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Abstract Let K be a perfect field of characteristic 2. In this paper, we classify all
hyperplanes of the symplectic dual polar space DW(5,K) that arise from its Grass-
mann embedding. We show that the number of isomorphism classes of such hyper-
planes is equal to 5 +N , where N is the number of equivalence classes of the follow-
ing equivalence relation R on the set {λ ∈ K |X2 + λX + 1 is irreducible in K[X]}:
(λ1, λ2) ∈ R whenever there exists an automorphism σ of K and an a ∈ K such that
(λσ

2 )−1 = λ−1
1 + a2 + a.
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1 Introduction

Let n ≥ 2, let K be a perfect field of characteristic 2 and let V be a 2n-dimensional
vector space over K equipped with a nondegenerate alternating bilinear form. With
this bilinear form there corresponds a symplectic polarity ζ of the projective space
PG(V ) = PG(2n − 1,K).

Associated with the polarity ζ there is a symplectic polar space W(2n−1,K) (see
Tits [29]) and a symplectic dual polar space DW(2n − 1,K) (see Cameron [5]). The
singular subspaces of W(2n − 1,K) are the subspaces of PG(2n − 1,K) which are
absolute with respect to ζ . We denote by P the set of all maximal singular subspaces
of W(2n − 1,K). For every next-to-maximal singular subspace β of W(2n − 1,K),
let Lβ denote the set of all maximal singular subspaces of W(2n − 1,K) containing
β , and let L denote the set of all sets Lβ which can be obtained in this way. Then
DW(2n − 1,K) is the point-line geometry with point-set P and line-set L.
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Let
∧n

V denote the n-th exterior power of V . For every point α = 〈v̄1, v̄2, . . . , v̄n〉
of DW(2n − 1,K), let e(α) be the point 〈v̄1 ∧ v̄2 ∧ · · · ∧ v̄n〉 of PG(

∧n
V ). The

subspace � of PG(
∧n

V ) generated by all points e(α), α ∈ P , is
((2n

n

) − ( 2n
n−2

) − 1
)
-

dimensional (see e.g. Brouwer [3] or De Bruyn [16]). By Cooperstein [10], the map
α �→ e(α) defines a full projective embedding of DW(2n − 1,K) into �. In other
words, e is an injective mapping from the point-set of DW(2n − 1,K) to the point-
set of � mapping lines of DW(2n − 1,K) to (full) lines of � such that the image of
e generates the whole projective space �. The embedding e is called the Grassmann
embedding of DW(2n − 1,K).

A set S 	= P of points of DW(2n−1,K) is called a hyperplane of DW(2n−1,K)

if every line of DW(2n − 1,K) intersects S in either the whole line or a singleton. If
� is a hyperplane of the projective space �, then e−1(� ∩ e(P )) is a hyperplane of
DW(2n − 1,K). We say that the hyperplane e−1(� ∩ e(P )) arises from (the Grass-
mann embedding) e. The aim of this paper is to determine the isomorphism classes
of hyperplanes of DW(5,K) that arise from its Grassmann embedding. Except for
the case K ∼= F2 the hyperplanes of DW(5,K) that arise from some projective em-
bedding are precisely the hyperplanes of DW(5,K) that arise from the Grassmann
embedding (see the remark at the end of this section).

If x and y are two points of DW(2n − 1,K), then we denote by d(x, y) the dis-
tance between x and y in the collinearity graph 	 of DW(2n − 1,K) (which has di-
ameter n). The dual polar space DW(2n− 1,K) is a near polygon ([27], [11]) which
means that for every point x and every line L, there exists a unique point πL(x) on
L nearest to x. A set X of points of DW(2n − 1,K) is called connected if the sub-
graph of 	 induced on X is connected. For every point x of DW(2n − 1,K) and
every i ∈ N, 	i(x) denotes the set of points of DW(2n − 1,K) at distance i from x.
We also define x⊥ := 	0(x) ∪ 	1(x). For every nonempty set X of points and every
i ∈ N, 	i(X) is the set of all points y for which d(y,X) := min{d(y, x) |x ∈ X} = i.
If x is a point of DW(2n − 1,K), then the set Hx of points of DW(2n − 1,K) at
distance at most n − 1 from x is a hyperplane of DW(2n − 1,K), called the singu-
lar hyperplane of DW(2n − 1,K) with deepest point x. The singular hyperplanes of
DW(2n − 1,K) arise from the Grassmann embedding of DW(2n − 1,K), see e.g.
Cardinali, De Bruyn and Pasini [8, Section 4.3] or De Bruyn [15, Proposition 2.15].

By Shult [26, Lemma 6.1], every hyperplane of DW(2n − 1,K) is a maximal
subspace of DW(2n − 1,K) and hence its complement is connected. This fact also
implies that if H is a hyperplane of DW(2n − 1,K) arising from the Grassmann
embedding e of DW(2n − 1,K), then 〈e(H)〉� is a hyperplane of � and 〈e(H)〉� ∩
e(P ) = e(H). If H1 and H2 are two distinct hyperplanes of DW(2n − 1,K) arising
from e, then we denote by [H1,H2]∗ the set of all hyperplanes of DW(2n − 1,K) of
the form e−1(e(P ) ∩ �) where � is some hyperplane of � containing 〈e(H1)〉� ∩
〈e(H1)〉� . We also define (H1,H2)

∗ := [H1,H2]∗ \ {H1,H2}.
A quad of DW(2n−1,K) is the set of all maximal singular subspaces of W(2n−

1,K) containing a given (n − 3)-dimensional singular subspace of W(2n − 1,K).
The lines and quads through a given point x of DW(2n − 1,K) define a point-
line geometry Res(x) (natural incidence) which is a projective space isomorphic
to PG(n − 1,K). The points and lines of DW(2n − 1,K) contained in a quad
Q define a point-line geometry Q̃ which is a generalized quadrangle isomorphic
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to DW(3,K) ∼= Q(4,K). The Grassmann embedding e : DW(2n − 1,K) → � of
DW(2n − 1,K) induces a full embedding eQ of Q̃ into the subspace 〈e(Q)〉� of �.
This embedding is isomorphic to the Grassmann embedding of DW(3,K), see e.g.
Cardinali, De Bruyn and Pasini [8, Proposition 4.10]. (Although the discussion there
was limited to the finite case, the arguments work as well for the infinite case.)
The Grassmann embedding of DW(3,K) is isomorphic to the natural embedding
of Q(4,K) into PG(4,K). It is easy to verify that every hyperplane of Q(4,K) is
either a singular hyperplane, a full subgrid or an ovoid, an ovoid being a set of points
intersecting each line in a singleton. Every singular hyperplane or full subgrid of
Q(4,K) arises from the natural embedding of Q(4,K) into PG(4,K). This is not
necessarily true for the ovoids. If an ovoid of Q(4,K) arises from the natural embed-
ding of Q(4,K) into PG(4,K), then it is called classical. So, a classical ovoid is a
nonsingular quadric of Witt index 1 in a hyperplane of PG(4,K).

