Parallelogram-free distance-regular graphs having completely regular strongly regular subgraphs

Hiroshi Suzuki

Received: 29 December 2007 / Accepted: 19 January 2009 / Published online: 4 February 2009 © Springer Science+Business Media, LLC 2009

Abstract Let $\Gamma = (X, R)$ be a distance-regular graph of diameter *d*. A *parallelogram* of length *i* is a 4-tuple *xyzw* consisting of vertices of Γ such that $\partial(x, y) = \partial(z, w) = 1$, $\partial(x, z) = i$, and $\partial(x, w) = \partial(y, w) = \partial(y, z) = i - 1$. A subset *Y* of *X* is said to be a *completely regular code* if the numbers

$$\pi_{i,j} = |\Gamma_j(x) \cap Y| \quad (i, j \in \{0, 1, \dots, d\})$$

depend only on $i = \partial(x, Y)$ and j. A subset Y of X is said to be strongly closed if

$$\{x \mid \partial(u, x) \leq \partial(u, v), \partial(v, x) = 1\} \subset Y$$
, whenever $u, v \in Y$.

Hamming graphs and dual polar graphs have strongly closed completely regular codes. In this paper, we study parallelogram-free distance-regular graphs having strongly closed completely regular codes. Let Γ be a parallelogram-free distance-regular graph of diameter $d \ge 4$ such that every strongly closed subgraph of diameter two is completely regular. We show that Γ has a strongly closed subgraph of diameter d - 1 isomorphic to a Hamming graph or a dual polar graph. Moreover if the covering radius of the strongly closed subgraph of diameter two is d - 2, Γ itself is isomorphic to a Hamming graph or a dual polar graph. We also give an algebraic characterization of the case when the covering radius is d - 2.

Keywords Distance-regular graph \cdot Association scheme \cdot Homogeneity \cdot Completely regular code

H. Suzuki (🖂)

Department of Mathematics and Computer Science, International Christian University, Mitaka, Tokyo 181-8585, Japan e-mail: hsuzuki@icu.ac.jp

1 Introduction

The study of completely regular codes in a distance-regular graph has a long history [3, 5]. Most of the completely regular codes studied are those with large minimum distance because of the requirements to apply the theory to error-correcting codes. Recently Brouwer et al. [2] studied a special class of completely regular codes in a Q-polynomial distance-regular graph satisfying extremal conditions from a different point of view. Let us call these codes extremal. These extremal codes afford induced structure of a Q-polynomial distance-regular graph and hence they are necessarily connected as a graph or minimum distance one. Independently, we studied the Terwilliger algebra with respect to a subset in [9]. The thin condition of the principal module of this Terwilliger algebra is equivalent to the complete regularity of the base subset. We also gave a sufficient condition, called tight, that the module generated by an end-point-zero vector is thin. In the case of the principal module, if the subset is extremal, then it is tight.

In a recent paper [10], H. Tanaka classified all extremal completely regular codes in certain classical association schemes. For example if the underlying graph is a dual polar graph, then extremal codes are strongly closed. In the literature, one also finds weak-geodesically closed used in place of strongly closed.

In this paper, we study a converse, i.e., we classify parallelogram-free distanceregular graphs having strongly closed completely regular codes. To state our results, we make a few definitions. For notation, terminology and the general theory of distance-regular graphs, we refer the reader to [1].

Let $\Gamma = (X, R)$ be a connected graph of diameter *d* with vertex set *X* and edge set *R*. For vertices *x* and *y*, $\partial(x, y)$ denotes the distance between *x* and *y*, i.e., the length of a shortest path connecting *x* and *y*. More generally, for each $x \in X$ and a subset $S \subset X$ we write $\partial(x, S) = \min{\{\partial(x, s) \mid s \in S\}}$.

For a vertex $u \in X$ and $j \in \{0, 1, \dots, d\}$, let

$$\Gamma_i(u) = \{x \in X \mid \partial(u, x) = j\} \text{ and } \Gamma(u) = \Gamma_1(u).$$

A subset *Y* of *X* is said to be *completely regular*, or a *completely regular code*, if the following numbers

$$\pi_{i,j} = |\Gamma_j(x) \cap Y| \quad (i, j \in \{0, 1, \dots, d\})$$

depend only on $i = \partial(x, Y)$ and j. We write $\gamma_i = \pi_{i,i}$. For $Y \subset X$, the number $t(Y) = \max\{\partial(x, Y) \mid x \in X\}$ is called the *covering radius* of Y, and $w(Y) = \max\{\partial(x, y) \mid x, y \in Y\}$ is called the *width* of Y.

For two vertices u and $v \in X$ with $\partial(u, v) = j$, let

$$C(u, v) = C_j(u, v) = \Gamma_{j-1}(u) \cap \Gamma(v),$$

$$A(u, v) = A_j(u, v) = \Gamma_j(u) \cap \Gamma(v), \text{ and }$$

$$B(u, v) = B_j(u, v) = \Gamma_{j+1}(u) \cap \Gamma(v).$$

A connected graph Γ is said to be *distance-regular* or a *distance-regular graph* if the cardinalities $c_j = |C(u, v)|$, $a_j = |A(u, v)|$ and $b_j = |B(u, v)|$ depend only on $j = \partial(u, v)$ for all $j \in \{0, 1, ..., d\}$. These numbers c_j 's, a_j 's and b_j 's are called the *intersection numbers* of Γ .

