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Abstract We introduce the concepts of complex Grassmannian codes and designs.
Let Gm,n denote the set of m-dimensional subspaces of C

n: then a code is a finite
subset of Gm,n in which few distances occur, while a design is a finite subset of Gm,n

that polynomially approximates the entire set. Using Delsarte’s linear programming
techniques, we find upper bounds for the size of a code and lower bounds for the size
of a design, and we show that association schemes can occur when the bounds are
tight. These results are motivated by the bounds for real subspaces recently found by
Bachoc, Bannai, Coulangeon and Nebe, and the bounds generalize those of Delsarte,
Goethals and Seidel for codes and designs on the complex unit sphere.
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1 Introduction

In this paper, we introduce the concept of complex Grassmannian codes and designs:
codes and designs in the collection of fixed-rank subspaces of a complex vector space.

In the 1970’s, Delsarte [11] developed a series of excellent bounds for certain
error-correcting codes by treating codewords as points in an association scheme and
then applying linear programming. Shortly thereafter, Delsarte, Goethals and Sei-
del [12] showed that the same technique could also be used on systems of points
on the real or complex unit sphere, which they called spherical codes and spheri-
cal designs; this resulted in important contributions to problems in sphere-packing
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[10, Chapter 9]. This linear programming technique, which is now known as “Del-
sarte LP theory”, has proved surprisingly portable. Recently, Bachoc, Coulangeon
and Nebe [4] and Bachoc, Bannai and Coulangeon [3] generalized the results of Del-
sarte, Goethals and Seidel to real Grassmannian spaces, and Bachoc [2] pointed out
that “the same game” can be played over the complex numbers. In this paper, we
investigate more closely the case of complex Grassmannian codes.

The motivation for studying complex Grassmannians comes from the theory of
quantum measurements. Roughly speaking, any complex Grassmannian 1-design (or
any complex projective 1-design) defines a projective measurement in the theory of
quantum mechanics [23, Section 2.2.6]. It has recently been discovered that complex
projective 2-designs correspond to quantum measurements that are optimal for the
purposes of nonadaptive quantum state tomography [26]. In fact, this is also true in
the more general Grassmannian setting: complex Grassmannian 2-designs are the
optimal choices of measurements for nonadaptive quantum state tomography when
the observer only has access to measurements with a restricted number of outcomes.
More details will appear in a paper by Godsil, Rötteler, and the author [15]. Complex
Grassmannians also play a role in certain wireless communication protocols [1].

Define Gm,n to be the set of m-dimensional subspaces of an n-dimensional com-
plex vector space. Without loss of generality, we always assume m ≤ n/2. Usually,
we represent a subspace a by its n × n projection matrix Pa . The inner product on
Gm,n is the trace inner product for projection matrices:

〈a, b〉 := tr(P ∗
a Pb)

= tr(PaPb).

Since 〈a, b〉 = 〈b, a〉, the inner product is real. This is a measure of separation, or
distance, between two subspaces—note that is not a distance metric per se: the in-
ner product of Pa with itself is maximal rather than minimal. However, the chordal
distance [9], defined by

dc(a, b) :=√
m − tr(PaPb),

is a monotonic function of the inner product. Given a finite set of inner product values
A, an A-code is a subset S of Gm,n such that

A = {tr(PaPb) : a, b ∈ S, a �= b}.
An s-distance set is an A-code with |A| = s. This generalizes the concept of an
s-distance set on the complex unit sphere: if u and v are unit vectors, then the distance
between u and v on the unit sphere is a function of

∣∣u∗v
∣∣2 = tr(uu∗vv∗).

We are interested in codes of maximal size for a fixed A or s, and bounds on their
size based on zonal polynomials. Table 1 in Section 6 gives a summary of the bounds
for small |A|.
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The outline of this paper is as follows. In Section 2, we describe the orbits of pairs
of subspaces in Gm,n under the action of U(n): these orbits play a significant role in
the bounds derived later on. In Sections 3, 4 and 5, we develop the necessary repre-
sentation theory background needed for our LP bounds. In particular, we discuss the
decomposition of the square-integrable functions on Gm,n into irreducible representa-
tions of U(n), and the zonal polynomials for these representations. The results in this
section are all known, and the development is quite similar to that of Bachoc, Coulan-
geon and Nebe for real Grassmannians. In fact, the complex case is actually easier
than the real case, because representations of the unitary group U(n) are easier to
describe than representations of the orthogonal group O(n). In Section 6, we develop
absolute and relative bounds for A-codes and for a more general type of code called
an f -code. These bounds for Gm,n reduce to known bounds for complex spherical
codes when m = 1. We compare the bounds to other known bounds for subspaces
in Section 7, and in Section 8, we give examples in which the bounds are tight. In
Section 9, we consider Grassmannian designs. Complex Grassmannian codes enjoy a
form of duality with Grassmannian designs, very similar to real Grassmannian codes
or spherical codes. In many cases codes of maximal size or designs of minimal size
have the structure of an association scheme, which we describe in Section 10. Finally,
in Section 11, we show how a weighted version of a design can be constructed in any
dimension.

