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Abstract Let T be the subgroup of diagonal matrices in the group SL(n). The aim
of this paper is to find all finite-dimensional simple rational SL(n)-modules V with
the following property: for each point v ∈ V the closure T v of its T -orbit is a normal
affine variety. Moreover, for any SL(n)-module without this property a T -orbit with
non-normal closure is constructed. The proof is purely combinatorial: it deals with
the set of weights of simple SL(n)-modules. The saturation property is checked for
each subset in the set of weights.
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Introduction

Let T be an algebraic torus defined over an algebraically closed field k of characteris-
tic zero. Recall that an irreducible algebraic T -variety X is called toric if X is normal
and T acts on X with an open orbit. This class of varieties plays an important role in
algebraic geometry, topology and combinatorics due to its remarkable description in
terms of convex geometry, see [6]. Assume that the torus T acts on a variety Y . Then
the closure X = Ty of the T -orbit of a point y ∈ Y is a natural candidate to be a toric
variety. To verify it, one should check that X is normal.

During last decades, normality of torus orbits’ closures was an object of numer-
ous investigations. For example, let G be a semisimple algebraic group with a Borel
subgroup B and a maximal torus T ⊂ B . In [10], it was proved that the closure of a
general T -orbit on the flag variety G/B is normal. Later it was shown that the closure
of a general T -orbit in G/P , where P ⊂ G is a parabolic subgroup, is also normal,
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see [5]. Examples of non-normal closures of non-general torus orbits can be found
in [3].

Now let us consider a finite-dimensional rational T -module V . There exists an
easy combinatorial criterion of normality of T v for a vector v ∈ V . Namely, let v =
vχ1 + · · · + vχm , vχi

�= 0, be the weight decomposition of the vector v. Consider the
corresponding set of T -weights χ1, . . . , χm. If we take χ1, . . . , χm as elements of the
character lattice X(T ), we can generate a semigroup Z+(χ1, . . . , χm), a sublattice
Z(χ1, . . . , χm), and a rational polyhedral cone Q+(χ1, . . . , χm). The set χ1, . . . , χm

is called saturated if Z+(χ1, . . . , χm) = Z(χ1, . . . , χm) ∩ Q+(χ1, . . . , χm). It is well
known (see [9, page 5]) that the following two conditions are equivalent: the set
{χ1, . . . , χm} is saturated and the closure T v of the T -orbit T v is normal. There is an
analogous criterion for the T -action on the projectivisation P(V ), see [3].

The saturation property occurs in many algebraic and geometric problems. In [17],
it was proved that the set of incidence vectors of the bases of a realizable matroid is
saturated. The geometric conclusion of this fact is that for any point y in the affine
cone over the classical Grassmannian Gr(k, n) the closure Ty is normal.

Taken a finite graph � with n vertices, one can associate a finite collection M(�)

of vectors in the lattice Z
n with it:

M(�) = {εi + εj : (ij) is an edge of �},
where ε1, ε2, . . . , εn is the standard basis of Z

n. The saturation property for this set
is equivalent to the fact that for two arbitrary minimal odd cycles C and C′ in �,
either C and C′ have a common vertex or there exists an edge of � joining a vertex
of C with a vertex of C′ (see [12] and [13]). Algebraically, the saturation property
for M(�) is equivalent to the integral closureness for the subalgebra A(�) of the
polynomial algebra k[x1, x2, . . . , xn],

A(�) = k[xixj : (ij) is an edge of �],
in its field of fractions QA(�).

Some general results concerning quivers and the saturation property were obtained
in [4]. It was shown that a finite, connected quiver Q without oriented cycles is a
Dynkin or Euclidean quiver if and only if all orbit semigroups of representations of
Q are saturated.

In the paper [11], the following problem is solved. Let G be a semisimple algebraic
group with a maximal torus T and V be its adjoint module. For which G is the closure
T v normal for all v ∈ V ? The surprising fact is that for G = SL(n) this is always the
case (see [11, Thm.1], and also [15, Ex. 3.7], [14] and [2, Prop.2.1]). In [2], this
combinatorial result is interpreted in terms of representations of quivers.

The aim of this paper is to classify all simple finite-dimensional rational SL(n)-
modules V such that for any v ∈ V the closure T v is normal.

Main Theorem The representations below, together with their dual, form the list of
all irreducible representations of SL(n) where all maximal torus orbits’ closures are
normal:

(1) the tautological representation of SL(n);
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(2) the adjoint representation of SL(n);
(3) exceptional cases:

Group Highest weight G-module
SL(2) 3π1 S3

k
2

SL(2) 4π1 S4
k

2

SL(3) 2π1 S2
k

3

SL(4) π2 �2
k

4

SL(5) π2 �2
k

5

SL(6) π2 �2
k

6

SL(6) π3 �3
k

6

The paper is organized as follows. In Section 1 we give some algebraic definitions
and reformulate the problem in combinatorial terms. From that point, it remains to
check the saturation property for any subset in the system of T -weights of a simple
SL(n)-module. In Section 2 we prove that the saturation property holds for each
subset in the set of weights of the representations listed in the Main Theorem. The
most powerful methods used here are two criteria given in [15, Thm. 3.5] and [15,
Thm. 3.8]. Some reasoning uses the graph theory language. Our reference for graph
theory is [7]. In Section 3 we produce non-saturated subsets in sets of weights for
all other representations. If the set of weights of the representation with the highest
weight λ is a subset in the set of weights of the representation with the highest weight
μ, and a non-saturated subset for λ is known, then one can use it as a non-saturated
subset for μ. Fundamental representations form the most difficult class. To work
with them, we use the following observation. If a non-saturated subset in the set of
weights of the kth fundamental representation of SL(n) is found, then the analogous
non-saturated subset exists in the set of weights of the kth fundamental representation
of SL(n + k).

Another motivation to study normality of torus orbits’ closures comes from a more
general problem. Let G be a connected reductive group with a maximal unipotent
subgroup U normalized by a maximal torus T . Assume that G acts on an affine va-
riety X. Then the passage to U -invariants allows to reduce the question of normality
of a spherical G-orbit closure on X to the question of normality of a T -orbit closure
on X//U , see [1] for a partial realization of this approach.

In further publications, we plan to give a classification of simple G-modules with
normal T -orbit closures for other simple algebraic groups G.

1 Algebraic background and notation

Let V be a finite-dimensional rational T -module. Given any character χ from the
character lattice X(T ), define a weight subspace Vχ as Vχ = {v ∈ V : t · v = χ(t)v}.
It is well known that V = ⊕

χ∈X(T )

Vχ , and only finitely many Vχ are nonzero. The set

{χ1, χ2, . . . , χk} of those χi for which Vχi
�= 0 is called the system of weights of the

T -module V .
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Let Z+ and Q+ denote the sets of integer and rational non-negative numbers, re-
spectively; and let v1, v2, . . . , vm ∈ Q

n. Consider the semigroup Z+(v1, v2, . . . , vm) =
{n1v1 + n2v2 + . . . + nmvm : ni ∈ Z+}, the sublattice Z(v1, v2, . . . , vm) = {z1v1 +
z2v2 + . . . + zmvm : zi ∈ Z}, and the rational polyhedral cone Q+(v1, v2, . . . , vm) =
{q1v1 + q2v2 + . . . + qmvm : qi ∈ Q+}. Define the following important property of
the set {v1, v2, . . . , vm}.

Definition The set of points {v1, v2, . . . , vm} ⊂ Q
n is called saturated if

Z+(v1, v2, . . . , vm) = Z(v1, v2, . . . , vm) ∩ Q+(v1, v2, . . . , vm).