A subset Y of the vertex set X is often called a *code*, but in this paper, it is also regarded as the induced subgraph on Y. A nonempty subset Y of X is said to be *strongly closed* if

$$C(u, v) \cup A(u, v) \subset Y$$
 for all $u, v \in Y$.

In this case *Y* is also called a *strongly closed subgraph*. For two vertices *x* and *y*, $\ll x, y \gg$ denotes the smallest strongly closed subgraph containing *x* and *y*. Note that since the intersection of two strongly closed subgraphs is strongly closed and Γ itself is a strongly closed subgraph containing *x* and *y*, $\ll x, y \gg$ always exists.

A *parallelogram* of length *i* is a 4-tuple xyzw consisting of vertices of Γ such that $\partial(x, y) = \partial(z, w) = 1$, $\partial(x, z) = i$, and $\partial(x, w) = \partial(y, w) = \partial(y, z) = i - 1$.

A parallelogram of length 2 is isomorphic to $K_{2,1,1}$. If a distance-regular graph Γ does not have a parallelogram of length 2, then it is said to have *order* (s, t) for some positive integers s and t, as every edge is contained in a maximal clique of constant size s + 1, and every vertex is contained in exactly t + 1 maximal cliques. In particular, the valency k = s(t + 1) and the neighborhood $\Gamma(x)$ of each vertex x is isomorphic to a disjoint union of t + 1 cliques of size s. If $c_2 = 1$, then Γ is of order (s, t) for some positive integers s and t. If $a_1 = 0$ then Γ is of order (1, k - 1).

A distance-regular graph $\Gamma = (X, R)$ of diameter *d* is said to be a *regular near* polygon if it is of order (s, t) for some integers *s* and *t*, and for every maximal clique *L* and a vertex $x \in X$ with $\partial(x, L) = i < d$, $|\Gamma_i(x) \cap L| = 1$. A regular near polygon having the property that no maximal clique is contained in $\Gamma_d(x)$ for any $x \in X$ is called a *regular near* 2*d*-gon. A regular near 4-gon is called a *generalized quadran*-gle. A regular near polygon is often defined as an incidence structure, and in that case our regular near polygon is called the collinearity graph of a regular near polygon, or the point graph of it. See [1, Section 6.4].

If a graph does not contain parallelograms of any length, it is called *parallelogram free*. A regular near polygon is parallelogram free, and the parallelogram-free condition is closely related to the existence of strongly closed subgraphs. See Theorem 2.2.

Throughout this paper by strongly regular graphs we mean distance-regular graphs of diameter two, hence connected.

Now we state our main results.

Theorem 1.1 Let $\Gamma = (X, R)$ be a parallelogram-free distance-regular graph of diameter $d \ge 4$ such that $b_1 > b_2$ and $a_2 \ne 0$. Suppose every strongly closed subgraph *C* of diameter 2 is completely regular. Then the following hold.

- (i) Γ is a regular near polygon with c₂ > 1, and for every pair of vertices x, y at distance d − 1, Γ has a strongly closed subgraph Y of diameter d − 1 containing x and y.
- (ii) The covering radius t(C) of each strongly closed subgraph C of diameter 2 is at least d − 2, and

- (a) If t(C) = d 2, then Γ is isomorphic to a Hamming graph or a dual polar graph.
- (b) If $t(C) \ge d 1$, then every strongly closed subgraph Y of diameter d 1 is isomorphic to a Hamming graph or a dual polar graph.

When q = 1 and $d \ge 4$, we can prove that Γ itself is isomorphic to a Hamming graph without assuming that the covering radius is d - 2 by [6, 11]. See the last section.

We have the following characterization of the case that a strongly regular subgraph is completely regular with covering radius d - 2.

Theorem 1.2 Let $\Gamma = (X, R)$ be a parallelogram-free distance-regular graph of order (s, t) and diameter $d \ge 4$. Suppose $b_1 > b_2$ and $a_2 \ne 0$. Let $q = c_2 - 1$. Then the following are equivalent.

- (i) There is a completely regular code C of covering radius d − 2 such that the induced subgraph on C is strongly regular.
- (ii) There is a strongly closed completely regular code C of width 2 and covering radius d − 2.
- (iii) Every strongly closed subgraph of diameter 2 is completely regular with covering radius d 2.
- (iv) Every strongly closed subgraph of diameter 2 is completely regular with covering radius d - 2 and that it is a generalized quadrangle.
- (v) $q \neq 0$ and Γ has eigenvalues -t 1 and s t/q.
- (vi) Γ is isomorphic to a Hamming graph or a dual polar graph.

2 Preliminaries

Lemma 2.1 ([1, Remark on page 86], [8, Lemma 2.6]) Let Γ be a strongly regular graph with $a_2 \neq 0$, and let u be a vertex of Γ . Then the induced subgraph Δ on $\Gamma_2(u)$ is connected of diameter at most three.