2 Orbitals

In this section we describe the orbits of pairs of elements of Gm,n under the action of
U(n).

First, we claim that Gm,n can be identified with a quotient space of the unitary
group, U(n)/(U(m) × U(n − m)). For, consider the first m columns of a matrix of
U(n) as the basis for a subspace a of dimension m in C

n, letting the last n − m

columns be a basis for a⊥. Then a is invariant under the action of U(m) on the first
m columns, while a⊥ is invariant under U(n − m).

As a result of this quotient space, U(n) acts on Gm,n as follows: if U is in U(n)

and Pa is the projection matrix for a ∈ Gm,n, then

U : Pa 	→ UPaU
∗.

This action is an isometry, in that it preserves the trace inner product on Gm,n. Unlike
on the complex unit sphere, however, U(n) is not 2-homogeneous on Gm,n: U(n) does
not act transitively on pairs of subspaces with the same distance. In other words, the
fact that tr(PaPb) = tr(PcPd) does not imply that there is a unitary matrix mapping
a to c and b to d . In order to use zonal polynomials, we need to understand the orbits
of pairs in Gm,n under this isometry group, which requires principal angles.

Given a and b in Gm,n, the principal angles θ1, . . . , θm between a and b are defined
as follows: firstly, θ1 is the smallest angle that occurs between any two unit vectors
a1 ∈ a and b1 ∈ b:

θ1 := min
a1∈a
b1∈b

arccos
∣∣a∗

1b1
∣∣ .
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Secondly, θ2 is the smallest angle that occurs between any two unit vectors a2 ∈
a ∩ a⊥

1 and b2 ∈ b ∩ b⊥
1 . Similarly define θ3, . . . , θm. These principal angles are

closely related to the eigenvalues of PaPb: the first m eigenvalues of PaPb are
{cos2 θ1, . . . , cos2 θm}. Because of this correspondence, for the remainder of this pa-
per we simply refer to the eigenvalues yi := cos2 θi (rather than the angles θi ) as
the principal angles between a and b. Note that n − m of the eigenvalues of PaPb

are zero, so we need only consider the first m eigenvalues. Conway, Hardin, and
Sloane [9] accredit the following lemma to Wong [29, Theorem 2].

Lemma 1 The principal angles characterize the orbits of pairs of subspaces un-
der U(n).

Proof Suppose U ∈ U(n) maps projection matrices Pa and Pb to Pc and Pd respec-
tively. Then by similarity, the eigenvalues of

PcPd = (UPaU
∗)(UPbU

∗) = UPaPbU
∗

are the same as the eigenvalues of PaPb .
Conversely, we show that if PaPb and PcPd have the same eigenvalues, then some

unitary matrix U maps a to c and b to d . We do this by unitarily mapping a and b

into a canonical form that depends only on the eigenvalues of PaPb .
Let Ma be an n × m matrix whose columns [a1, . . . , am] are an orthonormal basis

for a, so that MaM
∗
a = Pa and M∗

aMa = I . Similarly define Mb = [b1, . . . , bm] for b.
Suppose M∗

aMb has singular value decomposition UDV ∗, where U and V are m×m

unitary and D is m × m diagonal. Then (MaU)∗(MbV ) = D. Since the columns of
MaU are another orthonormal basis for a, without loss of generality we replace Ma

by MaU and likewise replace Mb with MbV . In other words, we may assume without
loss of generality that M∗

aMb = D, where D is a diagonal matrix of singular values.
Next, define the columns of Na = [am+1, . . . , an] to be any orthonormal basis

for a⊥, so that NaN
∗
a = I − Pa and N∗

a Na = I . Further assume that N∗
a Mb = QR,

where Q is (n − m) × (n − m) unitary and R is (n − m) × m upper triangular (the
QR-decomposition of N∗

a Mb). Then Q∗N∗
a Mb = R, and the columns of NaQ form

another orthonormal basis for a⊥. Replacing Na by NaQ, we may assume without
loss of generality that N∗

a Mb is upper triangular.