A max of DW(2n − 1,K) is the set of all maximal singular subspaces of W(2n −
1,K) through a given point x of W(2n − 1,K). The points and lines contained in a
max M define a point-line geometry M̃ which is isomorphic to DW(2n − 3,K) if
n ≥ 3. If A is a hyperplane of M̃ , then HA := 	0(A) ∪ 	1(A) = M ∪ 	1(A) is a
hyperplane of DW(2n − 1,K), called the extension of A ([19, Proposition 1]). The
extension of a singular hyperplane of M̃ is a singular hyperplane of DW(2n − 1,K).
The extension of a full subgrid of a quad of DW(5,K) arises from the Grass-
mann embedding of DW(5,K), see [15, Section 2.3]. In Section 3 (more precisely
Lemma 3.7), we will show that also the extension of a classical ovoid of a quad of
DW(5,K) arises from the Grassmann embedding. If M is a max of DW(2n − 1,K)

and x is a point not contained in M , then x is collinear with a unique point πM(x)

of M , called the projection of x onto M . Moreover, d(x, y) = 1 + d(πM(x), y) for
every point y ∈ M . If M1 and M2 are two disjoint maxes, then the map x �→ πM2(x)

defines an isomorphism between M̃1 and M̃2, see e.g. [11, Theorem 1.10].
Consider the polar space Q(2n,K) related to a nonsingular quadric of Witt-index

n of PG(2n,K) and let DQ(2n,K) denote the associated dual polar space. Since
K is a perfect field of characteristic 2, the dual polar spaces DW(2n − 1,K) and
DQ(2n,K) are isomorphic (see e.g. De Bruyn and Pasini [18]). The dual polar
space DQ(2n,K) has a full embedding into the projective space PG(2n − 1,K)

which is called the spin embedding of DQ(2n,K), see Chevalley [9] or Bueken-
hout and Cameron [4]. If e : DW(2n − 1,K) → � denotes the Grassmann em-
bedding of DW(2n − 1,K), then the intersection N of all subspaces 〈e(Hx)〉� ,
x ∈ P , is called the nucleus of e. By Cardinali, De Bruyn and Pasini [8, Section 4.1],
dim(�) − dim(N ) = 2n; hence, dim(N ) = (2n

n

) − ( 2n
n−2

) − 2n − 1. The hyperplanes
of DW(2n − 1,K) that arise from the spin embedding are precisely the hyperplanes
H of DW(2n − 1,K) that arise from e and that satisfy N ⊆ 〈e(H)〉� . Hence, if
H1 and H2 are two distinct hyperplanes of DW(2n − 1,K) that arise from the spin
embedding, then also every hyperplane of [H1,H2]∗ arises from the spin embedding.

The isomorphism between the dual polar spaces DW(5,K) and DQ(6,K) plays
a crucial role in this paper. The reason why we have imposed the restriction that K is
a perfect field of characteristic 2 is that this isomorphism fails to hold for other fields.
We will now discuss some properties of the hyperplanes of DW(5,K) ∼= DQ(6,K)

that arise from its spin embedding. Proofs of these facts can be found in the papers
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De Bruyn [13], Pralle [23], Shult [25] and Shult & Thas [28]. There are two types
of hyperplanes of DW(6,K) ∼= DQ(6,K) that arise from its spin embedding: the
singular hyperplanes and the so-called hexagonal hyperplanes. The points and lines
contained in a hexagonal hyperplane define a split-Cayley hexagon H(K). If H is a
hexagonal hyperplane of DQ(6,K), then for every quad Q of DQ(6,K), Q ∩ H is
a singular hyperplane of Q. Moreover, for every point x ∈ H , there exists a unique
quad Q through x for which x⊥ ∩ H = x⊥ ∩ Q = Q ∩ H .

In this paper, we prove the following theorem.

Theorem 1.1 Let K be a perfect field of characteristic 2 and let H be a hyperplane of
DW(5,K) arising from the Grassmann embedding. Then H is one of the following:

(1) a singular hyperplane of DW(5,K);
(2) a hexagonal hyperplane of DW(5,K);
(3) the extension of a full subgrid of a quad of DW(5,K);
(4) the extension of a classical ovoid of a quad of DW(5,K);
(5) a hyperplane belonging to some set (HG,Hx)

∗ where G is a full subgrid of a
quad Q of DW(5,K) and x is a point of DW(5,K) not contained in Q for
which πQ(x) ∈ G;

(6) a hyperplane belonging to some set (HG,Hx)
∗ where G is a full subgrid of a

quad Q of DW(5,K) and x is a point of DW(5,K) not contained in Q for
which πQ(x) 	∈ G.

The 6 hyperplane classes mentioned in Theorem 1.1 can be distinguished as fol-
lows. For a hyperplane H of DW(5,K), let DH denote the set of quads of DW(5,K)

that are contained in H . In case (1), DH consists of all quads of DW(5,K) which
contain the deepest point of H . In case (2), DH = ∅ since every quad Q intersects H

in a singular hyperplane of Q̃. In case (3), DH consists of all quads which contain a
line of the grid which defines H . In case (4), DH consists of the unique quad which
carries the ovoid which defines H . In case (5), DH defines a nonempty and nonde-
generate conic in the dual projective plane of Res(πQ(x)). In case (6), DH = ∅ and
there exists a quad Q for which Q ∩ H is not a singular hyperplane of Q̃.

Regarding the uniqueness of the hyperplanes in each of the 6 classes mentioned in
Theorem 1.1, we can say the following:

Theorem 1.2 For each of the classes corresponding to (1), (2), (3), (5) or (6) of
Theorem 1.1, there exists up to isomorphism a unique hyperplane. Two extensions of
classical ovoids are isomorphic if and only if the ovoids of Q(4,K) from which they
arise are isomorphic.

It remains to determine how many isomorphism classes of classical ovoids of
Q(4,K) there are. Take a reference system in the projective space PG(4,K) and
suppose Q(4,K) is associated with the quadric Q ↔ X2

0 + X1X2 + X3X4 = 0 of
PG(4,K). For every λ ∈ K, let πλ be the hyperplane X4 = X3 + λX0 of PG(4,K)

and put Oλ := Q ∩ πλ. The equation of Oλ induced on the hyperplane πλ is
X1X2 + (X2

0 + λX0X3 + X2
3). So, Oλ is a (classical) ovoid of Q(4,K) if and only if
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λ ∈ � := {λ ∈ K |X2 + λX + 1 is irreducible in K[X]}. Define the following equiv-
alence relation R on the set �: (λ1, λ2) ∈ R whenever there exists an automorphism
σ of K and an a ∈ K such that (λσ

2 )−1 = λ−1
1 + a2 + a. Then we show the following:

Theorem 1.3 Let K be a perfect field of characteristic 2. Then:

(i) Every classical ovoid O of Q(4,K) is isomorphic to an ovoid Oλ for some λ ∈ �.
(ii) If λ1, λ2 ∈ �, then the classical ovoids Oλ1 and Oλ2 of Q(4,K) are isomorphic

if and only if (λ1, λ2) ∈ R.

Hence, we can say the following:

Corollary 1.4 Let K be a perfect field of characteristic 2. Then:

(i) The number of nonisomorphic classical ovoids of Q(4,K) is equal to the number
N of classes of the equivalence relation R.

(ii) The number of nonisomorphic hyperplanes of DW(5,K) is equal to 5 + N .

The results mentioned in Theorems 1.1 and 1.2 were already known if K is a
finite field of characteristic 2, see [14]. The proofs given in [14] however make use
of several counting arguments. The key result which allows us to avoid all counting
arguments is Lemma 4.1 whose proof relies very much on a recent result of Blok,
Cardinali and De Bruyn [1] (see also [7]) on the nucleus of the Grassmann embedding
of DW(5,K). Some of the lemmas mentioned in that paper are essentially contained
in [14] since their proofs do not essentially make use of the finiteness of the field.
Some other lemmas require an adaptation of the arguments so that their proofs would
also work in the infinite case. We have decided to include also complete proofs of
these lemmas in order to be able to offer the reader complete, self-contained and
streamlined proofs for Theorems 1.1 and 1.2.