Theorem 2.2 ([12, Proposition 6.7], [8, Theorem 1.1]) Let $\Gamma = (X, R)$ be a distance-regular graph of diameter d, and let m be a positive integer such that $2 \le m \le d$. Assume that Γ contains no parallelogram of length i for any i = 2, ..., m + 1 and that $b_1 > b_2$. In addition assume one of the following:

- (i) $m = 2, c_2 > 1$ and $a_2 \neq 0$,
- (ii) $c_2 > 1$ and $a_1 \neq 0$,
- (iii) m = 2 and $c_2 = 1$,
- (iv) $c_2 = 1$ and $a_1 \neq 0$, or
- (v) $c_{m+1} = 1$.

Then for any vertices $x, y \in X$ with $\partial(x, y) \leq m$, the diameter of the strongly closed subgraph $\ll x, y \gg$ is $\partial(x, y)$. In particular, if $a_2 \neq 0$, then for any vertices $x, y \in X$ with $\partial(x, y) = 2$, there is a strongly closed subgraph of diameter 2 containing x and y.

Lemma 2.3 ([12, Lemma 6.9], [8, Lemma 4.1]) Let $\Gamma = (X, R)$ be a distanceregular graph with diameter $d \ge 3$. Suppose Γ contains no parallelogram of any length. Let x be a vertex and Y a strongly closed subgraph of diameter 2. Suppose $u \in \Gamma_i(x) \cap Y$ and $\Gamma_{i+2}(x) \cap Y \neq \emptyset$ with $i + 2 \le d$. Then for all $y \in Y$, we have $\partial(x, y) = i + \partial(u, y)$.

3 Terwilliger algebras and completely regular codes

Let $\Gamma = (X, R)$ be a connected graph of diameter d and C a subset of X with width w = w(C) and covering radius t = t(C). Let $C_i = \{x \in X \mid \partial(x, C) = i\}$ for $i \in \{0, 1, ..., t\}$.

Let $V = C^X = \text{Span}(\hat{x} \mid x \in X)$ be a vector space over the complex number field consisting of the set of column vectors with rows indexed by the elements of X, and \hat{x} denotes the unit vector whose x-entry is 1 and 0 otherwise.

For each i = 0, 1, ..., d, let $A_i \in Mat_X(C)$ be the *i*-th adjacency matrix defined by

$$(A_i)_{x,y} = \begin{cases} 1 & \partial(x, y) = i, \\ 0 & \text{otherwise.} \end{cases}$$

We call $A = A_1$ the *adjacency matrix* of Γ .

For $i \in \{0, 1, \dots, t\}$, $E_i^* = E_i^*(C) \in Mat_X(C)$ are defined as follows.

$$(E_i^*)_{x,y} = \begin{cases} 1 & \text{if } x = y \text{ and } x \in C_i, \\ 0 & \text{otherwise.} \end{cases}$$

The matrix E_i^* induces the projection onto the subspace $E_i^*V = \text{Span}(\hat{x} \mid x \in C_i)$.

Definition 3.1 The *Terwilliger algebra* T = T(C) of a connected graph $\Gamma = (X, R)$ associated with a subset C of X is a matrix subalgebra over C of $Mat_X(C)$ generated by A together with $E_0^*, E_1^*, \ldots, E_t^*$, where t = t(C). A T-module W is a T-invariant linear subspace of V. A nonzero T-module W is said to be *irreducible* if W does not contain proper nonzero T-modules. An irreducible T-module W is said to be *thin* if dim $E_i^*W \leq 1$ for every $i = 0, 1, \ldots, t$.

Definition 3.2 Let $\Gamma = (X, R)$ be a connected graph, and *C* a nonempty subset of *X*. Let $\mathbf{1}_C = \sum_{x \in C} \hat{x} \in V = \mathbf{C}^X$. Then *C* is said to be a *completely regular code* if $\mathcal{T}(C)\mathbf{1}_C$ is a thin irreducible $\mathcal{T}(C)$ -module.

Note that if Γ is a distance-regular graph, the definition of complete regularity in the introduction coincides with the one given above. The proof is straightforward. See [9, Proposition 7.2] and [5].

Let $\Gamma = (X, R)$ be a connected graph. Then it is immediate that Γ is distanceregular if and only if it is regular and every singleton $\{x\}$ with $x \in X$ is completely regular. It is not difficult to show that if Γ is distance-regular of diameter d, then every edge $\{x, y\}$ with $x, y \in X$ is completely regular if and only if $a_1 = a_2 = \cdots =$ $a_{d-1} = 0$, i.e., Γ is almost bipartite or bipartite. Thin Irreducible Modules. Let $\Gamma = (X, R)$ be a distance-regular graph of valency k and diameter d. Let A_i be the i-th adjacency matrix and $A = A_1$. Then there is a polynomial $v_i(\lambda) \in C[\lambda]$ of degree exactly i such that $v_i(A) = A_i$. Let $k_i = v_i(k)$. Then $k_i = |\Gamma_i(x)|$ for every $x \in X$. Let $\theta_0 > \theta_1 > \cdots > \theta_d$ be distinct eigenvalues of A and let E_0, E_1, \ldots, E_d be the primitive idempotents of C[A] corresponding to each of the distinct eigenvalues. Then each column of E_i is an eigenvector of the same eigenvalue θ_i of A, and $AE_i = \theta_i E_i$. Let $m(\theta_i) = tr(E_i)$. Then $m(\theta_i)$ is the multiplicity of θ_i as an eigenvalue of A. Set $\Theta = \{\theta_0, \theta_1, \ldots, \theta_d\}$.

