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Abstract Let � = (X,R) be a distance-regular graph of diameter d . A parallelogram
of length i is a 4-tuple xyzw consisting of vertices of � such that ∂(x, y) = ∂(z,w) =
1, ∂(x, z) = i, and ∂(x,w) = ∂(y,w) = ∂(y, z) = i − 1. A subset Y of X is said to be
a completely regular code if the numbers

πi,j = |�j (x) ∩ Y | (i, j ∈ {0,1, . . . , d})

depend only on i = ∂(x,Y ) and j . A subset Y of X is said to be strongly closed if

{x | ∂(u, x) ≤ ∂(u, v), ∂(v, x) = 1} ⊂ Y, whenever u,v ∈ Y.

Hamming graphs and dual polar graphs have strongly closed completely regular
codes. In this paper, we study parallelogram-free distance-regular graphs having
strongly closed completely regular codes. Let � be a parallelogram-free distance-
regular graph of diameter d ≥ 4 such that every strongly closed subgraph of diameter
two is completely regular. We show that � has a strongly closed subgraph of diameter
d −1 isomorphic to a Hamming graph or a dual polar graph. Moreover if the covering
radius of the strongly closed subgraph of diameter two is d −2, � itself is isomorphic
to a Hamming graph or a dual polar graph. We also give an algebraic characterization
of the case when the covering radius is d − 2.
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1 Introduction

The study of completely regular codes in a distance-regular graph has a long history
[3, 5]. Most of the completely regular codes studied are those with large minimum
distance because of the requirements to apply the theory to error-correcting codes.
Recently Brouwer et al. [2] studied a special class of completely regular codes in a
Q-polynomial distance-regular graph satisfying extremal conditions from a different
point of view. Let us call these codes extremal. These extremal codes afford induced
structure of a Q-polynomial distance-regular graph and hence they are necessarily
connected as a graph or minimum distance one. Independently, we studied the Ter-
williger algebra with respect to a subset in [9]. The thin condition of the principal
module of this Terwilliger algebra is equivalent to the complete regularity of the base
subset. We also gave a sufficient condition, called tight, that the module generated by
an end-point-zero vector is thin. In the case of the principal module, if the subset is
extremal, then it is tight.

In a recent paper [10], H. Tanaka classified all extremal completely regular codes
in certain classical association schemes. For example if the underlying graph is a dual
polar graph, then extremal codes are strongly closed. In the literature, one also finds
weak-geodesically closed used in place of strongly closed.

In this paper, we study a converse, i.e., we classify parallelogram-free distance-
regular graphs having strongly closed completely regular codes. To state our re-
sults, we make a few definitions. For notation, terminology and the general theory
of distance-regular graphs, we refer the reader to [1].

Let � = (X,R) be a connected graph of diameter d with vertex set X and edge set
R. For vertices x and y, ∂(x, y) denotes the distance between x and y, i.e., the length
of a shortest path connecting x and y. More generally, for each x ∈ X and a subset
S ⊂ X we write ∂(x,S) = min{∂(x, s) | s ∈ S}.

For a vertex u ∈ X and j ∈ {0,1, . . . , d}, let

�j (u) = {x ∈ X | ∂(u, x) = j} and �(u) = �1(u).

A subset Y of X is said to be completely regular, or a completely regular code, if
the following numbers

πi,j = |�j (x) ∩ Y | (i, j ∈ {0,1, . . . , d})
depend only on i = ∂(x,Y ) and j . We write γi = πi,i . For Y ⊂ X, the number t (Y ) =
max{∂(x,Y ) | x ∈ X} is called the covering radius of Y , and w(Y) = max{∂(x, y) |
x, y ∈ Y } is called the width of Y .

For two vertices u and v ∈ X with ∂(u, v) = j , let

C(u, v) = Cj (u, v) = �j−1(u) ∩ �(v),

A(u, v) = Aj(u, v) = �j (u) ∩ �(v), and

B(u, v) = Bj (u, v) = �j+1(u) ∩ �(v).
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A connected graph � is said to be distance-regular or a distance-regular graph if
the cardinalities cj = |C(u, v)|, aj = |A(u,v)| and bj = |B(u, v)| depend only on
j = ∂(u, v) for all j ∈ {0,1, . . . , d}. These numbers cj ’s, aj ’s and bj ’s are called the
intersection numbers of �.