Remark If |K| 	= 2, then the Grassmann embedding of DW(5,K) is the so-called
absolutely universal embedding of DW(5,K), see [10], [17] and [20]. In that case,
the hyperplanes of DW(5,K) that arise from some projective embedding are pre-
cisely the hyperplanes of DW(5,K) arising from the Grassmann embedding. If
|K| = 2, then the Grassmann embedding is not the absolutely universal embedding
of DW(5,K) = DW(5,2), see e.g. Blokhuis and Brouwer [2] or Li [21]. The dual
polar space DW(5,2) has 6 isomorphism classes of hyperplanes which do not arise
from the Grassmann embedding, see [24] or [14].

2 Some properties of the automorphism group of DW(2n − 1,K)

Let W(2n − 1,K), n ≥ 2, be the symplectic polar space associated with a nonde-
generate alternating bilinear form (·, ·) of a 2n-dimensional vector space V over a
field K. Suppose g is an element of �L(V ) for which there exists an ag ∈ K \ {0}
and an automorphism σg of K such that (g(x̄), g(ȳ)) = ag · (x̄, ȳ)σg for all x̄, ȳ ∈ V .
Then the map 〈x̄〉 �→ 〈g(x̄)〉 defines an automorphism of W(2n − 1,K). Conversely,
every automorphism of W(2n − 1,K) is obtained in this way.
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Let A denote the full automorphism group of DW(2n − 1,K). Then every ele-
ment of A is induced by an automorphism of W(2n − 1,K), and conversely. The
following properties are easily verified taking into account the above description of
the automorphisms of A (some of them also follow from Witt’s theorem):

(P1) A acts transitively on the set of points of DW(2n − 1,K).
(P2) A acts transitively on the set of ordered pairs (x1, x2) where x1 and x2 are two

opposite points of DW(2n − 1,K).
(P3) A acts transitively on the set of maxes of DW(2n − 1,K).
(P4) If θ ∈ A fixes the point x of DW(2n − 1,K), then θ trivially induces an auto-

morphism of Res(x) ∼= PG(n− 1,K). Conversely, if n ≥ 3 then every automor-
phism of Res(x) is induced by an automorphism of DW(2n − 1,K) fixing x.

(P5) If n ≥ 3, if M is a max of DW(2n − 1,K) and if θ is an automorphism of the
point-line geometry M̃ , then there exists an automorphism θ ′ of DW(2n−1,K)

such that θ ′(x) = θ(x) for every x ∈ M .
(P6) The automorphism group of W(2n − 1,K) acts transitively on the set of hy-

perbolic lines of W(2n − 1,K). [With a hyperbolic line we mean a line of
PG(2n − 1,K) which is not a totally isotropic line of W(2n − 1,K).]

(P7) If e denotes the Grassmann embedding of DW(2n−1,K) into � = PG(
∧n

V ),
then for every automorphism θ of DW(2n − 1,K), there exists an automor-
phism θ̃ of � such that e(θ(x)) = θ̃ (e(x)) for every point x of DW(2n− 1,K).
If θ is associated with a projectivity of PG(2n − 1,K), then θ̃ is a projectiv-
ity of �. (Every g ∈ �L(V ) naturally induces an element g̃ ∈ �L(

∧n
V ), and

the automorphisms of K corresponding to g and g̃ coincide.) Property (P7) im-
plies that if a hyperplane H of DW(2n − 1,K) arises from e, then also every
hyperplane θ(H), θ ∈ A, arises from e.

Lemma 2.1 Let n ≥ 2. For every max M of DW(2n− 1,K), there exists a group TM

of automorphisms of DW(2n − 1,K) satisfying:

(i) every element of TM fixes M pointwise;
(ii) if L is a line meeting M in a unique point z, then TM acts regularly on L \ {z}.

Proof Let 〈x̄∗〉 denote the point of W(2n − 1,K) corresponding to the max M of
DW(2n−1,K). For every k ∈ K, the symplectic transvection ȳ �→ ȳ −k(x̄∗, ȳ)x̄∗ of
GL(V ) defines an automorphism of W(2n − 1,K) and hence also an automorphism
τk of DW(2n− 1,K). Put TM := {τk |k ∈ K}. Then TM is a group of automorphisms
of DW(2n − 1,K) fixing M pointwise.

Now, let L be a line meeting M in a unique point z. Then L corresponds to an
(n − 2)-dimensional singular subspace β = 〈x̄1, x̄2, . . . , x̄n−1〉 of W(2n − 1,K) and
α := 〈x̄1, x̄2, . . . , x̄n−1, x̄

∗〉 is the (n − 1)-dimensional singular subspace of W(2n −
1,K) corresponding to z. Let 〈x̄1, x̄2, . . . , x̄n〉 be an (n − 1)-dimensional singular
subspace through β distinct from α. Then the points of L \ {z} correspond to the
(n − 1)-dimensional singular subspaces 〈x̄1, x̄2, . . . , x̄n−1, x̄n + λx̄∗〉, λ ∈ K \ {0}. It
is now straightforward to verify that TM acts regularly on the set L \ {z} (notice that
(x̄1, x̄

∗) = . . . = (x̄n−1, x̄
∗) = 0 and (x̄n, x̄

∗) 	= 0). �
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Lemma 2.2 The automorphism group of Q(4,K) acts transitively on the set of full
subgrids of Q(4,K).

Proof Let ζ be a symplectic polarity of PG(3,K) giving rise to DW(3,K) ∼=
Q(4,K). For every full subgrid G of Q(4,K) there exists a hyperbolic line L of
W(3,K) such that the points of G correspond to the totally isotropic lines of W(3,K)

meeting L and Lζ . The lemma now follows from Property (P6). �

Lemma 2.3 The automorphism group of Q(4,K) acts transitively on the set of all
pairs (G,x) where G is a full subgrid of Q(4,K) and x is a point of Q(4,K) not
contained in G.

Proof By Lemma 2.2, the automorphism group of Q(4,K) acts transitively on the
set of full subgrids of Q(4,K). If G is a full subgrid of Q(4,K), then G is a hyper-
plane and hence its complement is connected. So, it suffices to prove that for any full
subgrid G of Q(4,K) and any two distinct collinear points x1 and x2 of Q(4,K) not
contained in G, there exists an automorphism of Q(4,K) stabilizing G and mapping
x1 to x2. For such a choice of G, x1 and x2, let x denote the unique point in x1x2 ∩G

and let L denote a line of G containing x. Then there exists a unique automorphism
in TL mapping x1 to x2. This automorphism of TL stabilizes G. �

Lemma 2.4 The automorphism group of DW(5,K) acts transitively on the pairs
(G,x) where G is a full subgrid of a quad and x is a point of 	2(G).