Let *C* be a nonempty subset of *X* and $\mathcal{T} = \mathcal{T}(C)$. We consider an irreducible \mathcal{T} -module *W* such that $E_0^* W \neq 0$, which is called a module of *endpoint* 0.

We review some facts proved in [9]. Let $\mathbf{v} = E_0^* \mathbf{v}$ be a nonzero vector. Set

$$\rho_{\boldsymbol{v}}(\lambda) = \frac{1}{|X|} \sum_{i=0}^{d} \frac{\overline{v} A_i \boldsymbol{v}}{\|\boldsymbol{v}\|^2} \frac{v_i(\lambda)}{k_i} \in \boldsymbol{R}[\lambda].$$

The following is called the inner distribution of the vector \boldsymbol{v} .

$$a(\mathbf{v}) = \left(\frac{\overline{\iota} \, \mathbf{v} A_0 \mathbf{v}}{\|\mathbf{v}\|^2}, \dots, \frac{\overline{\iota} \, \mathbf{v} A_i \mathbf{v}}{\|\mathbf{v}\|^2}, \dots, \frac{\overline{\iota} \, \mathbf{v} A_d \mathbf{v}}{\|\mathbf{v}\|^2}\right).$$

By definition, if w = w(C) is the width of C, then the degree of $\rho_{\boldsymbol{v}}(\lambda)$ is at most w. On the other hand by direct computation we have

$$\frac{\|E_i \boldsymbol{v}\|^2}{\|\boldsymbol{v}\|^2} = \rho_{\boldsymbol{v}}(\theta_i)m(\theta_i).$$

Since $C[A]v = \text{Span}(E_0v, E_1v, \dots, E_dv)$, we have

dim
$$C[A] \boldsymbol{v} \ge d + 1 - (\# \text{ of roots of } \rho_{\boldsymbol{v}}(\lambda) \text{ in } \Theta) \ge d + 1 - w(C).$$

Set $r = r(v) = \dim C[A]v - 1$. The number r(v) is called the *dual degree* of v. If $\mathbf{1}_C$ is the characteristic vector of C, we write r(C) for $r(\mathbf{1}_C)$ and call the dual degree of C. Now we have the following.

Theorem 3.1 ([9, Theorem 1.1]) Let $\Gamma = (X, R)$ be a distance-regular graph of diameter d, and C a nonempty subset of X. Let $E_0^* = E_0^*(C)$ and $\mathbf{v} = E_0^*\mathbf{v}$ a nonzero vector. Then the following hold.

(i) dim C[A]v + w(C) ≥ d + 1.
(ii) If dim C[A]v + w(C) = d + 1, then T(C)v is a thin irreducible T(C)-module.

A nonzero vector $v \in E_0^* V$ satisfying the condition in Theorem 3.1 (ii) is called a tight vector. When $E_0^* V$ is spanned by tight vectors, we call *C* a tight code.

The case that v is the characteristic vector $\mathbf{1}_C$ of C is also studied in [2]. See also [4].

Corollary 3.2 ([2, Theorem 1]) Let $\Gamma = (X, R)$ be a distance-regular graph of diameter d, and C a nonempty subset of X with dual degree r = r(C). If r + w(C) = d, then C is a completely regular code. Moreover, we have t = r in this case.

Note that the condition in the corollary can be checked if we have $a(\mathbf{1}_C)$ together with the set of eigenvalues of A. In the literature, the inner distribution $a(\mathbf{1}_C)$ is also called the inner distribution of the code C and denoted a(C).

4 Completely regular subgraphs

Proposition 4.1 Let $\Gamma = (X, R)$ be a distance-regular graph of valency k and diameter d. Let C be a subset of X contained in a proper strongly closed subgraph Y of Γ . In addition assume that $|\Gamma_i(z) \cap C|$ depends only on i whenever $\partial(z, C) = 1$. Then C is strongly closed.

Proof First note that the maximal valency of Y is not k. Suppose not, and let m be the diameter of Y. Then $c_m + a_m = k$ and $b_m = 0$. This implies m = d and Y is not regular. This contradicts Theorem 1.1 in [7].

Let $x, y \in C$ such that $\partial(x, y) = \ell$. Since the maximal valency of *Y* is less than *k*, there is a vertex $u \in X \setminus Y$ adjacent to *x*. Let $v \in C$. Since $C \subset Y$ and *Y* is strongly closed $\partial(u, v) = \partial(x, v) + 1$. Let $z \in \Gamma(x)$ such that $\partial(z, y) \leq \ell$. We claim that $z \in C$. Suppose not. Then $\partial(z, C) = 1$ and the following hold.

$$\sum_{v \in C} \partial(x, v) + |C| = \sum_{v \in C} \partial(u, v) = \sum_{v \in C} \partial(z, v).$$

Since $\partial(z, v) \leq \partial(x, v) + 1$. The above holds only if $\partial(z, v) = \partial(x, v) + 1$ holds for all $v \in C$. Since $y \in C$ and $\partial(z, y) \leq \ell = \partial(x, y)$, this is absurd. Thus we proved the claim. Hence *C* is strongly closed.