A subset Y of the vertex set X is often called a code, but in this paper, it is also
regarded as the induced subgraph on Y . A nonempty subset Y of X is said to be
strongly closed if

C(u, v) ∪ A(u,v) ⊂ Y for all u,v ∈ Y.

In this case Y is also called a strongly closed subgraph. For two vertices x and y,
� x, y 	 denotes the smallest strongly closed subgraph containing x and y. Note
that since the intersection of two strongly closed subgraphs is strongly closed and �

itself is a strongly closed subgraph containing x and y, � x, y 	 always exists.
A parallelogram of length i is a 4-tuple xyzw consisting of vertices of � such that

∂(x, y) = ∂(z,w) = 1, ∂(x, z) = i, and ∂(x,w) = ∂(y,w) = ∂(y, z) = i − 1.
A parallelogram of length 2 is isomorphic to K2,1,1. If a distance-regular graph

� does not have a parallelogram of length 2, then it is said to have order (s, t) for
some positive integers s and t , as every edge is contained in a maximal clique of
constant size s + 1, and every vertex is contained in exactly t + 1 maximal cliques.
In particular, the valency k = s(t + 1) and the neighborhood �(x) of each vertex x is
isomorphic to a disjoint union of t + 1 cliques of size s. If c2 = 1, then � is of order
(s, t) for some positive integers s and t . If a1 = 0 then � is of order (1, k − 1).

A distance-regular graph � = (X,R) of diameter d is said to be a regular near
polygon if it is of order (s, t) for some integers s and t , and for every maximal clique
L and a vertex x ∈ X with ∂(x,L) = i < d , |�i(x) ∩ L| = 1. A regular near polygon
having the property that no maximal clique is contained in �d(x) for any x ∈ X is
called a regular near 2d-gon. A regular near 4-gon is called a generalized quadran-
gle. A regular near polygon is often defined as an incidence structure, and in that case
our regular near polygon is called the collinearity graph of a regular near polygon, or
the point graph of it. See [1, Section 6.4].

If a graph does not contain parallelograms of any length, it is called parallelogram
free. A regular near polygon is parallelogram free, and the parallelogram-free condi-
tion is closely related to the existence of strongly closed subgraphs. See Theorem 2.2.

Throughout this paper by strongly regular graphs we mean distance-regular graphs
of diameter two, hence connected.

Now we state our main results.

Theorem 1.1 Let � = (X,R) be a parallelogram-free distance-regular graph of di-
ameter d ≥ 4 such that b1 > b2 and a2 
= 0. Suppose every strongly closed subgraph
C of diameter 2 is completely regular. Then the following hold.

(i) � is a regular near polygon with c2 > 1, and for every pair of vertices x, y at
distance d − 1, � has a strongly closed subgraph Y of diameter d − 1 containing
x and y.

(ii) The covering radius t (C) of each strongly closed subgraph C of diameter 2 is at
least d − 2, and
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(a) If t (C) = d − 2, then � is isomorphic to a Hamming graph or a dual polar
graph.

(b) If t (C) ≥ d − 1, then every strongly closed subgraph Y of diameter d − 1 is
isomorphic to a Hamming graph or a dual polar graph.

When q = 1 and d ≥ 4, we can prove that � itself is isomorphic to a Hamming
graph without assuming that the covering radius is d − 2 by [6, 11]. See the last
section.

We have the following characterization of the case that a strongly regular subgraph
is completely regular with covering radius d − 2.

Theorem 1.2 Let � = (X,R) be a parallelogram-free distance-regular graph of or-
der (s, t) and diameter d ≥ 4. Suppose b1 > b2 and a2 
= 0. Let q = c2 − 1. Then the
following are equivalent.

(i) There is a completely regular code C of covering radius d − 2 such that the
induced subgraph on C is strongly regular.

(ii) There is a strongly closed completely regular code C of width 2 and covering
radius d − 2.

(iii) Every strongly closed subgraph of diameter 2 is completely regular with cover-
ing radius d − 2.