Proof The automorphism group of DW(5,K) acts transitively on the set of full sub-
grids by Properties (P3) + (P5) and Lemma 2.2. Now, fix a certain full subgrid G

and let Q denote the unique quad containing G. Then 	2(G) is connected since it
is the complement of a hyperplane. So, it suffices to prove that for any two distinct
collinear points x1, x2 ∈ 	2(G), there exists an automorphism of DW(5,K) stabiliz-
ing G and mapping x1 to x2. Let x denote the unique point of the line x1x2 contained
in G ∪ 	1(G). If x ∈ Q, put M := Q; otherwise, let M denote one of the two quads
of DW(5,K) through x intersecting G in a line. By Lemma 2.1, there exists an au-
tomorphism of TM mapping x1 to x2. This automorphism stabilizes G. �

Lemma 2.5 Let K be a perfect field of characteristic 2. Let x1 and x2 be two points
of DW(5,K) at distance 3 from each other. Then there exists a line L in DW(5,K)

satisfying the following: (i) d(x1,L) = d(x2,L) = 2; (ii) πL(x1) 	= πL(x2); (iii)

for any two points y1, y2 ∈ L \ {πL(x1),πL(x2)}, there exists an automorphism θ of
DW(5,K) fixing x1 and x2, stabilizing L and mapping y1 to y2.

Proof Choose a reference system such that the polar space W(5,K) is described by
the following alternating form:

(X0Y3 − X3Y0) + (X1Y4 − X4Y1) + (X2Y5 − X5Y2).

Without loss of generality (see Property (P2)), we may suppose that x1 ↔ X3 = X4 =
X5 = 0 and x2 ↔ X0 = X1 = X2 = 0. Let L be the following line of DW(5,K):
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L ↔ X0 − X3 = X1 − X4 = X2 = X5 = 0. The points p1 ↔ X0 − X3 = X1 − X4 =
X5 = 0 and p2 ↔ X0 −X3 = X1 −X4 = X2 = 0 belong to L. Moreover, d(x1,p1) =
d(x2,p2) = 2 and d(x1,p2) = d(x2,p1) = 3. The other points of L are given by the
equations X0 − X3 = X1 − X4 = X2 − μX5 = 0, μ ∈ K \ {0}, and lie at distance
3 from x1 and x2. Now, choose two arbitrary points y1 and y2 in L \ {p1,p2}. So,
there exist μ1,μ2 ∈ K \ {0} such that yi ↔ X0 − X3 = X1 − X4 = X2 − μiX5 = 0,
i ∈ {1,2}. Since K is perfect, there exists a k ∈ K \ {0} such that k2 = μ2

μ1
. The map

(X0,X1,X2,X3,X4,X5) �→ (X0,X1, kX2,X3,X4,
X5
k

) induces an automorphism θ

of DW(5,K) fixing x1 and x2, stabilizing L and mapping y1 to y2. �

Lemma 2.6 Let K be a perfect field of characteristic 2. Let G be a full subgrid
of a quad Q of DW(5,K) and let p1 be an arbitrary point of 	2(G). Then there
exists a line L satisfying the following properties: (i) L intersects Q in a point p2

of 	3(p1) \ G; (ii) for every two points y1, y2 ∈ L \ {p2,πL(p1)}, there exists an
automorphism θ of DW(5,K) fixing p1, stabilizing G and L, and mapping y1 to y2.

Proof Suppose first that K ∼= F2. Let p2 be a point of Q \ (G ∪ πQ(p1)
⊥) and let L

denote an arbitrary line through p2 not contained in Q. Then |L \ {p2,πL(p1)}| = 1
and so condition (ii) holds: since y1 = y2, we can take for θ the trivial automorphism.

Suppose K is not isomorphic to F2. The point p1 corresponds to a totally isotropic
plane α1 of W(5,K). There exists a nonisotropic plane α2 such that the singular point
xα2 of α2 corresponds to the quad Q and the points of G correspond to the totally
isotropic planes of W(5,K) which intersect α2 in a line through xα2 . (Recall that with
every full subgrid of Q(4,K) there corresponds a pair of orthogonal hyperbolic lines
of W(3,K), see the proof of Lemma 2.2.) Since p1 	∈ Q and πQ(p1) 	∈ G, α1 and α2

are disjoint.
Now, choose a reference system such that the polar space W(5,K) is described by

the following alternating form:

(X0Y3 − X3Y0) + (X1Y4 − X4Y1) + (X2Y5 − X5Y2).

Without loss of generality (see Lemma 2.4), we may suppose that α1 ↔ X0 =
X1 = X2 = 0 and α2 ↔ X3 = X4 = X0 − X5 = 0. One readily verifies that α2 is
a nonisotropic plane and that the point (0,1,0,0,0,0) is its singular point. Now,
choose a δ ∈ K \ {0,1} and let L be the following line of DW(5,K): X0 − δX5 =
X2 − δX3 = X1 = X4 = 0. Put L ∩ Q = {p2}. Then p2 is the following point of
Q: X0 − δX5 = δX3 − X2 = X4 = 0. Obviously, d(p1,p2) = 3. Since the system
X3 = X4 = X0 − X5 = 0, X0 − δX5 = δX3 − X2 = X4 = 0 has only the point
(0,1,0,0,0,0) as solution, p2 	∈ G. The point πL(p1) has the following equation:
X0 − δX5 = X2 − δX3 = X1 = 0. A point y of L \ {p2,πL(p1)} has the following
equation for a certain μ ∈ K \ {0}: X0 − δX5 = X2 − δX3 = X1 −μX4 = 0. Now, let
y1, y2 be arbitrary points of L \ {p2,πL(p1)} and let μ1,μ2 ∈ K \ {0} such that yi ↔
X0 − δX5 = X2 − δX3 = X1 − μiX4 = 0 for every i ∈ {1,2}. Let k ∈ K \ {0} such
that k2 = μ2

μ1
, then the map (X0,X1,X2,X3,X4,X5) �→ (X0, kX1,X2,X3,

X4
k

,X5)

induces an automorphism of DW(5,K) satisfying all required properties. �
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3 Regarding the sets [H1,H2]∗

Throughout this section, K denotes a perfect field of characteristic 2.

Lemma 3.1 If G is a full subgrid of Q(4,K), then for every point x ∈ G, (G,x⊥)∗
only contains full subgrids.

Proof If L is one of the two lines through x which are contained in G, then since
L ⊆ G and L ⊆ x⊥, L is also contained in any hyperplane of (G,x⊥)∗. If L is a
line through x not contained in G, then since L ⊆ x⊥ and L 	⊆ G, L cannot be con-
tained in any of the hyperplanes of (G,x⊥)∗. So, for any hyperplane H of (G,x⊥)∗,
precisely two lines through x are contained in H ; hence, H is a full subgrid. �

Lemma 3.2 If x1 and x2 are two distinct points of Q(4,K), then any hyperplane of
[x⊥

1 , x⊥
2 ]∗ is singular.

Proof The spin embedding of Q(4,K) is isomorphic to the natural embedding of
W(3,K) into PG(3,K) and hence the hyperplanes arising from it are precisely the
singular hyperplanes of Q(4,K). Now, since x⊥

1 and x⊥
2 arise from the spin embed-

ding of Q(4,K) also any hyperplane of [x⊥
1 , x⊥

2 ]∗ arises from the spin embedding
and hence is singular. �

Lemma 3.3 Let M be a max of DW(2n − 1,K) and let A1,A2 be two distinct hy-
perplanes of M̃ . If H is a hyperplane of DW(2n − 1,K) satisfying H ∩ HA1 =
HA1 ∩ HA2 = H ∩ HA2 , then H = HA3 for some hyperplane A3 of M̃ satisfying
A1 ∩ A3 = A1 ∩ A2 = A2 ∩ A3.