The following result provides a well-known combinatorial criterion of normality
of the torus orbit closure, see [9]:

Theorem 1.1 Consider a rational linear action of a torus T on a vector space V .
Let v ∈ V , and v = vλ1 + · · · + vλs , vλi

�= 0, be its weight decomposition. Then the
closure T v is normal if and only if the set of characters {λ1, . . . , λs} is saturated.

Definition The set of points {λ1, λ2, . . . , λm} ⊂ Q
n is called hereditary normal if

each its subset is saturated.

Corollary 1.2 Given a rational linear action of a torus T on a vector space V ; let
{λ1, . . . , λs} be the set of weights of this action. Then the closure T v is normal for
each v ∈ V if and only if {λ1, . . . , λs} is hereditary normal.

Remark The weight system is multiplied by −1 while changing a representation V

of the torus T with its dual. Hence the property of normality of all T -orbits’ closures
is preserved.

Let G = SL(n). We fix a maximal torus T ⊂ G consisting of all diagonal ma-
trices. An element a = (a1, a2, . . . , an) of the lattice Z

n can be interpreted as a
character χa of the torus T in the following way: χa(t) = t

a1
1 t

a2
2 . . . t

an
n , where

t = diag(t1, t2, . . . , tn). Since t1t2 . . . tn = 1, the points a and b define the same char-
acter if and only if a−b = α(1,1, . . . ,1). Each a from Z

n has a unique representation
a = ã + α(1,1, . . . ,1), where ã ∈ Q

n, α ∈ Q, and
∑

ãi = 0.
Let ε1, ε2, . . . , εn be the standard basis of the lattice Z

n, and

ei = ε̃i =
⎛

⎝−1

n
,−1

n
, . . . ,−1

n
,

n − 1

n
ith place

,−1

n
, . . . ,−1

n

⎞

⎠ .

Notice that e1, e2, . . . , en (further referred to as a quasi-basis) satisfy the only linear
relation

e1 + e2 + . . . + en = 0. (∗)

Identify X(T ) with the Z-lattice generated by e1, e2, . . . , en. Recall that a weight χa

is called dominant if and only if a1 � a2 � . . . � an. The root lattice for SL(n) is a
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lattice generated by the vectors e1 − e2, e2 − e3, . . . , en−1 − en. Due to the ambiguity
of notation,

	 = {a1e1 + a2e2 + . . . + anen : n | (a1 + a2 + . . . + an)},
where | stands for divisibility, i.e. n | m ⇐⇒ ∃z ∈ Z, m = nz.

For a positive integer s | n , define

Z≡0(s)(e1, . . . , en) =
{∑n

i=1
xiei : xi ∈ Z, s |

∑n

i=1
xi

}
.

In this notation the root lattice 	 coincides with Z≡0(n)(e1, . . . , en).
Let V be a finite-dimensional simple rational SL(n)-module, and M(V ) be the

system of weights of the module V with respect to the restricted action T : V . In-
troduce a partial order on M(V ): μ � ν if and only if for ξ = μ − ν the following
conditions hold: ξ1 � 0, ξ1 + ξ2 � 0, . . . , ξ1 + ξ2 + . . . + ξn−1 � 0. It is well known
that M(V ) contains the only maximal element λ with respect to �, it is called the
highest weight of the module. The weight λ is dominant; moreover, for any dominant
weight λ ∈ X(T ) there exists a unique simple SL(n)-module V (λ) with the highest
weight λ (see [16, Chapter 4, §3, Thm.11] or [8, §§20–21]). The role of the Weyl
group W is played here by the permutation group Sn, which acts on Z

n by permuta-
tions of coordinates. It is known that

M(λ) := M(V (λ)) = conv{wλ : w ∈ W } ∩ (λ + 	),

where conv(L) denotes the convex hull of the set L ⊂ R
n; see [8, §21.3].

In our situation, Corollary 1.2 can be reformulated in the following way:

Proposition 1.3 Let V (λ) be a simple module of a semisimple group G with the
highest weight λ. Then the closure of each T -orbit in V (λ) is normal if and only if
M(λ) is hereditary normal.

2 Positive results

In this section we prove that certain sets of weights are hereditary normal. First, let
us present some machinery which proves that a given set of points L is hereditary
normal. Choose a basis in which for any v ∈ L its coordinates are integer. Represent
each point as a column vector of its coordinates in this basis, and let K = K(L) be
an integer p × q matrix formed by all these column vectors. The first algorithm deals
with the objects which we had in the very beginning – with the monomial algebras.

Definition To each column Ki = (k1i , . . . , kpi)
T we put into correspondence a Lau-

rent monomial tKi = t
k1i

1 . . . t
kpi
p . The toric ideal IK associated with K is the kernel

of the k-algebra homomorphism

C[x1, x2, . . . , xq ] → C[t1, . . . , td , t−1
1 , . . . , t−1

d ], xi �→ tKi .
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Definition Suppose that u+ and u− are two vectors from Z
p
+ with disjoint supports,

and let f = xu+ − xu− ∈ IK . We say that f is a circuit in IK if the following two
conditions hold:

• all the coordinates of u+ and u− have no common divisor greater than 1;
• the set of variables which actually occur in f is minimal with respect to inclusion

among all the binomials of IK .

Theorem 2.1 ([15, Thm. 3.8]) A set of points L is hereditary normal if and only if
every circuit in IK(L) has at least one square-free monomial.

The next property of K = K(L) deals only with K , which makes this method so
easy.

Definition The matrix K is called unimodular if it has maximal rank p, and all non-
zero p × p minors of K have the same absolute value.

If the rows of K are linearly dependent, then one can omit the redundant rows and
check unimodularity for the remaining matrix.

Theorem 2.2 ([15, Thm. 3.5]) If K(L) is unimodular, then L is hereditary normal.

2.1 The tautological representation

Its highest weight equals e1. The set M(e1) equals {e1, . . . , en}. It is unimodular,
hence it is hereditary normal.

2.2 The adjoint representation

Its highest weight λ is equal to e1 − en. Acting by W = Sn, we get all vectors of
the form ei − ej . Taking the convex hull adds only 0̄ to this set. We get M(λ) =
{0} ∪ {ei − ej : 1 ≤ i, j ≤ n, i �= j}. It was proved in [15, Ex. 3.7] or [11, Thm.1] that
this set is hereditary normal.

2.3 The representation of SL(2) with the highest weight 3π1

Here we have M(λ) =
{(

3
2 ,− 3

2

)
,
(

1
2 ,− 1

2

)
,
(
− 1

2 , 1
2

)
,
(
− 3

2 , 3
2

)}
(in the usual ba-

sis). After an appropriate change of basis, K(M(λ)) = (3,1,−1,−3), the set of all
circuits of IK(M(λ)) is {x1x

3
3 − 1, x1x4 − 1, x1 − x3

2 , x2x3 − 1, x3
2x4 − 1, x3

3 − x4}. By
Theorem 2.1, the set M(λ) is hereditary normal.

2.4 The representation of SL(2) with the highest weight 4π1

One has to verify that the set M(λ) = {(2,−2), (1,−1), (0,0), (−1,1), (−2,2)} is
hereditary normal. Here we can make K(M(λ)) = (2,1,0,−1,−2), the set of all
circuits of IK(M(λ)) is {x1 − x2

2 , x1x
2
4 − 1, x1x5 − 1, x2x4 − 1, x2

2x5 − 1, x2
4 − x5}. By

Theorem 2.1, it is hereditary normal.
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2.5 The representation of SL(3) with the highest weight 2π1

Its highest weight λ is equal to 2π1 = 2e1, and all the weights of this representation
are pointed in the figure below.