(iv) Every strongly closed subgraph of diameter 2 is completely regular with cover-
ing radius d − 2 and that it is a generalized quadrangle.

(v) q 
= 0 and � has eigenvalues −t − 1 and s − t/q .
(vi) � is isomorphic to a Hamming graph or a dual polar graph.

2 Preliminaries

Lemma 2.1 ([1, Remark on page 86], [8, Lemma 2.6]) Let � be a strongly regular
graph with a2 
= 0, and let u be a vertex of �. Then the induced subgraph � on �2(u)

is connected of diameter at most three.

Theorem 2.2 ([12, Proposition 6.7], [8, Theorem 1.1]) Let � = (X,R) be a
distance-regular graph of diameter d , and let m be a positive integer such that 2 ≤
m ≤ d . Assume that � contains no parallelogram of length i for any i = 2, . . . ,m+ 1
and that b1 > b2. In addition assume one of the following:

(i) m = 2, c2 > 1 and a2 
= 0,
(ii) c2 > 1 and a1 
= 0,

(iii) m = 2 and c2 = 1,
(iv) c2 = 1 and a1 
= 0, or
(v) cm+1 = 1.

Then for any vertices x, y ∈ X with ∂(x, y) ≤ m, the diameter of the strongly closed
subgraph � x, y 	 is ∂(x, y). In particular, if a2 
= 0, then for any vertices x, y ∈ X

with ∂(x, y) = 2, there is a strongly closed subgraph of diameter 2 containing x and
y.
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Lemma 2.3 ([12, Lemma 6.9], [8, Lemma 4.1]) Let � = (X,R) be a distance-
regular graph with diameter d ≥ 3. Suppose � contains no parallelogram of any
length. Let x be a vertex and Y a strongly closed subgraph of diameter 2. Suppose
u ∈ �i(x) ∩ Y and �i+2(x) ∩ Y 
= ∅ with i + 2 ≤ d . Then for all y ∈ Y , we have
∂(x, y) = i + ∂(u, y).

3 Terwilliger algebras and completely regular codes

Let � = (X,R) be a connected graph of diameter d and C a subset of X with width
w = w(C) and covering radius t = t (C). Let Ci = {x ∈ X | ∂(x,C) = i} for i ∈
{0,1, . . . , t}.

Let V = CX = Span(x̂ | x ∈ X) be a vector space over the complex number field
consisting of the set of column vectors with rows indexed by the elements of X, and
x̂ denotes the unit vector whose x-entry is 1 and 0 otherwise.

For each i = 0,1, . . . , d , let Ai ∈ MatX(C) be the i-th adjacency matrix defined
by

(Ai)x,y =
{

1 ∂(x, y) = i,

0 otherwise.

We call A = A1 the adjacency matrix of �.
For i ∈ {0,1, . . . , t}, E∗

i = E∗
i (C) ∈ MatX(C) are defined as follows.

(E∗
i )x,y =

{
1 if x = y and x ∈ Ci,

0 otherwise.

The matrix E∗
i induces the projection onto the subspace E∗

i V = Span(x̂ | x ∈ Ci).

Definition 3.1 The Terwilliger algebra T = T (C) of a connected graph � = (X,R)

associated with a subset C of X is a matrix subalgebra over C of MatX(C) generated
by A together with E∗

0 ,E∗
1 , . . . ,E∗

t , where t = t (C). A T -module W is a T -invariant
linear subspace of V . A nonzero T -module W is said to be irreducible if W does not
contain proper nonzero T -modules. An irreducible T -module W is said to be thin if
dimE∗

i W ≤ 1 for every i = 0,1, . . . , t .

Definition 3.2 Let � = (X,R) be a connected graph, and C a nonempty subset of
X. Let 1C = ∑

x∈C x̂ ∈ V = CX . Then C is said to be a completely regular code if
T (C)1C is a thin irreducible T (C)-module.

Note that if � is a distance-regular graph, the definition of complete regularity in
the introduction coincides with the one given above. The proof is straightforward.
See [9, Proposition 7.2] and [5].