Proof Notice first that for every hyperplane A of M̃ , HA = ⋃
x∈A x⊥.

We have M ⊆ HA1 ∩ HA2 ⊆ H . We show that for any x ∈ M , either x⊥ ⊆ H

or x⊥ ∩ H = x⊥ ∩ M . If this were not the case, then there would exist two lines
L1 and L2 through x not contained in M such that L1 ⊆ H and L2 	⊆ H . Let Q

denote the unique quad through L1 and L2 and let L3 be the line Q ∩ M . Now,
Q ∩ H is a hyperplane of Q̃ which is necessary a full subgrid since L1,L3 ⊆ H

and L2 	⊆ H . Let y denote a point of L3 ∩ A1 and let L4 denote the unique line of
Q ∩ H through y distinct from L3. Since H ∩ HA1 = HA1 ∩ HA2 = H ∩ HA2 , we
would have the following: (i) L4 ⊆ HA2 ; (ii) any line through y not contained in
M ∪ L4 is not contained in HA2 . This is clearly not possible. Hence, either x⊥ ⊆ H

or x⊥ ∩ H = x⊥ ∩ M .
Now, let A3 denote the set of points of M satisfying x⊥ ⊆ H . Let M ′ denote a

max disjoint from M and put A′
i := πM ′(Ai), i ∈ {1,2,3}. Since A′

3 = H ∩M ′, A′
3 is

a hyperplane of M̃ ′. So, since the projection from M ′ onto M is an isomorphism, A3
is a hyperplane of M̃ and H = HA3 . Since H ∩ HA1 = HA1 ∩ HA2 = H ∩ HA2 , we
have A′

1 ∩ A′
3 = A′

1 ∩ A′
2 = A′

2 ∩ A′
3. Hence, also A1 ∩ A3 = A1 ∩ A2 = A2 ∩ A3. �

Lemma 3.4 Let Q be a quad of DW(5,K) and let A and B be two distinct hyper-
planes of Q̃ which are not ovoids. Then [HA,HB ]∗ = {HC |C ∈ [A,B]∗}.
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Proof Let Q′ be a quad disjoint from Q and put A′ := πQ′(A) and B ′ := πQ′(B).
Then A′ 	= B ′. Let e : DW(5,K) → � denote the Grassmann embedding of
DW(5,K) and let eQ′ : Q̃′ → �′ be the embedding of Q̃′ induced by e. Recall
that eQ′ is isomorphic to the Grassmann embedding of Q(4,K). Let �A and �B

denote the hyperplanes of � giving rise to HA and HB , respectively. [Recall that
the extension of any singular hyperplane or any full subgrid of Q̃ arises from the
Grassmann embedding of DW(5,K).] Then since A′ = HA ∩ Q′, the hyperplane A′
of Q̃′ arises from eQ′ , more precisely from the hyperplane �A ∩ �′ of �′. Simi-
larly, the hyperplane B ′ arises from the hyperplane �B ∩ �′ of �′. Now, the hy-
perplanes of �′ through (�A ∩ �′) ∩ (�B ∩ �′) are precisely the hyperplanes of
the form � ∩ �′ where � is some hyperplane of � through �A ∩ �B . This im-
plies that {H ∩ Q′ |H ∈ [HA,HB ]∗} = [A′,B ′]∗. By Lemma 3.3, every hyperplane
of [HA,HB ]∗ is the extension of a hyperplane of Q̃. Hence, [HA,HB ]∗ = {HC |C ⊆
Q and πQ′(C) ∈ [A′,B ′]∗} = {HC |C ∈ [A,B]∗}. �

Lemma 3.5 If x1 and x2 are two distinct points of DW(5,K) at distance at most 2
from each other, then any hyperplane of [Hx1 ,Hx2 ]∗ is singular.

Proof Let Q denote an arbitrary quad containing x1 and x2. Then Hxi
, i ∈ {1,2}, is

the extension of the singular hyperplane x⊥
i ∩ Q of Q̃. The lemma now immediately

follows from Lemmas 3.2 and 3.4. �

Lemma 3.6 If O is a classical ovoid of Q(4,K), then there exists a full subgrid G

of Q(4,K) and a point x 	∈ G such that O ∈ [G,x⊥]∗.

Proof Let x be a point of Q(4,K) not contained in O , let y be a point of O collinear
with x and let z be a point collinear with y at distance 2 from x. Since y ∈ O ∩
x⊥, y is contained in any hyperplane of (x⊥,O)∗. Since z 	∈ x⊥ ∪ O , there exists
a unique hyperplane H ∗ ∈ (x⊥,O)∗ containing z. The hyperplane H ∗ contains the
line yz and hence has to be either a singular hyperplane (necessarily distinct from
x⊥) or a full subgrid. If H ∗ would we a singular hyperplane, then by Lemma 3.2,
also O ∈ [H ∗, x⊥]∗ would be singular, a contradiction. So, H ∗ is a full subgrid and
O ∈ (H ∗, x⊥)∗. Since x 	∈ O and x ∈ x⊥, x cannot belong to H ∗. �

Lemma 3.7 The extension of a classical ovoid O of a quad Q of DW(5,K) arises
from the Grassmann embedding of DW(5,K).

Proof By Lemma 3.6, there exists a full subgrid G of Q̃ and a point x ∈ Q \ G such
that O ∈ (G,x⊥)∗. By Lemma 3.4, HO ∈ [Hx,HG]∗; hence, HO arises from the
Grassmann embedding of DW(5,K). �

Lemma 3.8 If x1 and x2 are two points of DW(5,K) at distance 3 from each other,
then every hyperplane of (Hx1 ,Hx2)

∗ is hexagonal.

Proof Since Hx1 and Hx2 arise from the spin embedding of DW(5,K), also every
hyperplane of (Hx1 ,Hx2)

∗ arises from the spin embedding of DW(5,K). So, any
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hyperplane H of (Hx1 ,Hx2)
∗ is either singular or hexagonal. It suffices to show

that every quad Q intersects H in a singular hyperplane of Q̃. If xi ∈ Q for some
i ∈ {1,2}, then since Q ⊆ Hxi

and Q ∩ Hx3−i
is the singular hyperplane of Q̃ with

deepest point πQ(x3−i ), also H ∩ Q is the singular hyperplane of Q̃ with deep-
est point πQ(x3−i ). If x1, x2 	∈ Q, then πQ(x1) 	= πQ(x2) (since d(x1, x2) = 3)
and H ∩ Q ∈ [πQ(x1)

⊥ ∩ Q,πQ(x2)
⊥ ∩ Q]∗ (look at the embedding space); by

Lemma 3.2, H ∩ Q is a singular hyperplane of Q. �

Lemma 3.9 If H is a hexagonal hyperplane of DW(5,K), then for every point x1
of DW(5,K) not contained in H , there exists a unique point x2 	= x1 such that H ∈
(Hx1 ,Hx2)

∗. The point x2 lies at distance 3 from x1.