After an appropriate change of basis, K(M(λ)) =
(

1 0 −1 −2 0 2
0 1 −1 0 −2 2

)

. The set

of all circuits of IK(M(λ)) is {x1x2x3 − 1, x4x5x6 − 1, x2
1x4 − 1, x2

2x5 − 1, x2
3x6 −

1, x2
1x2

2 −x6, x
2
1x2

3 −x5, x
2
2x2

3 −x4, x
2
1 −x4x5, x

2
2 −x4x6, x

2
3 −x5x6}. By Theorem 2.1,

it is hereditary normal.

2.6 The representation of SL(6) with the highest weight π3

The highest weight λ equals
(

1
2 , 1

2 , 1
2 ,− 1

2 ,− 1
2 ,− 1

2

)
, M(λ) = { 1

2 (ε1, . . . , ε6) : εi =
±1,

∑
εi = 0}. The corresponding matrix K is (K1 | −K1), where

K1 = 1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1 1 1
1 1 −1 1 −1 −1 1 −1 −1 −1
1 −1 1 −1 1 −1 −1 1 −1 −1

−1 1 1 −1 −1 1 −1 −1 1 −1
−1 −1 −1 1 1 1 −1 −1 −1 1
−1 −1 −1 −1 −1 −1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The rows of K1 are linearly dependent. One can exclude the first row, and it re-
mains to check unimodularity of K2,

K2 =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 −1 1 −1 −1 1 −1 −1 −1
1 −1 1 −1 1 −1 −1 1 −1 −1

−1 1 1 −1 −1 1 −1 −1 1 −1
−1 −1 −1 1 1 1 −1 −1 −1 1
−1 −1 −1 −1 −1 −1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

An easy but cumbersome calculation shows that K2 is unimodular, all its non-zero
minors are equal to ±16, hence M(λ) is hereditary normal.

In the next case we use the following lemmas, their proof can be found in [11].

Lemma 2.3 Let M be a non-saturated set and α be a vector such that α ∈ M and
−α ∈ M . Then either M\{α} or M\{−α} is non-saturated.



522 J Algebr Comb (2009) 30: 515–538

Lemma 2.4 Any set of linearly independent vectors is saturated.

Lemma 2.5 Let v = q1v1 + · · · + qmvm, where v, vi are arbitrary vectors, and qi ∈
Q+. Then one can choose a linearly independent subset {vi1, . . . , vis } ⊂ {v1, . . . , vm}
and numbers q ′

i1
, . . . , q ′

is
∈ Q+ such that

v = q ′
i1
vi1 + · · · + q ′

is
vis .

Definition We mean by an NSS a non-saturated subset {v1, v2, . . . , vs} in the set M

of weights of a representation. By an ENSS we mean the NSS together with a vector
v, where v ∈ Z(v1, v2, . . . , vm) ∩ Q+(v1, v2, . . . , vm), and v �∈ Z+(v1, v2, . . . , vm).

2.7 The representations of SL(4), SL(5) and SL(6) with the highest weight π2

The set of weights M(λ) is equal to {ei + ej : 1 ≤ i < j ≤ n}, where n = 4, 5, 6.
Suppose that there exists an ENSS {w;v1, . . . , vm}, vi ∈ M(λ):

w = z1v1 + · · · + zmvm = q1v1 + · · · + qmvm,

zi ∈ Z, qi ∈ Q+, w �∈ Z+(v1, . . . , vm).

Consider all vi occurring in the right side of this equality with a nonzero coefficient
qi . By Lemma 2.5, we may assume that they are linearly independent. To simplify
the reasoning, consider vector v = w − �q1�v1 − · · · − �qm�vm instead of w. It is
easy to see that v belongs to Z(v1, . . . , vm), to Q+(v1, . . . , vm) and does not belong
to Z+(v1, . . . , vm). We yield that {v;v1, . . . , vm} is also an ENSS. After this change
all the coefficients of the Q+-combination belong to [0,1).

Let � be the quiver associated with {v1, . . . , vm}. Construct a subgraph �′ ⊂ �:
take all the vertices of � and all the edges of � entering into the Q+-combination
above with nonzero coefficients. Write the coefficients of the Q+-combination at the
edges of �′. The further proof consists of a search of all possible graphs �′. The
following observations simplify the search.

(0.1) The number of edges in each connected component of �′ is not greater than
the number of vertices. Otherwise, the vectors corresponding to the edges of this
component are linearly dependent.

(0.2) The number of edges in �′ is less than the number of vertices (it follows
from (∗) that the dimension of the enveloping space equals n − 1).

(0.3) The graph �′ does not contain even cycles. It follows from the fact that the
edges of an even cycle are linearly dependent: their alternating sum is zero.

(0.4) It follows from (0.1) that each connected component of �′ either is a tree or
contains exactly one cycle. In the second case it follows from (0.3) that this cycle is
odd.

(0.5) It follows from (0.2) that �′ has a vertex of degree 0 or 1.
At each vertex, count the sum of all coefficients on the incident edges, and for

each sum take its fractional part. All these fractional parts are equal due to the fact
that all the sums in vertices (they equal the coordinates of v) become integer after
subtracting (∗) with an appropriate coefficient. Now we conclude that



J Algebr Comb (2009) 30: 515–538 523

Fig. 1 Graph �′

(0.6) �′ does not contain vertices of degree 0 and 1 simultaneously: if it does, the
fractional parts of the sums in vertices are all equal to 0, but in the terminal vertex
this sum has only one summand and is not an integer. We consider these two cases
independently.

Case 1. Graph �′ has a vertex of degree 0.
(1.1) Any other connected component of �′ is either a point or has no terminal

vertices (it follows from (0.6)). Moreover, it follows from (0.4) that it is an odd cycle.
(1.2) We have n ≤ 6, consequently, the number of edges in �′ is ≤ 5, but any odd

cycle has ≥ 3 edges, and we yield that �′ has at most one cycle.
Fulfill an exhaustive search within all graphs �′ having a vertex of degree 0:

n = 4, graph is a cycle of length 3 and a point,

n = 5, graph is a cycle of length 3 and two points,

n = 6, graph is a cycle of length 3 and three points,

n = 6, graph is a cycle of length 5 and a point.

The only possible Q+-combination in these cases is 1
2 (v1 +· · ·+vs). This means that

v = e1 + e2 + . . . + es , s ∈ {3,5}, e1, . . . , es correspond to the vertices of the cycle.
But it does not lie in Z(v1, . . . , vm) when n is even. When n = 5, consider also the
graph �. Since v is a Z-combination of the edges of �, � has more than 3 edges:
� ⊃ �′, � �= �′ and �′ has 3 edges. In the representation e1 + e2 + . . . + es the sum
of coefficients of v is odd, hence we should apply (∗) to the existing Z-combination
to get the representation e1 + e2 + . . . + es . For this purpose the edges of � should
touch all the vertices of � (we name this property (∗∗)).

In Fig. 1 the graph �′ is drawn. To satisfy (∗∗), � should contain at least the
following edges (up to symmetry): see Fig. 2a, 2b or 2c. The vertices corresponding
to ei are called Vi . But in all cases we get a contradiction, since e1 +e2 +e3 is already
a Z+-combination:

in Fig. 2a: e1 + e2 + e3 = V1V2 + V2V3 + V1V3 + V4V5,

in Fig. 2b: e1 + e2 + e3 = V4V2 + V2V1 + V1V3 + V3V5,

in Fig. 2c: e1 + e2 + e3 = V4V2 + V2V5 + 2V1V3.