Let � = (X,R) be a connected graph. Then it is immediate that � is distance-
regular if and only if it is regular and every singleton {x} with x ∈ X is completely
regular. It is not difficult to show that if � is distance-regular of diameter d , then
every edge {x, y} with x, y ∈ X is completely regular if and only if a1 = a2 = · · · =
ad−1 = 0, i.e., � is almost bipartite or bipartite.
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Thin Irreducible Modules. Let � = (X,R) be a distance-regular graph of valency
k and diameter d . Let Ai be the i-th adjacency matrix and A = A1. Then there is a
polynomial vi(λ) ∈ C[λ] of degree exactly i such that vi(A) = Ai . Let ki = vi(k).
Then ki = |�i(x)| for every x ∈ X. Let θ0 > θ1 > · · · > θd be distinct eigenvalues
of A and let E0,E1, . . . ,Ed be the primitive idempotents of C[A] corresponding to
each of the distinct eigenvalues. Then each column of Ei is an eigenvector of the
same eigenvalue θi of A, and AEi = θiEi . Let m(θi) = tr(Ei). Then m(θi) is the
multiplicity of θi as an eigenvalue of A. Set 	 = {θ0, θ1, . . . , θd}.

Let C be a nonempty subset of X and T = T (C). We consider an irreducible
T -module W such that E∗

0W 
= 0, which is called a module of endpoint 0.

We review some facts proved in [9].
Let v = E∗

0v be a nonzero vector. Set

ρv(λ) = 1

|X|
d∑

i=0

tvAiv

‖v‖2

vi(λ)

ki

∈ R[λ].

The following is called the inner distribution of the vector v.

a(v) =
(

tvA0v

‖v‖2
, . . . ,

tvAiv

‖v‖2
, . . . ,

tvAdv

‖v‖2

)
.

By definition, if w = w(C) is the width of C, then the degree of ρv(λ) is at most
w. On the other hand by direct computation we have

‖Eiv‖2

‖v‖2
= ρv(θi)m(θi).

Since C[A]v = Span(E0v,E1v, . . . ,Edv), we have

dim C[A]v ≥ d + 1 − (# of roots of ρv(λ) in 	) ≥ d + 1 − w(C).

Set r = r(v) = dim C[A]v − 1. The number r(v) is called the dual degree of v. If 1C

is the characteristic vector of C, we write r(C) for r(1C) and call the dual degree of
C. Now we have the following.

Theorem 3.1 ([9, Theorem 1.1]) Let � = (X,R) be a distance-regular graph of
diameter d , and C a nonempty subset of X. Let E∗

0 = E∗
0 (C) and v = E∗

0v a nonzero
vector. Then the following hold.

(i) dim C[A]v + w(C) ≥ d + 1.
(ii) If dim C[A]v + w(C) = d + 1, then T (C)v is a thin irreducible T (C)-module.

A nonzero vector v ∈ E∗
0V satisfying the condition in Theorem 3.1 (ii) is called a

tight vector. When E∗
0V is spanned by tight vectors, we call C a tight code.

The case that v is the characteristic vector 1C of C is also studied in [2]. See also
[4].
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Corollary 3.2 ([2, Theorem 1]) Let � = (X,R) be a distance-regular graph of di-
ameter d , and C a nonempty subset of X with dual degree r = r(C). If r +w(C) = d ,
then C is a completely regular code. Moreover, we have t = r in this case.

Note that the condition in the corollary can be checked if we have a(1C) together
with the set of eigenvalues of A. In the literature, the inner distribution a(1C) is also
called the inner distribution of the code C and denoted a(C).

4 Completely regular subgraphs

Proposition 4.1 Let � = (X,R) be a distance-regular graph of valency k and diam-
eter d . Let C be a subset of X contained in a proper strongly closed subgraph Y of
�. In addition assume that |�i(z)∩C| depends only on i whenever ∂(z,C) = 1. Then
C is strongly closed.

Proof First note that the maximal valency of Y is not k. Suppose not, and let m be
the diameter of Y . Then cm + am = k and bm = 0. This implies m = d and Y is not
regular. This contradicts Theorem 1.1 in [7].