Proof Let y be a point of H collinear with x1, let Q denote the unique quad through
y such that Q ∩ H = y⊥ ∩ Q and let z ∈ 	2(y) ∩ Q. Since y⊥ ∩ Q ⊆ H ∩ Hx1 ,
y⊥ ∩ Q is contained in any hyperplane of (H,Hx1)

∗. Since z 	∈ H ∪ Hx1 , there exists
a unique hyperplane H ∗ ∈ (H,Hx1)

∗ containing z. Since H and Hx1 arise from the
spin embedding of DW(5,K), also H ∗ arises from the spin embedding and hence is
either singular or hexagonal. Since y⊥ ∩ Q ⊆ H ∗ and z ∈ H ∗, Q ⊆ H ∗ and hence
H ∗ is singular with deepest point belonging to Q. Since H ∈ [Hx1 ,H

∗]∗, the deepest
point x2 of H ∗ lies at distance 3 from x1 by Lemma 3.5. If there would exist a
point x′

2 	∈ {x1, x2} such that H ∈ (Hx1 ,Hx′
2
)∗, then Hx′

2
∈ [Hx1 ,H ]∗ = [Hx1 ,Hx2 ]∗,

contradicting Lemma 3.8. �

4 Proof of Theorem 1.1

Throughout this section, K denotes a perfect field of characteristic 2.

Lemma 4.1 Let H be a hyperplane of DW(5,K) arising from the Grassmann em-
bedding and let QH denote the set of quads of DW(5,K) which either are contained
in H or intersect H in a singular hyperplane of Q̃. Then the following holds:

(1) If H arises from the spin embedding of DW(5,K), then QH coincides with the
set of all quads of DW(5,K).

(2) If H does not arise from the spin embedding of DW(5,K), then there exists a
quad Q∗ of DW(5,K) such that QH consists of all the quads of DW(5,K)

which meet Q∗.

Moreover, if H1 and H2 are two distinct hyperplanes of DW(5,K) arising from the
Grassmann embedding of DW(5,K) for which QH1 = QH2 , then [H1,H2]∗ contains
a hyperplane that arises from the spin embedding of DW(5,K).

Proof Let e denote the Grassmann embedding of DW(5,K) into � ∼= PG(13,K) and
let N denote the nucleus of e. Then dim(N ) = 5. For every quad Q of DW(5,K), e

induces a full embedding eQ of Q̃ into the subspace 〈e(Q)〉 of � which is isomorphic
to the Grassmann embedding of Q(4,K). Let f (Q) denote the nucleus of the em-
bedding eQ and let g(Q) denote the point of W(5,K) corresponding to the quad Q.
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By Blok, Cardinali and De Bruyn [1] (see also Cardinali and Lunardon [7] for the
finite case), f ◦ g−1 defines a full projective embedding of W(5,K) into N which is
(necessarily) isomorphic to the natural embedding of W(5,K) into PG(5,K). Now,
let U denote the set of points contained in N ∩ 〈e(H)〉. Let x be an arbitrary point
of N and put Q = f −1(x). If x ∈ U , then the space 〈e(H)〉 ∩ 〈e(Q)〉 contains the
nucleus of eQ and hence intersects e(Q) in e(A) where A is either Q or a singular
hyperplane of Q̃. If x 	∈ U , then 〈e(H)〉 ∩ 〈e(Q)〉 does not contain the nucleus of
eQ and hence intersects e(Q) in e(A) where A is either a full subgrid or a classical
ovoid of Q̃. If follows that QH = f −1(U). If H arises from the spin embedding of
DW(5,K), then U = N and QH coincides with the whole set of quads of DW(5,K).
If H does not arise from the spin embedding of DW(5,K), then U is a hyperplane
of N and g ◦ f −1(U) is a hyperplane of W(5,K) which consists of all the points of
W(5,K) which are equal to or collinear with a given point x∗ of W(5,K). Hence,
QH = f −1(U) consists of all quads of DW(5,K) which meet Q∗ := g−1(x∗). This
proves the first part of the lemma.

Suppose now that H1 and H2 are two distinct hyperplanes of DW(5,K) arising
from e for which QH1 = QH2 . If QH1 = QH2 consists of all the quads of DW(5,K),
then H1 and H2 arise from the spin embedding of DW(5,K) and hence also all
hyperplanes of [H1,H2]∗. So, suppose QH1 = QH2 does not coincide with the whole
set of quads of DW(5,K). Then by the above discussion, 〈e(H1)〉 ∩ N = 〈e(H2)〉 ∩
N is a hyperplane of N . Now, let α denote the hyperplane of � generated by the
subspaces N and 〈e(H1)〉 ∩ 〈e(H2)〉. Then the hyperplane e−1(α ∩ e(P )) arises from
the spin embedding of DW(5,K) and belongs to [H1,H2]∗. �

We are now ready to give a proof of Theorem 1.1. If H arises from the spin embed-
ding of DW(5,K), then H is either a singular hyperplane or a hexagonal hyperplane
of DW(5,K).

Suppose H does not arise from the spin embedding of DW(5,K). Then by
Lemma 4.1, there exists a quad Q such that QH consists of all the quads of DW(5,K)

which meet Q. Now, let G be an arbitrary full subgrid of Q such that HG 	= H . Then
QHG

= QH . Hence, by Lemma 4.1, there exists a hyperplane H ′ ∈ (HG,H)∗ that
arises from the spin embedding of DW(5,K). We have H ∈ (H ′,HG)∗.

We now prove that there exists a point x in DW(5,K) and a full subgrid G′ of Q

such that H ∈ [Hx,HG′ ]∗. Obviously, this is the case if H ′ is singular (take for x the
deepest point of H ′ and G′ = G). So, suppose H ′ is hexagonal. Let y be an arbitrary
point of G \H ′. Then by Lemma 3.9, there exists a unique point x at distance 3 from
y such that H ′ ∈ (Hx,Hy)

∗. Since H ∈ (H ′,HG)∗ and H ′ ∈ (Hx,Hy)
∗, there exists

a hyperplane H ′′ ∈ (Hy,HG)∗ such that H ∈ (Hx,H
′′)∗. By Lemmas 3.1 and 3.4,

H ′′ is the extension of a certain full subgrid G′ of Q. So, H ∈ (Hx,HG′)∗.
Notice that if x ∈ Q, then H ∈ (Hx,HG)∗ is the extension of a classical ovoid or

a full subgrid of Q̃ by Lemma 3.4 and the fact that H is not singular. Theorem 1.1
now readily follows.
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5 Proof of Theorem 1.2

By Property (P1), there exists up to isomorphism a unique singular hyperplane of
DW(5,K).

By Properties (P3) + (P5) and Lemma 2.2, there exists up to isomorphism a unique
hyperplane of DW(5,K) that arises by extending a full subgrid of a quad.

By Properties (P2) + (P7) and Lemmas 2.5 + 3.9, there exists up to isomorphism
a unique hexagonal hyperplane in DW(5,K).

By Property (P7) and Lemmas 2.4 + 2.6, there exists up to isomorphism a unique
hyperplane of DW(5,K) which belongs to some set of the form (HG,Hx)

∗ where G

is a full subgrid of a quad of DW(5,K) and x ∈ 	2(G).

Lemma 5.1 Let Oi , i ∈ {1,2}, be an ovoid of a quad Qi . Then HO1
∼= HO2 if and

only if there exists an isomorphism θ from Q̃1 to Q̃2 mapping O1 to O2.