An induced subgraph on *Y* of a graph $\Gamma = (X, R)$ is called *weakly closed* if the distance in the subgraph is equal to the distance in Γ .

Corollary 4.2 Let $\Gamma = (X, R)$ be a distance-regular graph of diameter d. Let C be a weakly closed distance-regular subgraph in Γ of diameter ℓ , and $u, v \in C$ with $\partial(u, v) = \ell$. In addition assume that $|\Gamma_i(z) \cap C|$ depends only on i whenever $\partial(z, C) = 1$. If both u and v are contained in a proper strongly closed subgraph Y of Γ , then $C \subset Y$ and C is strongly closed.

Proof By Proposition 4.1, it suffices to show that $C \subset Y$. Since *C* is connected for each $w \in C$, there is a path $u = u_0 \sim u_1 \sim \cdots \sim u_m = w$ in *C*. Since the diameter of *C* is ℓ , *C* is weakly closed and *Y* is strongly closed, $C \cap \Gamma(u) \subset Y$ and $C \cap \Gamma(v) \subset Y$. Since *C* is distance-regular and weakly closed, there is a vertex $v_1 \in (\Gamma(v) \cup \{v\}) \cap C$ such that $\partial(u_1, v_1) = \ell$. Since $v_1 \in Y$, we can proceed by induction to show $w \in Y$. \Box

Lemma 4.3 Let $\Gamma = (X, R)$ be a distance-regular graph of diameter d. Let $1 \le m \le d-1$ be an integer. Suppose for $u, v \in X$ with $\partial(u, v) = m$, there is a strongly closed subgraph C of diameter m containing u and v and C is completely regular. Then the parameters $\pi_{i, i}$ of C are determined by m and the parameters of Γ .

Proof Since *C* is strongly closed in Γ , the parameters of *C* and hence the inner distribution of *C* is determined by the parameters of Γ and *m*. Now the assertion follows from [9, Corollary 10.3].

5 Completely regular strongly regular subgraphs

In this section, we study parallelogram-free distance-regular graphs having completely regular strongly regular subgraphs. The goal is to establish the following result.

Theorem 5.1 Let $\Gamma = (X, R)$ be a parallelogram-free distance-regular graph of diameter $d \ge 4$ such that $b_1 > b_2$ and $a_2 \ne 0$. Suppose every strongly closed subgraph *C* of diameter 2 is completely regular. Let $c_2 = q + 1$. Then Γ is a regular near polygon, $q \ge 1$ and $c_i = \begin{bmatrix} i \\ 1 \end{bmatrix}_q$ for $i \in \{1, 2, ..., d - 1\}$. Moreover if the covering radius of *C* is d - 2, then $c_d = \begin{bmatrix} d \\ 1 \end{bmatrix}_q$ and Γ is a regular near 2*d*-gon.

We first remark that under the hypothesis of Theorem 5.1, for two vertices x, y with $\partial(x, y) = 2$, there is a strongly closed subgraph $\ll x, y \gg$ of diameter 2 containing x and y by Theorem 2.2.

Hypothesis 5.1 Let $\Gamma = (X, R)$ be a parallelogram-free distance-regular graph of diameter $d \ge 4$ such that $b_1 > b_2$ and $a_2 \ne 0$. Every strongly closed subgraph C of diameter 2 is completely regular.

Let $s = a_1 + 1$ and $t = b_1/s$. Then Γ in Hypothesis 5.1 is of order (s, t).

Lemma 5.2 Under Hypothesis 5.1, for every $i \le d - 2$ and $u \in X$ with $\partial(u, C) = i$, $\gamma_i = \gamma_i(u) = |C \cap \Gamma_i(u)| = 1$, $\alpha_i = \alpha_i(u) = |C \cap \Gamma_{i+1}(u)| = \kappa = a_2 + c_2$. In particular, the covering radius of *C* is at least d - 2 and the parameters γ_i and α_i of *C* as a completely regular code do not depend on the choice of strongly closed subgraphs of diameter 2 up to $i \le d - 2$.

Proof Let $x, y \in C$ with $\partial(x, y) = 2$. Since $i \leq d - 2$, there is a vertex $u \in \Gamma_i(x) \cap \Gamma_{i+2}(y)$. Then by Lemma 2.3, we have the desired conclusion. Since *C* is completely regular, this is the case for all $u \in X$ with $\partial(u, C) = i$.

Lemma 5.3 Under Hypothesis 5.1, C is a generalized quadrangle. In particular $c_2 > 1$.