We have shown that the graph � does not provide an NSS if �′ has a vertex of
degree 0.

Case 2. The graph �′ has a vertex X of degree 1. Let XY be an edge incident to
X. We need to subtract (∗) with the same multiplicity as at XY . We get:
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(a) (b) (c)
Fig. 2 Graph � should contain one of these graphs as a subgraph

(2.1) Since X is a terminal vertex of �′, either XY is a connected component of
�′ or the degree of Y is ≥ 3. Indeed, suppose that the degree of Y is 2. Let YZ be the
second edge incident to Y , and let q be the value written at YZ. After subtracting (∗)

the coefficient at Y becomes equal to q , but it should be integer, and we know that
q ∈ (0,1). This is a contradiction.

Find all possible connected components of �′.
On 2 vertices:

On 3 vertices:

On 4 vertices: and
If �′ has a connected component on 5 or 6 vertices, then this component coincides
with �′. Using this observation together with (0.2), we obtain that �′ is a tree. Taking

into account (2.1), it remains to consider only the following trees: , and

. But the edges of are linearly dependent (when n = 6, one should sum
all the thin edges, then subtract the thick one, and obtain (∗)). Therefore, this graph
should not be considered. The result is

On 5 vertices:

On 6 vertices:
Fulfill an exhaustive search within all graphs �′ on n vertices satisfying all the

conditions above. In the case when one of the connected components of �′ is a claw
(i.e., all the edges are incident to one vertex) with at least 4 vertices, its central vertex
will correspond to e1 (it is easy to see that �′ cannot have more than one claw).

n Splitting into Admissible
connected components graphs

4 2 + 2

4 4 or

5 2 + 3

5 5

6 2 + 2 + 2

6 2 + 4 or

6 6

The graphs and do not satisfy our conditions: their edges are linearly de-
pendent.
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If we start with , we can obtain only e1 as the Q+-combination: all the
three edges should appear in the Q+-combination with the same coefficient, say a,
a ∈ (0,1). We sum these three vectors, obtain 3ae1 + ae2 + ae3 + ae4, and sub-
tract (∗) with an appropriate coefficient. Finally we obtain 2ae1. In this notation it
already has integer coordinates (equal to zero), this means that all the other coordi-
nates, 2a among them, should be integers, a = 1

2 , v = e1. But v cannot be obtained
as a Z-combination of vectors of type ei + ej . Indeed, each vi has an even sum of
coordinates, n is even, subtracting (∗) with an integer coefficient does not change
parity of the sum of coordinates, and this proves that any vector from Z{vi}mi=1 has
even sum of coordinates.

The edges of the graph are linearly dependent (here n = 5) because (2·first
edge + the sum of the edges of the cycle) = 0.

The graph : using similar reasoning, v = e1 or 2e1. But there exists an edge
in � \�′, hence e1 is a Z+-combination of the edges of �: take the sum of thick edges

of .

The edges of and are linearly dependent.

In the graph the vector v may be equal only to e1, but e1 can not be obtained
as a Z-combination: 6 is even, and the sum of coordinates of e1 is odd.

In the graph the vector v has to be proportional to e1, moreover, the coeffi-
cient should be even (we use the reasoning as above, from the fact that 6 is even it
follows that the sum of coordinates is even for any vector from Z(v1, . . . , vm)). But if
we add any edge to this set, 2e1 will be obtained as a Z+-combination: take the sum

of thick edges of .
All the cases are considered, and this completes the proof.

3 Negative results

Let λ be a highest weight not listed in the Main Theorem. One has to construct an NSS
in M(λ). There are two possibilities for λ: either the absolute values of all its usual
coordinates are < 1, or λ has a coordinate with the absolute value � 1. Speaking
informally, the second case is practically always the consequence of the first one
(Lemma 3.10), but the NSS in the first case is constructed recursively and its capacity
increases when n increases. The construction of the second case gives an NSS of only
4 vectors for any n.

To prove that a set {v1, . . . , vm} is not saturated, we construct a so-called dis-
criminating function f (v) with the following properties: linearity and f (vi) > 0,
i = 1,2, . . . ,m. The discriminating function will be applied as follows. If one wants
to show that {v0;v1, . . . , vm} is an ENSS, it suffices to present the corresponding Q+-
and Z-combinations for v0 and construct a discriminating function f , such that f (v0)

cannot be composed as the sum of f (vi) with Z+-coefficients.
By xi we denote the ith quasi-coordinate of a vector, if its quasi-basis represen-

tation is fixed. Note that f = a1x1 + . . . + anxn in quasi-basis is well-defined if and
only if a1 + . . . + an = 0.
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3.1 The fundamental weights

In this case λ equals

πk = πk,n =
(

n − k

n
, . . . ,

n − k

n
,− k

n
, . . . ,− k

n

)

in the usual basis, 0 < k < n, n � 3 (if n = 2, the corresponding representation is
mentioned in the Main Theorem). In some proofs we consider πk for SL(n)’s of
different dimensions simultaneously, so the second index in the notation πk,n carries
this data. Here M(λ) = {σλ : σ ∈ Sn}. The highest weight is equal to e1 +e2 + . . .+ek

in quasi-basis, all the points of M(λ) have form ei1 + ei2 + . . . + eik , 1 ≤ i1 < i2 <

. . . < ik ≤ n.
Now we can reformulate the problem. Let {ei} be the quasi-basis, k < n, and the

weight λ = πk is not listed in the Main Theorem. One has to find a non-saturated
subset in the set

{ei1 + ei2 + . . . + eik : 1 ≤ i1 < i2 < . . . < ik ≤ n}.
The construction uses induction on n. In the next section we produce the NSSes

which are the base of induction.

3.1.1 Important particular cases

Example 3.1 n = 7, k = 2. The NSS consists of those and only those vectors which
are the sums of two quasi-basis vectors connected with an edge in the graph below.
We have

v = e1 + e2 + e3 = 1

2

(
(e1 + e2) + (e2 + e3) + (e1 + e3)

)
,

v = −(e4 + e5 + e6 + e7)

= 2(e2 + e3) − (e2 + e4) − (e2 + e5) − (e3 + e6) − (e3 + e7).

Let f = 5(x2 + x3) − 2(x1 + x4 + x5 + x6 + x7). Then

f (e1 + e2) = f (e1 + e3) = f (e2 + e4) = f (e2 + e5) = f (e3 + e6)

= f (e3 + e7) = 3,
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f (e2 + e3) = 10, f (v) = f (e1 + e2 + e3) = 5 · 2 − 2 = 8.

It is clear that 8 cannot be represented as a sum where each summand equals either 3
or 10.

Example 3.2 n = 8, k = 3. Consider the following vectors (in quasi-basis):
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1
v2
v3
v4
v5

v6
v7
v8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 1 1 0 0 0
1 0 0 1 1 0 0 0
1 1 0 0 1 0 0 0
1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0

0 0 1 1 0 1 0 0
0 1 0 1 0 0 1 0
0 1 1 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Take v = (1,1,1,1,1,0,0,0) = 1
3 (v1 + v2 + v3 + v4 + v5) = 2v5 − v6 − v7 − v8. Let

f = x1 + 5(x2 + x3 + x4) + 2x5 − 6(x6 + x7 + x8). Then

f (v1) = 12, f (v2) = f (v3) = 8, f (v4) = 11,

f (v5) = 15, f (v6) = f (v7) = f (v8) = 4, f (v) = 18.

It is easy to see that 18 cannot be represented as a sum of 4, 8, 11, 12, or 15.