Proof Suppose there exists an isomorphism θ from Q̃1 to Q̃2 mapping O1 to O2. Let
θ ′

1 be an arbitrary automorphism of DW(5,K) mapping Q2 to Q1 (recall Property
(P3)) and let θ1 be the isomorphism from Q̃2 to Q̃1 induced by θ ′

1. Then θ3 := θ1 ◦ θ

is an automorphism of Q̃1 which extends to an automorphism θ ′
3 of DW(5,K) (recall

Property (P5)). Clearly, the automorphism θ ′
1
−1 ◦ θ ′

3 of DW(5,K) maps HO1 to HO2 .
Conversely, if θ ′ is an automorphism of DW(5,K) mapping HO1 to HO2 , then

since Oi , i ∈ {1,2}, is the set of all points x ∈ HOi
for which x⊥ ⊆ Hi , θ ′ induces an

isomorphism θ from Q̃1 to Q̃2 mapping O1 to O2. �

The following lemma finishes the proof of Theorem 1.2.

Lemma 5.2 For every i ∈ {1,2}, let Gi be a full subgrid of a quad Qi of DW(5,K),
let xi be a point of 	1(Gi) ∩ 	1(Qi) and let Hi be a hyperplane of the set
(HGi

,Hxi
)∗. Then the hyperplanes H1 and H2 are isomorphic.

Proof Let i ∈ {1,2}. Put yi := πQi
(xi). Then y⊥

i ⊆ Hi since y⊥
i ⊆ Hxi

and y⊥
i ⊆

HGi
. So, if Q is a quad through yi , then either Q ⊆ Hi or Q ∩ Hi = y⊥

i ∩ Q. Let Ui

denote the set of quads through yi contained in Hi . Since Hi is a maximal subspace
of DW(5,K) and Hi 	= Hyi

, there exists a point zi ∈ Hi ∩ 	3(yi). The map which
associates with every line L through zi the unique quad through yi meeting L defines
an isomorphism between Res(zi) and the dual of Res(yi). Let Li denote the set of
lines through zi meeting a quad of Ui . Then Li coincides with the set of lines through
zi contained in Hi . By Cardinali and De Bruyn [6, Corollary 1.5] (see also Pasini
[22, Theorem 9.3]), Li is a possibly degenerate conic of Res(zi). Hence, Ui defines
a possibly degenerate conic in the dual of Res(yi). These conics are nonempty and
nondegenerate by (1) and (2) below. [Notice that a conic of PG(2,K) is nonempty
and nondegenerate if and only if it contains at least 2 points and no lines.]

(1) It holds that |Ui | ≥ 2. For, if R1 and R2 denote the two quads through xiyi

meeting G in a line, then R1,R2 ⊆ Hi since R1,R2 ⊆ Hxi
∩ HGi

.
(2) We claim that there exists no line L through yi with the property that every

quad through L is contained in Hi . If R is a quad through xiyi intersecting Qi in a line
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which is not contained in Gi , then since R ⊆ Hxi
and R 	⊆ HGi

, R is not contained in
Hi . Hence, the claim holds if L = xiyi or if L is not contained in R1 ∪ R2. Suppose
now that L 	= xiyi and that L is contained in Rj for a certain j ∈ {1,2}. Then the
unique quad through L and R3−j ∩ Q is not contained in Hi since it is contained in
HGi

but not in Hxi
.

Notice that there exists up to isomorphism only 1 nonempty and nondegenerate
conic in PG(2,K), namely the one which is described by the equation X2

0 +X1X2 = 0
with respect to some reference system.

Claim Hi is the unique hyperplane of DW(5,K) arising from the Grassmann em-
bedding of DW(5,K) which contains y⊥

i and every line of Li .

Proof Put α1 = 〈e(y⊥
i )〉� and α2 = 〈e(z⊥

i )〉� where e : DW(5,K) → � ∼=
PG(13,K) denotes the Grassmann embedding of DW(5,K). Since yi and zi are
opposite points, � = 〈α1, α2〉 and dim(α1) = dim(α2) = 6, see e.g. [12]. By [6, The-
orem 1.3], for every hyperplane α′

2 of α2 through e(zi), the set of lines L through zi

for which e(L) ⊆ α′
2 is a conic C(α′

2) of Res(zi). Moreover, there exist reference sys-
tems in Res(zi) and the quotient space α2/e(zi) such that if α′

2/e(zi) is given by the
equation a00Y0 + a01Y1 + a02Y2 + a11Y3 + a12Y4 + a22Y5 = 0, then C(α′

2) is given
by the equation a00X

2
0 + a11X

2
1 + a22X

2
2 + a01X0X1 + a02X0X2 + a12X1X2 = 0.

The map α′
2 �→ C(α′

2) is not necessarily injective. However, since the equation of a
nonempty nondegenerate conic of PG(2,K) is uniquely determined up to a nonzero
factor, there exists a unique hyperplane α∗

2 in α2 through e(zi) for which C(α∗
2) = Li .

It is now clear that the unique hyperplane of DW(5,K) arising from e and con-
taining y⊥

i and
⋃

L∈Li
L coincides with the hyperplane of DW(5,K) arising from

the hyperplane 〈α2, α
∗
2〉 of �. �

By Properties (P1) and (P4), there now exists an automorphism θ of DW(5,K)

mapping y1 to y2 and U1 to U2. Now, let L∗ be a line through z1 not contained in
L1, i.e. not meeting U1. Then θ(L∗) does not meet any quad of θ(U1) = U2. So,
θ(L∗) contains a unique point of H2 ∩ 	3(y2). Without loss of generality, we may
suppose that this point is equal to z2. (Recall that the only restriction on the choice
of z2 was that it is a point of H2 ∩ 	3(y2).) Now, let M denote the unique quad
through y2 meeting θ(L∗). Then there exists a unique element θ ′ ∈ TM mapping
θ(z1) to z2. The automorphism θ ′ fixes y2 and every quad through y2 since every
such quad intersects M in a line. Now, the automorphism θ ′ ◦ θ maps y1 to y2, U1
to U2 and z1 to z2. Hence, it also maps L1 to L2. So, θ ′ ◦ θ(H1) is a hyperplane
of DW(5,K) containing y⊥

2 and
⋃

L∈L2
L. Moreover, θ ′ ◦ θ(H1) arises from the

Grassmann embedding of DW(5,K) by Property (P7). By the previous claim, we
necessarily have θ ′ ◦ θ(H1) = H2. �

Remark The claims mentioned after Theorem 1.1 should now be all clear for the first
5 classes of hyperplanes. Suppose now that H is a hyperplane belonging to the 6th
class. Suppose H ∈ (HG,Hx)

∗, where G is a full subgrid of a quad Q of DW(5,K)

and x is a point of DW(5,K) contained in 	2(G). If R is a quad through x, then since
R ⊆ Hx and R 	⊆ HG, R is not contained in H . If R is a quad not containing x, then
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R∩Hx is the singular hyperplane of R̃ with deepest point πR(x). If R were contained
in H , then also R ∩ HG would be the singular hyperplane of R̃ with deepest point
πR(x). This would imply that R ∩ Q is a line of Q which intersects G in the unique
point πR(x). But this is impossible since x ∈ 	2(G).

Hence, no quad of DW(5,K) is contained in H . Observe also that if R is a quad
through x disjoint from Q, then H ∩R = πR(G) since R ⊆ Hx and R∩HG = πR(G).

6 Proof of Theorem 1.3

Throughout this section, K denotes a perfect field of characteristic 2.