Proof Since Γ is parallelogram free and *C* is strongly closed, *C* is of order (s, τ) for some integer τ . Let $u \in C$. Suppose that there are adjacent vertices $v, w \in \Gamma_2(u) \cap C$ such that $A(v, w) \subset \Gamma_2(u)$. Let $x \in B(u, w)$. Since *C* is strongly closed, $\partial(v, x) = 2$. Let $C' = \ll v, x \gg$. Since $\gamma_2 = 1$ and $v, w \in C \cap \Gamma_2(u)$, $\partial(u, C') = 1$. Let $\{y\} =$ $\Gamma(u) \cap C'$. Then v, w and all vertices in $C' \cap \Gamma_2(u)$ are in $\Gamma(y)$, which is absurd as $\{v, w\} \cup A(v, w)$ is a maximal clique. Hence *C* is a generalized quadrangle. \Box

Lemma 5.4 Under Hypothesis 5.1, Γ is a regular near polygon. Moreover if the covering radius of C is d - 2, then Γ is a regular near 2d-gon.

Proof Let *L* be a maximal clique and $\partial(u, L) = i \le d - 1$ for some vertex *u*. We will show that $|\Gamma_i(u) \cap L| = 1$. We may assume that $i \ge 2$ as *L* is a maximal clique. By way of contradiction assume that two vertices *v* and *w* are in $\Gamma_i(u) \cap L$.

First assume that $\Gamma_{i+1}(u) \cap L = \emptyset$. Let $x \in C(u, v)$. Then $\partial(x, w) = 2$. Let $C = \ll x, w \gg$. Then either $\partial(u, C) = i - 1$ or $\partial(u, C) = i - 2$. The first case does not occur as otherwise $\partial(x, w) = 1$ by Lemma 5.2. Suppose $\partial(u, C) = i - 2$. By Lemma 5.3, we have a contradiction as we assumed that $\Gamma_{i+1}(u) \cap L = \emptyset$. This part also proves that if the covering radius of *C* is d - 2, there is no maximal clique *L* such that $\partial(u, L) = d$.

Next assume that $\Gamma_{i+1}(u) \cap L \neq \emptyset$. Let $x \in \Gamma_{i+1}(u) \cap L$ and $y \in C(u, v)$. Then $\partial(x, y) = 2$. Let $C = \ll x, y \gg$. Since $v, w \in C$, this contradicts Lemma 5.2.

Lemma 5.5 Let $q = c_2 - 1$. Under Hypothesis 5.1 the following hold.

$$c_{i+1} - 1 = (c_2 - 1)c_i$$
, and $c_{i+1} = 1 + q + \dots + q^i = \begin{bmatrix} i+1\\1 \end{bmatrix}_q$ for all $i \le d-2$. (1)

Moreover, if every strongly closed subgraph C of diameter 2 is of covering radius d-2, then (1) holds for i = d-1 as well.

Proof Let $u, v, w \in X$ with $\partial(u, v) = i + 1 \le d$ and $w \in C(u, v)$. We count the number of pairs in the following set.

$$N = \{ (x, y) \mid x \in C(u, w), y \in C(x, v) \setminus \{w\} \}.$$

First there are c_i choices of x and then for each $x \in C(u, w)$, there are $c_2 - 1$ choices of y. Hence we have $|N| = (c_2 - 1)c_i$.

Next let $y \in C(u, v) \setminus \{w\}$. Since Γ is a regular near polygon by Lemma 5.4, $\partial(y, w) = 2$. Let *Y* be the strongly closed subgraph of diameter 2, containing *y* and *w*. Since $\{y, w\} \subset \Gamma_i(u)$ and $v \in Y \cap \Gamma_{i+1}(u)$, $\partial(u, Y) = i - 1$ if $i \leq d - 2$ or i = d - 1and every strongly closed subgraph *C* of diameter 2 is of covering radius d - 2. By Lemma 5.2, there exists a vertex *x* such that $\Gamma_{i-1}(u) \cap Y = \{x\}$ and that *y*, $w \in \Gamma(x)$. Therefore *x* is the unique vertex in $C(y, w) \cap \Gamma_{i-1}(u)$. Hence $(x, y) \in N$ and $|N| = c_{i+1} - 1$.

Since $q = c_2 - 1$ and $c_{i+1} = qc_i + 1$, we have the formula for c_{i+1} by induction.

Proof of Theorem 5.1 Since C is a generalized quadrangle with $a_2 \neq 0$ by Lemma 5.3, $c_2 \geq 2$ and $q \geq 1$. Now we have the assertions by Lemma 5.4 and Lemma 5.5.

Proof of Theorem 1.1 By Theorem 5.1 $c_2 > 1$ and Γ is a regular near polygon. Since $a_2 \neq 0, a_1 \neq 0$. Hence for every pair of vertices x, y at distance $d - 1, \Gamma$ has a strongly closed subgraph Y of diameter d - 1 containing x and y by Theorem 2.2. Let Y be a strongly closed subgraph of diameter d - 1 in Γ . Then Y is a regular near 2(d - 1)-gon with $c_i = \begin{bmatrix} i \\ 1 \end{bmatrix}_q$. Hence it is with classical parameters $(d - 1, q, 0, a_1 + 1)$. Now Y is isomorphic to a Hamming graph or a dual polar graph if $d \ge 4$ by Theorem 9.4.4 in [1]. The covering radius of C is at least d - 2 by Lemma 5.2 and the result for the case the covering radius is d - 2 follows similarly using the characterization in [1, Theorem 9.4.4].