Example 3.3 n = 2k, k � 4.
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1
v2
v3
...

vk−1
vk

vk+1
vk+2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 . . . 0 0 0 1 1 . . . 1 1
0 1 0 . . . 0 0 1 0 1 . . . 1 1
0 0 1 . . . 0 0 1 1 0 . . . 1 1
...

...
...

. . .
...

...
...

...
...

. . .
...

...

0 0 0 . . . 1 0 1 1 1 . . . 0 1
0 0 0 . . . 0 1 1 1 1 . . . 1 0

0 1 0 . . . 0 0 1 1 1 . . . 1 0
1 1 0 . . . 0 0 0 1 1 . . . 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Let us show that it is an NSS. Set v = (0, . . . ,0
︸ ︷︷ ︸

k

,1, . . . ,1
︸ ︷︷ ︸

k

), v = v1 + vk+1 − vk+2,

1

k − 2
(v1 + · · · + vk) = 1

k − 2
(1, . . . ,1
︸ ︷︷ ︸

k

, k − 1, . . . , k − 1
︸ ︷︷ ︸

k

) =

= 1

k − 2
(0, . . . ,0
︸ ︷︷ ︸

k

, k − 2, . . . , k − 2
︸ ︷︷ ︸

k

) = (0, . . . ,0
︸ ︷︷ ︸

k

,1, . . . ,1
︸ ︷︷ ︸

k

) = v.
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To explain why v is not a Z+-combination of vectors vi , consider two cases.
Case 1: k = 4. Let f = −6x3 − 7x4 + 5(x5 + x6 + x7) − 2x8. Then

f (v1) = f (v2) = 8, f (v3) = 2, f (v4) = 8, f (v5) = 15, f (v6) = 10, f (v) = 13.

But it is easy to see that 13 cannot be represented as a sum of 2, 8, 10, or 15.
Case 2: k � 5. Let f = (k − 2)(xk+1 + · · · + x2k) − k(x3 + · · · + xk). Then

f (v1) = f (v2) = (k − 2)(k − 1),

f (v3) = f (v4) = · · · = f (vk) = (k − 1)(k − 2) − k,

f (vk+1) = (k − 2)(k − 1), f (vk+2) = (k − 2)2, f (v) = k(k − 2).

If k � 6, then two least possible summands give too much: 2((k − 1)(k − 2) − k) >

k(k − 2), if k = 5, then 15 should be represented as a sum of 12, 7, or 9, but this is
impossible.

Example 3.4 n = 2k + 1, k � 3.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1
v2
v3
...

vk

vk+1

vk+2
vk+3

...

v2k

v2k+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 . . . 1 1 0 0 . . . 0 0
1 0 1 . . . 1 1 0 0 . . . 0 0
1 1 0 . . . 1 1 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

1 1 1 . . . 0 1 0 0 . . . 0 0
1 1 1 . . . 1 0 0 0 . . . 0 0

0 1 . . . 1 1 0 1 0 . . . 0 0
1 0 . . . 1 1 0 0 1 . . . 0 0
...

...
. . .

...
...

...
...

...
. . .

...
...

1 1 . . . 0 1 0 0 0 . . . 1 0
1 1 . . . 1 0 0 0 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Let v = (1, . . . ,1
︸ ︷︷ ︸

k+1

,0, . . . ,0
︸ ︷︷ ︸

k

). Then

v = 1

k
(v1 + · · · + vk+1) = 1

k
(k, . . . , k
︸ ︷︷ ︸

k+1

,0, . . . ,0
︸ ︷︷ ︸

k

) = (1, . . . ,1
︸ ︷︷ ︸

k+1

,0, . . . ,0
︸ ︷︷ ︸

k

),

(k − 1)vk+1 − vk+2 − · · · − v2k+1 =
= (k − 1)(1, . . . ,1

︸ ︷︷ ︸
k

,0, . . . ,0
︸ ︷︷ ︸

k+1

) − (k − 1, . . . , k − 1
︸ ︷︷ ︸

k

,0,1, . . . ,1
︸ ︷︷ ︸

k

) =
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= (0, . . . ,0
︸ ︷︷ ︸

k+1

,−1, . . . ,−1
︸ ︷︷ ︸

k

) = (1, . . . ,1
︸ ︷︷ ︸

k+1

,0, . . . ,0
︸ ︷︷ ︸

k

) = v.

It suffices to show that v does not belong to Z+(v1, v2, . . . , v2k+1). Let f = (k +
1)(x1 + · · · + xk) − k(xk+1 + · · · + x2k+1). Then

f (v1) = · · · = f (vk) = k2 − k − 1, f (vk+1) = k(k + 1),

f (vk+2) = · · · = f (v2k+1) = k2 − k − 1, f (v) = k2.

But if k � 3, then k2 < 2(k2 − k − 1), so k2 cannot be represented as a sum
where each summand equals either (k2 − k − 1) or k(k + 1). This means that
v �∈ Z+(v1, v2, . . . , v2k+1).

Example 3.5 n = 8, k = 2.

The NSS consists of vectors which are sums of two quasi-basis vectors connected
with an edge in the graph above. Let v = e1 + e2 + e3 + e5 + e6 + e7. Then

v = 1

2
((e1 + e2) + (e2 + e3) + (e1 + e3) + (e5 + e6) + (e6 + e7) + (e5 + e7)) ,

v = (e1 + e2) + (e3 + e4) − (e4 + e5) + (e5 + e6) + (e5 + e7).

Check that e1 + e2 + e3 + e5 + e6 + e7 cannot be represented as a Z+-combination
of the vectors of our set. Let f = x1 + x2 + x3 + 2(x5 + x6 + x7) + 9x4 − 18x8.
Then

f (e1 + e2) = f (e2 + e3) = f (e1 + e3) = 2,

f (e5 + e6) = f (e6 + e7) = f (e5 + e7) = 4,

f (e3 + e4) = 10, f (e4 + e5) = 11, f (v) = 9.

But 9 cannot be represented as the sum of integers 2, 4, 10, or 11.

Example 3.6 n = 9, k = 3. Consider the following vectors:

v1 = e1 + e2 + e4, v5 = e1 + e3 + e8,

v2 = e1 + e2 + e5, v6 = e1 + e3 + e9,

v3 = e2 + e3 + e6, v7 = e2 + e4 + e6.



530 J Algebr Comb (2009) 30: 515–538

v4 = e2 + e3 + e7,

Then v = e1 + e2 + e3 = 1
3 (v1 + v2 + v3 + v4 + v5 + v6) = v1 + v3 − v7.

Check that v is not a Z+-combination of v1, v2, v3, v4, v5, v6, and v7. Let f =
5(x1 + x2 + x3 + x4) − 4(x5 + x6 + x7 + x8 + x9). Then f (v1) = 15,

f (v2) = f (v3) = f (v4) = f (v5) = f (v6) = f (v7) = 6, f (v) = 15.

Note that v �= v1 and f (v1) = f (v), so we conclude that if v ∈ Z+(v1, . . . , v7), then
v1 does not occur in this decomposition. But 6 � 15, and this means that v cannot be
obtained as a Z+-combination of vi ’s.

Example 3.7 n = 10, k = 4. Consider the following vectors:

v1 = e1 + e2 + e3 + e5, v4 = e5 + e6 + e7 + e8,

v2 = e1 + e2 + e4 + e6, v5 = e5 + e7 + e8 + e9,

v3 = e3 + e4 + e5 + e6, v6 = e6 + e7 + e8 + e10,

v = e1 + e2 + e3 + e4 + e5 + e6 = 1

2
(v1 + v2 + v3) = v4 − v5 − v6.