Lemma 6.1 Let λ1, λ2 ∈ K \ {0}, a ∈ K and σ an automorphism of K such that
1
λ1

+ 1
λσ

2
+ a2 + a = 0. If the polynomial X2 + λ1X + 1 is irreducible in K[X], then

also the polynomial X2 + λ2X + 1 is irreducible in K[X].
Proof If λ ∈ K\{0}, then 1

λ2 (X2 +λX+1) = (X
λ
)2 + X

λ
+ 1

λ2 and hence X2 +λX+1

is irreducible (in K[X]) if and only if X2 +X + 1
λ2 is irreducible. So, X2 +X + 1

λ2
1

is

irreducible. Now, since X2 +X + 1
λ2

1
= (X +a2)2 + (X +a2)+ 1

λ2
1
+a4 +a2 = (X +

a2)2 + (X + a2) + ( 1
λσ

2
)2, also the polynomials X2 + X + ( 1

λσ
2
)2 and X2 + λσ

2 X + 1

are irreducible. Hence, also the polynomial X2 + λ2X + 1 is irreducible. �

Now, let � denote the set of all elements λ ∈ K for which the polynomial X2 +
λX + 1 is irreducible in K[X]. We define the following relation R on the set �. We
say that (λ1, λ2) ∈ R if and only if there exists an a ∈ K and an automorphism σ of K

such that 1
λ1

+ 1
λσ

2
+a2 +a = 0. It is straightforward to verify that R is an equivalence

relation.
Now, choose a reference system in PG(4,K) and suppose Q(4,K) is the gen-

eralized quadrangle associated with the quadric Q ↔ X2
0 + X1X2 + X3X4 = 0 of

PG(4,K). For every automorphism σ of K, let θσ denote the following automor-
phism of PG(4,K): (X0,X1,X2,X3,X4) �→ (Xσ

0 ,Xσ
1 ,Xσ

2 ,Xσ
3 ,Xσ

4 ). Then θσ stabi-
lizes Q. For every λ ∈ K, let πλ be the hyperplane X4 = X3 + λX0 of PG(4,K) and
put Oλ := Q ∩ πλ. Then Oλ is a (classical) ovoid of Q(4,K) if and only if λ ∈ �.
The following lemma is precisely Theorem 1.3(i).

Lemma 6.2 Every classical ovoid O of Q(4,K) is isomorphic to an ovoid Oλ for
some λ ∈ �.

Proof By Lemma 3.6, there exists a full subgrid G of Q(4,K) and a point x of
Q(4,K) not contained in G such that O ∈ (G,x⊥)∗. By Lemma 2.3, we may with-
out loss of generality suppose that x = (1,0,0,1,1) and that G is described by the
equations X0 = 0, X2

0 +X1X2 +X3X4 = 0. The set x⊥ is described by the equations
X3 + X4 = 0, X2

0 + X1X2 + X3X4 = 0. So, there exists a λ ∈ K \ {0} such that O is
described by the equations X4 = X3 + λX0, X2

0 + X1X2 + X3X4 = 0, i.e. O = Oλ.
Since O is a classical ovoid, λ ∈ �. �
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Lemma 6.3 Let λ1, λ2 ∈ �. If there exists a projectivity μ of PG(4,K) stabilizing the
quadric X2

0 + X1X2 + X3X4 = 0 and mapping the hyperplane X4 + X3 + λ1X0 = 0
to the hyperplane X4 + X3 + λ2X0 = 0, then there exists an a ∈ K such that 1

λ2
+

1
λ1

+ a2 + a = 0.

Proof Let K denote a given algebraic closure of K and let Ki , i ∈ {1,2}, denote
the splitting field in K of the quadratic polynomial X2 + λiX + 1 ∈ K[X]. Then Ki

is also the splitting field of the polynomial X2 + X + 1
λ2

i

. For every i ∈ {1,2}, let

Pi (respectively P ′
i ), denote the set of points of PG(4,K) (respectively PG(4,K1))

defined by the equations

{
X4 + X3 + λiX0 = 0,

X2
0 + X1X2 + X3(X3 + λiX0) = 0.

Then μ(P1) = P2. Regarding μ as a projectivity of PG(4,K1), we have μ(P ′
1) = P ′

2.
So, P ′

2 is a hyperbolic quadric in the hyperplane X4 + X3 + λ2X0 = 0 of PG(4,K1).
This is only possible when K2 ⊆ K1. Applying the same reasoning to the projectivity
μ−1, we find K1 ⊆ K2. Hence, K1 = K2.

Let δ ∈ K1 be a root of the polynomial X2 + X + 1
λ2

1
. Since K1 = K2 can be

regarded as a two-dimensional vector space over K, there exist b, c ∈ K such that
bδ + c is a root of the polynomial X2 + X + 1

λ2
2
. Since X2 + X + 1

λ2
2

is irreducible,

bδ + c 	∈ K and hence b 	= 0. We have δ2 = δ + 1
λ2

1
and (bδ + c)2 + (bδ + c) + 1

λ2
2

=
(b2 +b)δ+ b2

λ2
1
+ 1

λ2
2
+c2 +c = 0. Since δ ∈ K1 \K, b2 +b = 0, i.e. b = 1. Hence, 1

λ2
1
+

1
λ2

2
+ c2 + c = 0. If a ∈ K denotes the square root of c, then 1

λ1
+ 1

λ2
+ a2 + a = 0. �

Lemma 6.4 Let λ1, λ2 ∈ �. If there exists an automorphism θ of PG(4,K) stabiliz-
ing the quadric X2

0 + X1X2 + X3X4 = 0 and mapping the hyperplane X4 + X3 +
λ1X0 = 0 to the hyperplane X4 +X3 +λ2X0 = 0, then there exists an automorphism
σ of K and an a ∈ K such that 1

λσ
2

+ 1
λ1

+ a2 + a = 0.

Proof Let θ be an automorphism of PG(4,K) satisfying the conditions of the lemma.
Then θ = θσ−1 ◦ μ for some automorphism σ of K and some projectivity μ of
PG(4,K). The automorphism θσ−1 stabilizes the quadric X2

0 +X1X2 +X3X4 = 0 and
maps the hyperplane X4 + X3 + λσ

2 X0 = 0 to the hyperplane X4 + X3 + λ2X0 = 0.
So, the projectivity μ also stabilizes the quadric and maps the hyperplane X4 +X3 +
λ1X0 = 0 to the hyperplane X4 + X3 + λσ

2 X0 = 0. By Lemma 6.3, there exists an
a ∈ K such that 1

λσ
2

+ 1
λ1

+ a2 + a = 0. �

The proofs of the following two lemmas are straightforward.
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Lemma 6.5 Let λ1, λ2 ∈ K \ {0} and a ∈ K such that 1
λ2

+ 1
λ1

+ a2 + a = 0. Then
the projectivity

μ :
{

X0 �→ X0 + (a2λ1)X3, X1 �→ X1, X2 �→ X2,

X3 �→ λ1
λ2

X3, X4 �→ λ2
λ1

X4 + (a4λ1λ2)X3,

of PG(4,K) stabilizes the quadric X2
0 +X1X2 +X3X4 = 0 and maps the hyperplane

X4 + X3 + λ1X0 = 0 to the hyperplane X4 + X3 + λ2X0 = 0.

Lemma 6.6 Let λ ∈ K and let σ be an automorphism of K. Then the automorphism
θσ of PG(4,K) stabilizes the quadric X2

0 + X1X2 + X3X4 = 0 and maps the hyper-
plane X4 + X3 + λX0 = 0 to the hyperplane X4 + X3 + λσ X0 = 0.

Theorem 1.3(ii) is now an immediate corollary of Lemmas 6.4, 6.5 and 6.6.
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