6 Tight completely regular codes of small width

In this section, we consider the case that a subset C of small width $w \le 2$ becomes a completely regular code with smallest covering radius d - w or $\mathbf{1}_C$ is tight that satisfies the condition in Corollary 3.2.

Lemma 6.1 Let *C* be a subset of a distance-regular graph $\Gamma = (X, R)$ of diameter $d \ge 2$. Let v be a non-zero vector such that $\operatorname{supp}(v) \subset C$. Let

$$\rho_{\boldsymbol{v}}(\lambda) = \frac{1}{|X|} \sum_{i=0}^{d} \eta_i \frac{v_i(\lambda)}{k_i} \in \boldsymbol{R}[\lambda], \text{ where } \eta_i = \eta_i(\boldsymbol{v}) = \frac{\overline{v} A_i \boldsymbol{v}}{\|\boldsymbol{v}\|^2}.$$

Then the following hold.

(i) *If* w(C) = 1, *then*

$$\rho_{\boldsymbol{v}}(\lambda) = \frac{1}{|X|b_0} (b_0 + \eta_1 \lambda).$$

(ii) If w(C) = 2, then

$$\rho_{\boldsymbol{v}}(\lambda) = \frac{1}{|X|b_0b_1}(b_0(b_1 - \eta_2) + (\eta_1b_1 - \eta_2a_1)\lambda + \eta_2\lambda^2).$$

Proof Since

$$v_0(\lambda) = 1$$
, $v_1(\lambda) = \lambda$, and $c_2 \cdot v_2(\lambda) = \lambda^2 - a_1\lambda - b_0$,

the formulas above follow by direct computation using the fact that $\eta_0 = 1$ and $\eta_i = 0$ for all i > w(C).

Corollary 6.2 Let C be a subset of a distance-regular graph $\Gamma = (X, R)$ of order (s, t) of diameter $d \ge 2$. Let $\mathbf{1}_C$ be the characteristic vector of C. Then the following hold.

(i) Suppose C is a maximal clique of size s + 1. Then

$$\rho_{\mathbf{1}_C}(\lambda) = \frac{1}{|X|(t+1)}(t+1+\lambda).$$

(ii) Suppose C is strongly regular and strongly closed. In addition assume that $c_2 + a_2 = (q + 1)s$ with $q = c_2 - 1$, i.e., C is a generalized quadrangle. Then

$$\rho_{\mathbf{1}_C}(\lambda) = \frac{1}{|X|(t+1)t}(q\lambda + t - qs)(\lambda + t + 1).$$

Proof (i) is immediate. For (ii), $\eta_0 = 1$, $\eta_1 = (q + 1)s$ and $\eta_2 = qs^2$. Hence the formula is immediate.

Proposition 6.3 Let $\Gamma = (X, R)$ be a distance-regular graph of order (s, t) of diameter $d \ge 3$. Suppose C is a strongly closed generalized quadrangle in Γ . Then the following are equivalent.

- (i) Γ has eigenvalues -t 1 and s t/q, where $q = c_2 1$.
- (ii) C is completely regular with covering radius d 2.

Moreover if (i), (ii) hold, then every maximal clique C_1 is completely regular with covering radius d - 1.

Proof This is a direct consequence of Theorem 3.1, Corollary 3.2 and Corollary 6.2. \Box

Proof of Theorem 1.2 (iv) \Rightarrow (ii) \Rightarrow (ii) \Rightarrow (i) is clear, and (vi) \Rightarrow (v) is well-known. See [1, p. 261, p. 276].

(i) \Rightarrow (ii): Since the diameter of *C* is two, it is weakly closed. Hence by Corollary 4.2, *C* is strongly closed.

(ii) \Rightarrow (iii): Let $\rho(\lambda) = \rho_{\mathbf{1}_C}(\lambda)$. Since $\rho(\lambda)$ is determined by $\kappa_1 = |\Gamma(x) \cap C| = c_2 + a_2$ and $\kappa_2 = |\Gamma_2(x) \cap C| = (c_2 + a_2)(c_2 - a_2 - s)/c_2$, ρ does not depend on the choice of strongly closed subgraph. Moreover by (ii), two distinct eigenvalues of Γ are the roots of ρ . Therefore, every strongly closed subgraph of diameter 2 is completely regular with covering radius d - 2.

(iii) \Rightarrow (iv): We need to show that the induced subgraph on *C* is a generalized quadrangle. This follows from Lemma 5.3.

(v) \Rightarrow (iv): Since Γ has an eigenvalue -t - 1, every maximal clique of size s + 1 is a completely regular code with covering radius d - 1. Let *C* be a strongly closed subgraph of diameter 2. Then every maximal clique of size s + 1 contained in *C* is completely regular with covering radius 1. Since *C* is of order (s, τ) with a suitable choice of an integer τ , *C* is a generalized quadrangle. In particular $q \neq 0$ as $a_2 \neq 0$. Note that if *Y* is a maximal clique and $x \in C \setminus Y$, $|\Gamma(x) \cap Y| = 1$ as *Y* is maximal. Hence ρ_C is as in Corollary 6.2 and ρ_C has two eigenvalues -t - 1 and s - t/q as roots. Therefore, C is completely regular with covering radius d - 2.