Let us show that v �∈ Z+(v1, . . . , v6). Let f = x1 + x3 + x4 + 6x7 + 6x8 − 7x9 −
8x10. Then

f (v1) = f (v2) = f (v3) = 2, f (v4) = 12, f (v5) = 5, f (v6) = 4, f (v) = 3.

But it is clear that 3 cannot be represented as a sum of 2, 4, 5, or 12.

3.1.2 Case when k � n, (n − k) � n

It follows that n � 5. The exceptional case k
n

∈ { 2
5 , 3

5 } will be considered at the end
of the section. Below we suppose that k

n
�∈ { 2

5 , 3
5 }, which gives n � 7.

Lemma 3.8 Assume that there exists an NSS for a pair (n, k), where (n, k) satisfies
the conditions above. Then for each r ∈ N, there exists an NSS for the pair (nr, kr).

Proof Consider an arbitrary vector from M(πk,n). Write down its quasi-coordinates
r times in succession. The result is a vector from M(πkr,nr ): it has kr 1’s and (n−k)r

0’s. If one takes an NSS for (n, k) and performs this procedure on each vector, the
result will be an NSS for (nr, kr). �

Thus, if we construct an NSS for all pairs (n, k) where gcd(n, k) = 1, then the
NSS for all other pairs will be constructed according to Lemma 3.8.

Lemma 3.9 (The Step procedure) If there exists an NSS for a pair (n, k), then there
exists an NSS for the pair (n + k, k).
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Proof The keypoint is that if one takes a weight from M(πk,n), writes it down in the
form where all quasi-coordinates are equal to 0 or to 1, and adds k coordinates equal
to 0, then this weight can be considered as a weight from M(πk,n+k). If one starts
with an ENSS (v;v1, v2, . . . , vm) for (n, k), then one should perform this procedure
on all its vectors and after that add one more vector vm+1 which has 0s at the first
n positions and 1s at the k adjoint positions. Now we show that the obtained set
(v′;v′

1, . . . , v
′
m,vm+1) is indeed an NSS in M(πk,n+k).

Suppose that a vector v lies in the ENSS for (n, k), v = q1v1 + q2v2 + . . . + qsvs ,
qi ∈ Q+. If we fix some representations in quasi-basis for v and for all vi , then this
equality can be re-written in the formal basis in the following form:

v = q1v1 + q2v2 + . . . + qsvs − α(f1 + f2 + . . . + fn),

where fi ’s are the preimages of ei ’s under the projection Q
n → X(T ) ⊗Z Q,

(q1, q2, . . . , qn) �→ q1e1 + q2e2 + . . . + qnen. Obviously, fi ’s are linearly indepen-
dent. For each vi , fix a representation in which it has k coordinates 1 and n − k co-
ordinates 0. The vector v is nonzero, consequently, it has a representation where all
coordinates are nonnegative, but some of them are zeroes. Fix this representation.
Then α ≥ 0 (otherwise all coordinates of v are strictly positive), and we get that in
Q

n+k the following equality holds:

v′ = q1v
′
1 + q2v

′
2 + . . . + qsv

′
s + α(fn+1 + · · · + fn+k) − α(f1 + f2 + . . . + fn+k).

This shows that v′ lies in the Q+-cone generated by v′
1, . . . , v

′
m,vm+1 (here all vectors

taken in quasi-basis {e1, . . . , en+k}).
Similarly one can show that v′ lies in the Z(v′

1, . . . , v
′
m,vm+1).

To prove that the constructed set is an ENSS, it remains to show that v′ does not
lie in Z+(v′

1, . . . , v
′
m,vm+1). Suppose the contrary. Let v′ ∈ Z+(v′

1, . . . , v
′
m,vm+1).

Omit last k coordinates. We get that v ∈ Z+(v1, . . . , vm), so {v;v1, v2, . . . , vm} is not
an ENSS for (n, k).

Notice that this proof also shows how to construct an NSS for a pair (n + k, k) if
the NSS for the pair (n, k) is given. �

Now we can explain how, using these Lemmas, the NSS’s can be constructed for
all pairs (n, k), for which the following three conditions hold:

(1) 1 < k < n − 1,
(2) gcd(n, k) = 1,
(3) n � 7.

Use descent on n. Suppose the NSSes are constructed for all pairs (m, l) with
m < n, satisfying the conditions above. Take a pair (n, k). Suppose k < n

2 (otherwise
change it by n − k and seek for an NSS for the pair (n,n − k), the case n = 2k is
impossible because gcd(n, k) = 1). If all the conditions are held for the pair (n−k, k),
then we have an NSS for it, and using the Step procedure, this NSS can be remade
into the NSS for (n, k). Let us find all the cases when at least one of the conditions
fails for (n − k, k).

Condition (1) fails iff n = 2k + 1. But we have n � 7, hence k � 3. In this case
we already have an NSS (Example 3.4).
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Condition (2) never fails.
Condition (3) fails iff n − k ≤ 5. Find these cases. Recall that k ≤ (n − 1)/2.

Substitute it: n ≤ (n − 1)/2 + 5. This gives n ≤ 9. List all these pairs (n, k) (with
k < n

2 ).

n = 7 : pairs (7,2) and (7,3); n = 8 : pair (8,3); n = 9 : pairs (9,2) and (9,4).

But we already have NSSes for all these pairs. Indeed, the cases (7,2) and (8,3)

coincide with Examples 3.1 and 3.2 respectively. The cases (7,3) and (9,4) are the
particular cases of n = 2k + 1 (Example 3.4). The case (9,2) can be obtained from
(7,2) (Example 3.1) using the Step procedure.

Finally, take all the cases where the NSS is already constructed as the base of the
descent. In all the other cases the descent is feasible, consequently, we have con-
structed an NSS for all pairs (n, k) for which conditions (1) − (3) hold.

Now we consider the case k
n

∈
{

2
5 , 3

5

}
. Let k = 2k1, n = 5k1, k1 � 2. If k1 � 4, we

can construct an NSS using the Step procedure and substitution k → n − k: starting
with an NSS for (2k1, k1), we successively construct NSSes for (3k1, k1), (3k1,2k1),
and (5k1,2k1). If k1 = 2, Example 3.7 can be applied.

If k1 = 3, the pair (n, k) = (15,6), and the required NSS can be obtained from
Example 3.6 using the Step procedure.

3.1.3 Case when k | n or (n − k) | n
Assume that k ≤ n/2. Then k | n, let d = n/k. The case k = 1 is already considered
(see 2.1), so here k � 2.

If k � 4, Example 3.3 shows that the NSS exists for the pair (2k, k). Using the
Step procedure, we can easily rebuild this NSS into the NSS for a pair (kd, d), where
d � 2. It remains to consider cases k = 2 and 3.

k = 2. It follows from the Main Theorem that d � 4. But we already have an NSS
for the pair (8,2) (Example 3.5). Using the Step procedure, we can construct NSSes
for all d > 4.

k = 3. We already have an NSS for (9,3). Using the Step procedure, we can con-
struct an NSS for all n such that n > 9 and 3 | n. We are done.

3.2 Non-fundamental weights

Lemma 3.10 (The Inclusion Lemma) Let λ and λ′ be two dominant weights such
that λ′ ∈ M(λ), and there exists an NSS in M(λ′). Then there exists an NSS in M(λ).

