ∈ Wstab. By Definition 5.2.1, this
implies that

Kstab
λ,μ (q) =

∑
κ∈P(n,m)

c(κ) q
∣∣κ(0)

∣∣ ∑
w∈Wstab

ε(w) Fq(w(λ + ρ+) − (μ + κ + ρ+)) .

Hence

Kstab
λ,μ (q) =

∑
w∈Wstab

ε(w)
∑

κ∈P(n,m)

q
∣∣κ(0)

∣∣
c(κ) Fq(w(λ + ρ+ − w−1(κ)) − (μ + ρ+)) .

Set ξ = w−1(κ) in the previous sum. Since w ∈ Wstab, we have c(κ) = c(ξ) and∣∣κ(0)
∣∣ = ∣∣ξ (0)

∣∣, because �+
1 is stable under the action of Wstab. Thus we can write

Kstab
λ,μ (q) =

∑
w∈Wstab

ε(w)
∑

ξ∈P(n,m)

q
∣∣ξ (0)

∣∣
c(ξ) Fq(w(λ + ρ+ − ξ) − (μ + ρ+))

=
∑

ξ∈P(n,m)

q
∣∣ξ (0)

∣∣
c(ξ)K

g0,stab
λ−ξ,μ (q) ,

where K
g0,stab
λ−ξ,μ (q) are the polynomials in Definition 3.2.1. Now, by Lemma 3.2.3,

we have K
g0,stab
λ−ξ,μ (q) = 0, or there exists w ∈ Wstab and γ ∈ P +(n,m) such that γ =

w−1(λ − ξ + ρ+) − ρ+. Hence, we have ξ = λ + ρ+ − w(γ + ρ+) and
∣∣ξ (0)

∣∣ =∣∣λ(0)
∣∣ − ∣∣γ (0)

∣∣ . Thus

Kstab
λ,μ (q) =

∑
w∈Wstab

ε(w)
∑

γ∈P+(n,m)

q
∣∣λ(0)

∣∣−∣∣γ (0)
∣∣
c(λ + ρ+ − w(γ + ρ+))Kg0,stab

γ,μ (q) .

Since c(ξ) = c(w−1(ξ)) for any w ∈ Wstab and ξ ∈ P(n,m), we obtain

Kstab
λ,μ (q) =

∑
γ∈P+(n,m)

q
∣∣λ(0)

∣∣−∣∣γ (0)
∣∣ ∑
w∈Wstab

ε(w) c(w(λ + ρ+) − γ − ρ+)Kg0,stab
γ,μ (q) .

Finally, one derives the expression

Kstab
λ,μ (q) =

∑
γ∈P+(n,m)

q
∣∣λ(0)

∣∣−∣∣γ (0)
∣∣
mstab

λ,γ Kg0,stab
γ,μ (q) .

By Proposition 3.2.2 and Lemma 5.2.5, this implies Kstab
λ,μ (q) ∈ Z≥0[q] when μ ∈

P +(n,m). �

Corollary 5.2.6 Consider λ,μ ∈ P +(n,m). There exists an integer k0 ∈ Z≥0 such
that, for any integer k ≥ k0, the following assertions hold:

(1) λ + kω ∈ P +
f (n,m);

(2) λ + kω is typical;
(3) Kλ+kω,μ+kω(q) has nonnegative integer coefficients.
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Remark 5.2.7 We have already observed that for g = spo(2n,2) we have W = Wstab.

This implies that, for any λ ∈ P +
f (n,m) and any μ ∈ P +(n,m), the polynomial

Kλ,μ(q) = Kstab
λ,μ (q) has nonnegative integer coefficients.

Example 5.2.8 This is a continuation of Example 5.1.2. We first considered λ =
(2;1,1) and μ = (0;2,1) for spo(2n,2m + 1) with n = 1 and m = 2. The small-
est k > 0 for which λ + kω is typical is 3. So let us consider λ′ := λ + 3ω = (5;1,1)

and μ′ := μ + 3ω = (3;2,1). It turns out that

Kstab
(2;1,1),(0;2,1)(q) = K(5;1,1),(3;2,1)(q) = q3 + q2 .

Indeed, the case corresponding to κ = (1;−1,0), which is illustrated on the first
row of the table in Example 5.1.2, and which produced the negative term −q , does
not appear anymore. To be more precise, in this case we have w ◦ λ′ − μ′ − κ =
w(3;2,1) + (−2;−2,−1) + hw; but for w = (s1; Id) this is (−6;0,0), and clearly
Fq(−6;0,0) = 0. Next, we considered λ = (5,4,4;3,2,0) and μ = (3,2,1;1,1,0)

for spo(2n,2m+1) with n = m = 3. In this case, the smallest k > 0 for which λ+kω

is typical is 5. Based on the computations with our package, we have

Kstab
(5,4,4;3,2,0),(3,2,1;1,1,0)(q) = K(10,9,9;3,2,0),(8,7,6;1,1,0)(q) ,

and this polynomial is

3q31 + 14q30 + 52q29 + 148q28 + 373q27 + 820q26 + 1655q25 + 3052q24

+ 5266q23 + 8475q22 + 12879q21 + 18421q20 + 24941q19 + 31772q18

+ 38048q17 + 42412q16 + 43722q15 + 41083q14 + 34742q13 + 25932q12

+ 16776q11 + 9175q10 + 4129q9 + 1476q8 + 395q7 + 70q6 + 6q5 .
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