Let x, y ∈ C such that ∂(x, y) = �. Since the maximal valency of Y is less than k,
there is a vertex u ∈ X \ Y adjacent to x. Let v ∈ C. Since C ⊂ Y and Y is strongly
closed ∂(u, v) = ∂(x, v)+1. Let z ∈ �(x) such that ∂(z, y) ≤ �. We claim that z ∈ C.
Suppose not. Then ∂(z,C) = 1 and the following hold.

∑
v∈C

∂(x, v) + |C| =
∑
v∈C

∂(u, v) =
∑
v∈C

∂(z, v).

Since ∂(z, v) ≤ ∂(x, v) + 1. The above holds only if ∂(z, v) = ∂(x, v) + 1 holds for
all v ∈ C. Since y ∈ C and ∂(z, y) ≤ � = ∂(x, y), this is absurd. Thus we proved the
claim. Hence C is strongly closed. �

An induced subgraph on Y of a graph � = (X,R) is called weakly closed if the
distance in the subgraph is equal to the distance in �.

Corollary 4.2 Let � = (X,R) be a distance-regular graph of diameter d . Let C

be a weakly closed distance-regular subgraph in � of diameter �, and u,v ∈ C

with ∂(u, v) = �. In addition assume that |�i(z) ∩ C| depends only on i whenever
∂(z,C) = 1. If both u and v are contained in a proper strongly closed subgraph Y of
�, then C ⊂ Y and C is strongly closed.

Proof By Proposition 4.1, it suffices to show that C ⊂ Y . Since C is connected for
each w ∈ C, there is a path u = u0 ∼ u1 ∼ · · · ∼ um = w in C. Since the diameter of
C is �, C is weakly closed and Y is strongly closed, C ∩�(u) ⊂ Y and C ∩�(v) ⊂ Y .
Since C is distance-regular and weakly closed, there is a vertex v1 ∈ (�(v)∪{v})∩C

such that ∂(u1, v1) = �. Since v1 ∈ Y , we can proceed by induction to show w ∈ Y . �
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Lemma 4.3 Let � = (X,R) be a distance-regular graph of diameter d . Let 1 ≤ m ≤
d − 1 be an integer. Suppose for u,v ∈ X with ∂(u, v) = m, there is a strongly closed
subgraph C of diameter m containing u and v and C is completely regular. Then the
parameters πi,j of C are determined by m and the parameters of �.

Proof Since C is strongly closed in �, the parameters of C and hence the inner
distribution of C is determined by the parameters of � and m. Now the assertion
follows from [9, Corollary 10.3]. �

5 Completely regular strongly regular subgraphs

In this section, we study parallelogram-free distance-regular graphs having com-
pletely regular strongly regular subgraphs. The goal is to establish the following re-
sult.

Theorem 5.1 Let � = (X,R) be a parallelogram-free distance-regular graph of di-
ameter d ≥ 4 such that b1 > b2 and a2 
= 0. Suppose every strongly closed subgraph
C of diameter 2 is completely regular. Let c2 = q + 1. Then � is a regular near poly-
gon, q ≥ 1 and ci = [

i
1

]
q

for i ∈ {1,2, . . . , d − 1}. Moreover if the covering radius of

C is d − 2, then cd = [
d
1

]
q

and � is a regular near 2d-gon.

We first remark that under the hypothesis of Theorem 5.1, for two vertices x, y

with ∂(x, y) = 2, there is a strongly closed subgraph � x, y 	 of diameter 2 con-
taining x and y by Theorem 2.2.

Hypothesis 5.1 Let � = (X,R) be a parallelogram-free distance-regular graph of
diameter d ≥ 4 such that b1 > b2 and a2 
= 0. Every strongly closed subgraph C of
diameter 2 is completely regular.

Let s = a1 + 1 and t = b1/s. Then � in Hypothesis 5.1 is of order (s, t).

Lemma 5.2 Under Hypothesis 5.1, for every i ≤ d − 2 and u ∈ X with ∂(u,C) = i,
γi = γi(u) = |C ∩ �i(u)| = 1, αi = αi(u) = |C ∩ �i+1(u)| = κ = a2 + c2. In partic-
ular, the covering radius of C is at least d − 2 and the parameters γi and αi of C as
a completely regular code do not depend on the choice of strongly closed subgraphs
of diameter 2 up to i ≤ d − 2.