Proof Notice that ∀σ ∈ W σλ′ ∈ M(λ) and P ′ = conv{σλ′ : σ ∈ W } ⊂ P . Then
M(λ′) = (λ′ + 	) ∩ P ′ ⊂ M(λ). This means that the NSS for λ′ is also an NSS for
λ. �

Remark 1 It follows from Lemma 3.10 that we already have NSSes for the major part
of non-fundamental weights (a non-fundamental weight can be reduced to fundamen-
tal). However, this method does not cover all the cases, and the size of the resulting
NSS grows as dimV does. Below, NSSes containing only 4 vectors are constructed
for all such cases.
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There are two cases: all the usual coordinates of λ are integer or all of them are
non-integer. Consider these cases independently. The coordinates of vectors in the
usual basis are denoted by yi .

3.2.1 All the coordinates of λ are integer, λ �= (1,0, . . . ,0,−1)

Definition By a shift we mean the following procedure: take a point λ = (y1, . . . , yn),
fix two indices i < j such that |yi − yj | � 2 and replace λ with the point λ′, where
λ′ = (. . . , yi − 1, . . . , yj + 1, . . . ) if yi > yj and (. . . , yi + 1, . . . , yj − 1, . . . ) other-
wise.

The point λ′ lies in M(λ). Indeed, M(λ) contains the point (. . . , yj , . . . , yi, . . . ),
the convex hull of λ and (. . . , yj , . . . , yi, . . . ) contains λ′. Notice that after each use
of the shift the value y2

1 + . . . + y2
n diminishes by a positive integer. Indeed, let x =

max{yi, yj }, y = min{yi, yj }. Then x − y � 2, and

(x − 1)2 + (y + 1)2 = x2 − 2x + 1 + y2 + 2y + 1 = x2 + y2 − 2(x − y − 1)

� x2 + y2 − 2.

This means that if we apply consequent shifts to λ, then this process cannot be infi-
nite.

Lemma 3.11 If n � 3 and λ satisfies the conditions of Subsection 3.2.1, then
M(λ) contains one of the points (2,0, . . . ,0,−1,−1), (1,1,0, . . . ,0,−2), or
(1,1,0, . . . ,0,−1,−1), and it always contains the point (1,0, . . . ,0,−1).

Proof Let λ = (a1, . . . , an) (in the usual basis). If ∀i ai ∈ {−1,0,1}, then, due to
the fact that λ �= (1,0, . . . ,0,−1), λ has at least 4 nonzero coordinates. Taking into
account that

∑n
1 ai = 0, at least two of them are equal to 1 and two are equal to

−1. In this case, M(λ) contains the point (1,1,0, . . . ,0,−1,−1): split all its other
coordinates into pairs (1,−1) and make them zero (using the shift), then permute the
remaining 4 coordinates. Applying one more shift, we yield (1,0, . . . ,0,−1).

Otherwise, if ∃i, |ai | > 1 (one of the coordinates is big), then maxi,j (ai − aj ) � 3.
Keeping at least one coordinate big, perform the shift for the pairs of indices where
|ai − aj | � 2. This process is finite. Consider a situation where we can perform no
more shifts. If we still have a nonzero coordinate with the same sign as the big co-
ordinate has, we can shift it with the coordinate of the opposite sign (their difference
will obviously be � 2). Otherwise we are in the case where we have a big coordinate
of one sign (without loss of generality positive) and some coordinates of the opposite
sign. If the big coordinate is � 3, then apply a shift to this coordinate and to some
negative coordinate. But we have supposed that shifts are impossible. Then the big
coordinate is equal to 2, nonzero ones among the other coordinates are either −2
or two −1s. But if M(λ) contains a point (2,0,0, . . . ,0,−2), then it also contains
(2,0, . . . ,0,−1,−1) = 1

2 ((2,0, . . . ,0,−2) + (2,0, . . . ,0,−2,0)). We can easily get
(1,0, . . . ,0,−1), performing one more shift. �

Construct NSSes for the first three points.
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Example 3.12 λ = (2,0, . . . ,0,−1,−1), n � 3. Consider vectors

v1 = (1,−1,0,0, . . . ,0), v2 = (−1,−1,2,0, . . . ,0),

v3 = (2,−1,−1,0, . . . ,0),

v = (0,−1,1,0, . . . ,0) = 1

2
(v1 + v2) = v2 + v3 − v1.

Suppose f = −y2, then f (v1) = f (v2) = f (v3) = f (v) = 1, but v �= vi for any i.
We get a contradiction.

The NSS for the point λ = (1,1,0, . . . ,0,−2), n ≥ 3 can be constructed similarly
(one should multiply all the coordinates by −1).

Example 3.13 λ = (1,1,0, . . . ,0,−1,−1) ∈ M(λ), n ≥ 4. Consider vectors

v1 = (1,1,−1,−1,0, . . . ,0), v2 = (1,−1,1,−1,0, . . . ,0),

v3 = (0,1,0,−1,0, . . . ,0), v4 = (0,0,1,−1,0, . . . ,0),

v = (1,0,0,−1,0, . . . ,0) = 1

2
(v1 + v2) = v1 + v4 − v3.

Suppose f = −y4, then f (v1) = f (v2) = f (v3) = f (v4) = f (v) = 1, but v �= vi for
any i. We get a contradiction.

Now take an arbitrary dominant weight λ, n � 3, and the corresponding set M(λ).
It follows from Lemma 3.11 and the Inclusion Lemma that an NSS for λ exists.

It remains to consider the case n = 2, λ = (a,−a). If |a| ≥ 3, then conv{(σ (a1,

a2)), σ ∈ S2} contains the points (2,−2) and (3,−3). But this subset is not saturated:

(1,−1) = 1

2
(2,−2) = (3,−3) − (2,−2),

and the vector (1,−1) is not a linear combination of vectors (2,−2) and (3,−3) with
integer positive coefficients. If, otherwise, a ∈ {0,±1,±2}, then each subset in M(λ)

is saturated (Sections 2.2 and 2.4).

3.2.2 All the coordinates of λ are non-integer

Lemma 3.14 Take a point λ = (a1, a2, . . . , an) (in the usual basis), n � 4. If the set
{a1, a2, . . . , an} contains simultaneously α + 1, α, and α − 1 for some α ∈ R, then
the set M(λ) contains an NSS.

Proof It is easy to see that M(λ) contains a point v1 = (α + 1, α,α − 1, a4, . . . , an),
a4 �= 0 (because a4 �∈ Z). Acting by Sn, we can get the following points from it:

v2 = ( α − 1, α, α + 1, a4, . . . , an ),

v3 = ( α + 1, α − 1, α, a4, . . . , an ),

v4 = ( α, α − 1, α + 1, a4, . . . , an ).
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Let us show that this set is not saturated. Indeed,

1

2
(v1 + v2) = (α,α,α, a4, . . . , an),

v2 + v3 − v4 = (α,α,α, a4, . . . , an).

If f = y4
a4

, then f (v1) = f (v2) = f (v3) = f (v4) = f (v) = 1. But v �= vi for any i,
this means that v is not a Z+-combination of vi . �

Lemma 3.15 (The Good Triple Lemma) Let λ = (a1, . . . , an), n � 4, and all ai be
non-integer. If the collection a1, . . . , an contains at least three different values, then
M(λ) contains a point of form (α + 1, α,α − 1, a4, . . . , an).

Proof Perform several shifts preserving the condition that the set {a1, . . . , an} con-
tains at least 3 different elements. Suppose further shifts are impossible (we men-
tioned above that, starting from any position, only a finite number of shifts is possi-
ble). Consider amax = max{a1, . . . , an}, amin = min{a1, . . . , an}, amid ∈ {a1, . . . , an},
amid �= amax, amid �= amin. If amax − amid � 3, then we can apply the shift to amax and
amid, thus we obtain three different values of coordinates amin, amid + 1, amax − 1.
Similarly, if amid − amin � 3, then at least one more shift is possible. So we yield
amax − amid, amid − amin ∈ {1,2}. If amax − amid = amid − amin = 1, we have already
found a point of necessary type in M(λ). Up to symmetry, one of the two cases is pos-
sible: either amin = amid − 2, amax = amid + 2, or amin = amid − 1, amax = amid + 2.
Consider these two cases.