 $(iv) \Rightarrow (vi)$: This is a direct consequence of Proposition 6.3 and Theorem 1.1.

7 Remarks

For the case q = 1, the following two propositions cover most of our results. We only sketch their proofs.

Theorem 7.1 Let Γ be a parallelogram-free distance-regular graph of order (s, t) with $c_2 = 2$, $a_2 = 2(s - 1)$ and $c_3 = 3$ with s > 1. If the diameter $d \ge 3$, then Γ is isomorphic to the Hamming graph H(d, s + 1).

Proof We proceed by induction on *d*. If d = 3, then by [6, Corollary], Γ is isomorphic to H(3, s + 1). Note that we do not need the assumption $s \neq 3$ as Γ is parallelogram free. Suppose the assertion holds for d - 1. By Theorem 2.2, there is a strongly closed subgraph Δ of diameter d - 1 in Γ . By induction hypothesis, Δ is isomorphic to H(d-1, s+1) with $d \ge 4$. Now by [6, Theorem 1], there is a (d-1)-error correcting completely regular code of covering radius d in a H(n, s + 1) with $s + 1 \ge 3$. These are uniformly packed codes classified by H. van Tilborg [11] and the only possibility for Γ is H(d, s + 1).

Corollary 7.2 Let Γ be a parallelogram-free distance-regular graph of order (s, t), diameter $d \ge 4$ with $c_2 = 2$. Suppose Γ contains a strongly regular (vertex induced) subgraph with parameters (κ, λ, μ) . If $\kappa \ne \mu$ and $\pi_{i,j} = |\Gamma_j(x) \cap C|$ depends only on $i = \partial(x, C)$ and j whenever (i, j) = (1, 1), (1, 2) or (2, 2). Then Γ is isomorphic to the Hamming graph H(d, s + 1).

Proof By our assumption, $c_2 > 1$ and $a_2 \neq 0$. By Theorem 2.2, for each pair of distance two there is a strongly closed subgraph of diameter two containing the pair. Hence by Corollary 4.2, *C* is strongly closed. Now by Lemma 2.3, $\pi_{1,1} = 1$, $\pi_{1,2} = \kappa = c_2 + a_2$ and $\pi_{2,2} = 1$. Hence by the proof of Lemma 5.3, *C* is a generalized quadrangle and $a_2 = 2(s-1)$. By mimicking the proof of Lemma 5.5, $c_3 = 3$. We are now ready to apply Theorem 7.1 to conclude that Γ is isomorphic to H(d, s + 1). \Box

The consideration of the case q = 1 above suggests us to classify distance-regular graphs of order (s, t) of diameter $d \ge 4$ with the following parameters:

$$c_i = 1 + q + \dots + q^{i-1}, a_i = c_i(s-1)$$
 for all $i \in \{1, 2, \dots, d-1\}$

with $q \ge 2$ and s > 1.

The results in this paper also suggest problems to characterize distance-regular graphs by a given completely regular subgraph. Since $\Gamma_d(x)$ is always completely regular, this problem is connected to the problem to characterize distance-regular

graphs by the structure of $\Gamma_d(x)$. We close this paper by giving a possible improvement of the result of this paper.

Replace the hypothesis 'parallelogram-free' in Theorem 5.1 and Corollary 5.1 by the following:

 Γ is of order (*s*, *t*) and every maximal clique is completely regular.

References

- 1. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989)
- Brouwer, A.E., Godsil, C.D., Koolen, J.H., Martin, W.J.: Width and dual width of subsets in polynomial association schemes. J. Comb. Theory A 102, 255–271 (2003)
- 3. Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Research Reports Supplements 1973, No.10
- Hosoya, R., Suzuki, H.: Tight distance-regular graphs with respect to subsets of width two. Eur. J. Comb. 28, 61–74 (2007)
- 5. Neumaier, A.: Completely regular codes. Discrete Math. 106–107, 353–360 (1992)
- 6. Nomura, K.: Distance-regular graphs of Hamming type. J. Comb. Theory B 50, 160–167 (1990)
- 7. Suzuki, H.: On strongly closed subgraphs of highly regular graphs. Eur. J. Comb. 16, 197-220 (1995)
- Suzuki, H.: Strongly closed subgraphs of a distance-regular graph with geometric girth five. Kyushu J. Math. 50, 371–384 (1996)
- Suzuki, H.: The Terwilliger algebra associated with a set of vertices in a distance-regular graph. J. Algebr. Comb. 22, 5–38 (2005)
- Tanaka, H.: Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs. J. Comb. Theory A 113, 903–910 (2006)
- van Tilborg, H.C.A.: Uniformly packed codes. Ph.D. thesis, Eindhoven (1976). http:// alexandria.tue.nl/extra1/PRF2B/7602641.pdf
- Weng, C.: Weak-geodesically closed subgraphs in distance-regular graphs. Graphs Comb. 14, 275– 304 (1998)