Proof Let x, y ∈ C with ∂(x, y) = 2. Since i ≤ d − 2, there is a vertex u ∈ �i(x) ∩
�i+2(y). Then by Lemma 2.3, we have the desired conclusion. Since C is completely
regular, this is the case for all u ∈ X with ∂(u,C) = i. �

Lemma 5.3 Under Hypothesis 5.1, C is a generalized quadrangle. In particular
c2 > 1.
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Proof Since � is parallelogram free and C is strongly closed, C is of order (s, τ ) for
some integer τ . Let u ∈ C. Suppose that there are adjacent vertices v,w ∈ �2(u) ∩ C

such that A(v,w) ⊂ �2(u). Let x ∈ B(u,w). Since C is strongly closed, ∂(v, x) = 2.
Let C′ =� v, x 	. Since γ2 = 1 and v,w ∈ C ∩ �2(u), ∂(u,C′) = 1. Let {y} =
�(u) ∩ C′. Then v,w and all vertices in C′ ∩ �2(u) are in �(y), which is absurd as
{v,w} ∪ A(v,w) is a maximal clique. Hence C is a generalized quadrangle. �

Lemma 5.4 Under Hypothesis 5.1, � is a regular near polygon. Moreover if the
covering radius of C is d − 2, then � is a regular near 2d-gon.

Proof Let L be a maximal clique and ∂(u,L) = i ≤ d − 1 for some vertex u. We will
show that |�i(u) ∩ L| = 1. We may assume that i ≥ 2 as L is a maximal clique. By
way of contradiction assume that two vertices v and w are in �i(u) ∩ L.

First assume that �i+1(u)∩L = ∅. Let x ∈ C(u, v). Then ∂(x,w) = 2. Let C =�
x,w 	. Then either ∂(u,C) = i − 1 or ∂(u,C) = i − 2. The first case does not occur
as otherwise ∂(x,w) = 1 by Lemma 5.2. Suppose ∂(u,C) = i − 2. By Lemma 5.3,
we have a contradiction as we assumed that �i+1(u) ∩ L = ∅. This part also proves
that if the covering radius of C is d − 2, there is no maximal clique L such that
∂(u,L) = d .

Next assume that �i+1(u) ∩ L 
= ∅. Let x ∈ �i+1(u) ∩ L and y ∈ C(u, v). Then
∂(x, y) = 2. Let C =� x, y 	. Since v,w ∈ C, this contradicts Lemma 5.2. �

Lemma 5.5 Let q = c2 − 1. Under Hypothesis 5.1 the following hold.

ci+1 −1 = (c2 −1)ci, and ci+1 = 1+q +· · ·+qi =
[
i + 1

1

]
q

for all i ≤ d − 2. (1)

Moreover, if every strongly closed subgraph C of diameter 2 is of covering radius
d − 2, then (1) holds for i = d − 1 as well.

Proof Let u,v,w ∈ X with ∂(u, v) = i + 1 ≤ d and w ∈ C(u, v). We count the num-
ber of pairs in the following set.

N = {(x, y) | x ∈ C(u,w), y ∈ C(x, v) \ {w}}.

First there are ci choices of x and then for each x ∈ C(u,w), there are c2 − 1 choices
of y. Hence we have |N | = (c2 − 1)ci .

Next let y ∈ C(u, v) \ {w}. Since � is a regular near polygon by Lemma 5.4,
∂(y,w) = 2. Let Y be the strongly closed subgraph of diameter 2, containing y and
w. Since {y,w} ⊂ �i(u) and v ∈ Y ∩�i+1(u), ∂(u,Y ) = i−1 if i ≤ d −2 or i = d −1
and every strongly closed subgraph C of diameter 2 is of covering radius d − 2. By
Lemma 5.2, there exists a vertex x such that �i−1(u)∩Y = {x} and that y,w ∈ �(x).
Therefore x is the unique vertex in C(y,w) ∩ �i−1(u). Hence (x, y) ∈ N and |N | =
ci+1 − 1.