In the first case, apply the shift to amax and amin. This operation gives us the
required triple (amax − 1, amid, amin + 1).

In the second case, amin = amid − 1, amax = amid + 2, and we know that λ has
at least 4 coordinates. If there are 4 different values among them, the fourth will in-
evitably form a triple of form (α+1, α,α−1) with two of amax, amid, amin. Otherwise
ai ∈ {amax, amid, amin} for any i. But n � 4, this means that at least one of the values
(a1, a2, . . . , an) occurs twice. Suppose n = 4 (we need only 4 ai ’s). The multiplic-
ities of (amax, amid, amin) may be as follows: (1̂,1,2), (1̂,2,1), (2̂,1,1). Apply the
shift to the coordinates marked with the hat. We get one of the following collections:
(amid +1, amid, amid, amid −1), (amid +1, amid +1, amid, amid −1), (amid +2, amid +
1, amid, amid). Each of them contains a triple of form (α+1, α,α−1). But this means
that here we also find a triple of form (α + 1, α,α − 1). �

Lemma 3.16 Let λ = (a1, . . . , an) be a dominant weight, n � 4, ∃i with |ai | > 1, and
all ai �∈ Z. If M(λ) does not contain a point of the form (α + 1, α,α − 1, a4, . . . , an),
then

λ =
(

2n − 2

n
,−2

n
,−2

n
, . . . ,−2

n

)

or λ =
(

2

n
,

2

n
, . . . ,

2

n
,−2n − 2

n

)

.

Proof If the collection a1, . . . , an contains at least 3 different elements, then we can
use the Good Triple Lemma and show that M(λ) contains a point of the desired form.
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This means that ∀i ai ∈ {amax, amin}. Without loss of generality, we may suppose that
amax > 1, and amin < 0 (otherwise multiply all ai by −1).

If amin < −1, then apply the shift to amin and amax. Thus we get amin + 1 and
amax − 1 among the values of the coordinates, and still at least one of amin and amax
is presented (since n � 4 > 3). Using the Good Triple Lemma, we get a contradiction.

We see that −1 < amin < 0. If the collection (a1, . . . , an) contains amax at least for
2 times, then apply the shift to amin and amax. Now we have amax, amin + 1 > 0 and
at least one time amin among the values of coordinates: all the coordinates cannot be
positive. This gives us a contradiction with the Good Triple Lemma.

Then amax enters only once in (a1, . . . , an). If amax > 2, apply the shift to amin
and amax. We get that amax − 1 > 1, amin + 1 < 1 and amin are among the values of
coordinates, which gives us a contradiction with the Good Triple Lemma.

We see that the collection has a form (amax, amin, amin, . . . , amin), 1 < amax < 2,
−1 < amin < 0. Let amin = − k

n
. We have (n − 1)amin + amax = 0 from the initial

conditions. This yields amax = k(n−1)
n

. But amax < 2. Consequently,

k(n − 1)

n
< 2 ⇒ k(n − 1) < 2n ⇒ k <

2n

n − 1
< 3,

because n � 4. Taking into account that amax > 1, we get k = 2, amax = 2n−2
n

,
amin = − 2

n
. But in the beginning of the case we could change the signs at all

the coordinates. Thus, we have two cases: λ =
(

2n−2
n

,− 2
n
,− 2

n
, . . . ,− 2

n

)
and λ =

(
− 2n−2

n
, 2

n
, 2

n
, . . . , 2

n

)
. �

Applying the Lemmas, we see that in the case, when ai �∈ Z, ∃i, |ai | > 1, n � 4,
we have not constructed an NSS only in these two cases. In all the other cases the
NSS exists due to Lemma 3.14. Let us construct an NSS in these two cases. We may

assume that λ =
(

2n−2
n

,− 2
n
,− 2

n
, . . . ,− 2

n

)
= 2e1. Let

v1 = 2e1, v2 = 2e2, w = 2e3, v3 = e1 + e3 ∈ M(λ), v4 = e2 + e3 ∈ M(λ).

Then v1, v2, v3, v4 form an NSS. Indeed, we have

v = e1 + e2 = 1

2
(v1 + v2) = v1 + v4 − v3, f = x1 + x2 + x3 − 3xn.

Then f (v1) = f (v2) = f (v3) = f (v4) = f (v) = 2, and v �= vi for any i. But 2 can-
not be represented as a sum of more than one 2s. We get a contradiction.

Now it remains to consider the cases n = 3 and n = 2.
In the case n = 3 we suppose that the fractional parts of all coordinates are equal

to 2
3 (otherwise change λ for −λ, as we have done earlier). If λ =

(
2
3 , 2

3 ,− 4
3

)
,

then M(λ) is hereditary normal (see 2.5). Below we construct an NSS for λ =(
5
3 ,− 1

3 ,− 4
3

)
= 3e1 + e2, then, using the Inclusion Lemma, show the existence of

an NSS for all other points λ. Let

v1 = e1 = 2

3
(3e1 + e2) + 1

3
(e2 + 3e3),



J Algebr Comb (2009) 30: 515–538 537

v2 = 2e1 + 2e2 = 1

2
(3e1 + e2) + 1

2
(e1 + 3e2),

v3 = 3e1 + e2, v = 2e1 + e2 = v1 + 1

2
v2 = v3 − v1.

If f = x1 − x3, then f (v1) = 1, f (v2) = 2, f (v3) = 3, and f (v) = 2. But v is equal
neither to v2, nor to 2v1. We get a contradiction.

Lemma 3.17 Suppose that λ = (a1, a2, a3) (in the usual basis) is a dominant weight
such that the fractional parts of all ai are equal to 2

3 . Suppose also that there ex-

ists an index i with |ai | > 1, and λ �=
(

2
3 , 2

3 ,− 4
3

)
. Then M(λ) contains a point

(
5
3 ,− 4

3 ,− 1
3

)
.

Proof It follows from the conditions of the Lemma that ∃i, ai ≥ 5
3 . Indeed, otherwise

we have at least 2 positive coordinates, each of them ≤ 2
3 , but due to the condition

of the Lemma there exists an ai such that |ai | > 1. Suppose it is a1. We have a1 =
−a2 − a3 � − 4

3 . This means that λ =
(
− 4

3 , 2
3 , 2

3

)
. We get a contradiction.

If only one coordinate of λ is positive, and it is equal to 5
3 , then λ =

(
5
3 ,− 4

3 ,− 1
3

)
,

and the Lemma is proved. Otherwise either λ has two positive coordinates, or one
of them is � 8

3 . In both cases we can apply the shift to a positive and a negative
coordinate, such that after it λ still has a coordinate ≥ 5

3 , and so on. �

Consider the case n = 2. Suppose that λ = ( a
2 ,− a

2 ), a ∈ N, a is odd. Then for
a = 3 it was already checked that M(λ) is hereditary normal (see 2.3). If a � 5, let
us construct an NSS. Set

v1 =
(

3

2
,−3

2

)

, v2 =
(

5

2
,−5

2

)

.

Then
(

1
2 ,− 1

2

)
= 1

3v1 = 2v1 − v2 �∈ Z+(v1, v2).

So we have constructed non-saturated subsets in the sets of weights for all the
representations not listed in the Main Theorem.
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