Since q = c2 −1 and ci+1 = qci +1, we have the formula for ci+1 by induction. �
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Proof of Theorem 5.1 Since C is a generalized quadrangle with a2 
= 0 by
Lemma 5.3, c2 ≥ 2 and q ≥ 1. Now we have the assertions by Lemma 5.4 and
Lemma 5.5.

Proof of Theorem 1.1 By Theorem 5.1 c2 > 1 and � is a regular near polygon. Since
a2 
= 0, a1 
= 0. Hence for every pair of vertices x, y at distance d −1, � has a strongly
closed subgraph Y of diameter d − 1 containing x and y by Theorem 2.2. Let Y be a
strongly closed subgraph of diameter d − 1 in �. Then Y is a regular near 2(d − 1)-
gon with ci = [

i
1

]
q
. Hence it is with classical parameters (d − 1, q,0, a1 + 1). Now Y

is isomorphic to a Hamming graph or a dual polar graph if d ≥ 4 by Theorem 9.4.4
in [1]. The covering radius of C is at least d − 2 by Lemma 5.2 and the result for the
case the covering radius is d − 2 follows similarly using the characterization in [1,
Theorem 9.4.4]. �

6 Tight completely regular codes of small width

In this section, we consider the case that a subset C of small width w ≤ 2 becomes
a completely regular code with smallest covering radius d − w or 1C is tight that
satisfies the condition in Corollary 3.2.

Lemma 6.1 Let C be a subset of a distance-regular graph � = (X,R) of diameter
d ≥ 2. Let v be a non-zero vector such that supp(v) ⊂ C. Let

ρv(λ) = 1

|X|
d∑

i=0

ηi

vi(λ)

ki

∈ R[λ], where ηi = ηi(v) =
tvAiv

‖v‖2
.

Then the following hold.

(i) If w(C) = 1, then

ρv(λ) = 1

|X|b0
(b0 + η1λ).

(ii) If w(C) = 2, then

ρv(λ) = 1

|X|b0b1
(b0(b1 − η2) + (η1b1 − η2a1)λ + η2λ

2).

Proof Since

v0(λ) = 1, v1(λ) = λ, and c2 · v2(λ) = λ2 − a1λ − b0,

the formulas above follow by direct computation using the fact that η0 = 1 and ηi = 0
for all i > w(C). �

Corollary 6.2 Let C be a subset of a distance-regular graph � = (X,R) of order
(s, t) of diameter d ≥ 2. Let 1C be the characteristic vector of C. Then the following
hold.
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(i) Suppose C is a maximal clique of size s + 1. Then

ρ1C
(λ) = 1

|X|(t + 1)
(t + 1 + λ).

(ii) Suppose C is strongly regular and strongly closed. In addition assume that c2 +
a2 = (q + 1)s with q = c2 − 1, i.e., C is a generalized quadrangle. Then

ρ1C
(λ) = 1

|X|(t + 1)t
(qλ + t − qs)(λ + t + 1).

Proof (i) is immediate. For (ii), η0 = 1, η1 = (q + 1)s and η2 = qs2. Hence the
formula is immediate. �

Proposition 6.3 Let � = (X,R) be a distance-regular graph of order (s, t) of diam-
eter d ≥ 3. Suppose C is a strongly closed generalized quadrangle in �. Then the
following are equivalent.

(i) � has eigenvalues −t − 1 and s − t/q , where q = c2 − 1.
(ii) C is completely regular with covering radius d − 2.

Moreover if (i), (ii) hold, then every maximal clique C1 is completely regular with
covering radius d − 1.

Proof This is a direct consequence of Theorem 3.1, Corollary 3.2 and Corol-
lary 6.2. �

Proof of Theorem 1.2 (iv)⇒(iii)⇒(ii)⇒(i) is clear, and (vi)⇒(v) is well-known. See
[1, p. 261, p. 276].

(i)⇒(ii): Since the diameter of C is two, it is weakly closed. Hence by Corollary 4.2,
C is strongly closed.

(ii)⇒(iii): Let ρ(λ) = ρ1C
(λ). Since ρ(λ) is determined by κ1 = |�(x)∩C| = c2 +a2

and κ2 = |�2(x) ∩ C| = (c2 + a2)(c2 − a2 − s)/c2, ρ does not depend on the choice
of strongly closed subgraph. Moreover by (ii), two distinct eigenvalues of � are the
roots of ρ. Therefore, every strongly closed subgraph of diameter 2 is completely
regular with covering radius d − 2.

(iii)⇒(iv): We need to show that the induced subgraph on C is a generalized quad-
rangle. This follows from Lemma 5.3.

(v)⇒(iv): Since � has an eigenvalue −t − 1, every maximal clique of size s + 1 is
a completely regular code with covering radius d − 1. Let C be a strongly closed
subgraph of diameter 2. Then every maximal clique of size s + 1 contained in C is
completely regular with covering radius 1. Since C is of order (s, τ ) with a suitable
choice of an integer τ , C is a generalized quadrangle. In particular q 
= 0 as a2 
= 0.
Note that if Y is a maximal clique and x ∈ C \ Y , |�(x) ∩ Y | = 1 as Y is maximal.
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Hence ρC is as in Corollary 6.2 and ρC has two eigenvalues −t − 1 and s − t/q as
roots. Therefore, C is completely regular with covering radius d − 2.

(iv)⇒(vi): This is a direct consequence of Proposition 6.3 and Theorem 1.1. �

7 Remarks

For the case q = 1, the following two propositions cover most of our results. We only
sketch their proofs.

Theorem 7.1 Let � be a parallelogram-free distance-regular graph of order (s, t)

with c2 = 2, a2 = 2(s − 1) and c3 = 3 with s > 1. If the diameter d ≥ 3, then � is
isomorphic to the Hamming graph H(d, s + 1).

Proof We proceed by induction on d . If d = 3, then by [6, Corollary], � is isomorphic
to H(3, s + 1). Note that we do not need the assumption s 
= 3 as � is parallelogram
free. Suppose the assertion holds for d −1. By Theorem 2.2, there is a strongly closed
subgraph � of diameter d − 1 in �. By induction hypothesis, � is isomorphic to
H(d −1, s+1) with d ≥ 4. Now by [6, Theorem 1], there is a (d −1)-error correcting
completely regular code of covering radius d in a H(n, s + 1) with s + 1 ≥ 3. These
are uniformly packed codes classified by H. van Tilborg [11] and the only possibility
for � is H(d, s + 1). �

Corollary 7.2 Let � be a parallelogram-free distance-regular graph of order (s, t),
diameter d ≥ 4 with c2 = 2. Suppose � contains a strongly regular (vertex induced)
subgraph with parameters (κ,λ,μ). If κ 
= μ and πi,j = |�j (x) ∩ C| depends only
on i = ∂(x,C) and j whenever (i, j) = (1,1), (1,2) or (2,2). Then � is isomorphic
to the Hamming graph H(d, s + 1).

Proof By our assumption, c2 > 1 and a2 
= 0. By Theorem 2.2, for each pair of
distance two there is a strongly closed subgraph of diameter two containing the
pair. Hence by Corollary 4.2, C is strongly closed. Now by Lemma 2.3, π1,1 = 1,
π1,2 = κ = c2 +a2 and π2,2 = 1. Hence by the proof of Lemma 5.3, C is a generalized
quadrangle and a2 = 2(s −1). By mimicking the proof of Lemma 5.5, c3 = 3. We are
now ready to apply Theorem 7.1 to conclude that � is isomorphic to H(d, s + 1). �

The consideration of the case q = 1 above suggests us to classify distance-regular
graphs of order (s, t) of diameter d ≥ 4 with the following parameters:

ci = 1 + q + · · · + qi−1, ai = ci(s − 1) for all i ∈ {1,2, . . . , d − 1}
with q ≥ 2 and s > 1.

The results in this paper also suggest problems to characterize distance-regular
graphs by a given completely regular subgraph. Since �d(x) is always completely
regular, this problem is connected to the problem to characterize distance-regular
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graphs by the structure of �d(x). We close this paper by giving a possible improve-
ment of the result of this paper.

Replace the hypothesis ‘parallelogram-free’ in Theorem 5.1 and Corollary 5.1
by the following:
� is of order (s, t) and every maximal clique is completely regular.
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