Finally, let Ua := (M∗
a

N∗
a

)
; this is an n × n unitary matrix. Then

UaMa =
(

Im

0

)
; UaMb =

(
D

R

)
.

If PaPb has eigenvalues cos2 θi , then M∗
aMb = D has singular values cos θi . More-

over, since UaMb has orthonormal columns, it follows that R also has orthogonal
columns. We may therefore assume that R is not just upper triangular but diagonal,
with diagonal entries sin θi . Thus Ua is a unitary matrix which maps Ma and Mb into



J Algebr Comb (2010) 31: 1–32 5

the form

Ma 	→
(

Im

0

)
, Mb 	→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cos θ1
. . .

cos θm

sin θ1
. . .

sin θm

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Since any pair (Ma,Mb) with principal angles cos2 θi can be mapped to this canonical
form, it follows that the eigenvalues of PaPb characterize the orbits of pairs (a, b)

under the unitary group. �

3 Representations

In this section and the next, we develop the representation theory needed for Grass-
mannian LP bounds.

Because U(n) is a compact Lie group, up to normalization it has a unique invariant
measure (the Haar measure). Since U(n) acts transitively on Gm,n, this induces a
unique invariant measure on Gm,n, which we normalize so that

∫

Gm,n

da = 1.

With this measure, the square-integrable functions L2(Gm,n) are those functions f :
Gm,n → C such that

∫ |f (a)|2 da is finite. As is standard for compact Lie groups, we
work with square-integrable functions to find irreducible representations. The group
U(n) acts on f ∈ L2(Gm,n) as follows:

(Uf )(Pa) := f (U∗PaU),

where Pa is the projection matrix for a ∈ Gm,n. It follows that L2(Gm,n) is a repre-
sentation of U(n). There is a natural inner product on this space:

〈f,g〉 :=
∫

Gm,n

f (a)g(a) da.

Equivalently, we may write

〈f,g〉 :=
∫

U(n)

f (U∗PaU)g(U∗PaU) dU,

where dU is the Haar measure on U(n) and Pa is some fixed projection matrix. As we
will see, this representation can be decomposed into orthogonal, irreducible subrep-
resentations, and the decomposition is multiplicity-free: no irreducible representation
of U(n) occurs more than once in L2(Gm,n).
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Since U(n) is a compact Lie group, its irreducible representations are well-
studied: see for example [7, 13, 17, 27]. Every irreducible representation is indexed
by a dominant weight [27, Theorem 7.34]. In the case of U(n), we may take these
weights to have the form [7, Theorem 38.3]

λ = (λ1, . . . , λn) : λ1 ≥ λ2 ≥ · · · ≥ λn,λi ∈ Z.

The dimension of the irreducible representation Vλ indexed by λ is given by Weyl’s
character formula [27, Theorem 7.32]. In the case of U(n), the formula reduces to:

dimVλ =
∏

1≤i<j≤n

λi − λj + j − i

j − i
. (1)

For example, the standard representation of U(n) is indexed by λ = (1,0, . . . ,0),
which gives

dimV(1,0,...,0) = n.

Note that there is more than one irreducible representation with the same dimension.
Each dominant weight may also be thought of as a form acting on a maximal torus

of the Lie group. Here λ acts on the diagonal matrix d = diag(d1, . . . , dn) ∈ U(n) as
follows:

dλ :=
n∏

i=1

d
λi

i .

The next section describes exactly which of these forms contribute to the decompo-
sition of L2(Gm,n).

4 Symmetric spaces

The space U(n)/U(m) × U(n − m) is an example of a symmetric space: a quotient
space G/K such that G is a connected semisimple Lie group and K is the fixed
point set of an involutive automorphism of G. In this section, we use results from
Goodman and Wallach [17] to explain how the decomposition of representations of
Gm,n follows from this structure.

Let sm denote the m × m matrix with backwards diagonal entries of 1 and 0 else-
where:

sm :=
⎛

⎜
⎝

0 1

. .
.

1 0

⎞

⎟
⎠ .

Also define

Jm,n :=
⎛

⎝
sm

In−2m

sm

⎞

⎠ ,
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and consider the involution θ(M) := Jm,nMJm,n on GLn(C). The fixed points of θ

have the form

M =
⎛

⎝
a b c

d e dsm
smcsm smb smasm

⎞

⎠ ,

so the fixed point set in GLn(C) is isomorphic to GLm(C) × GLn−m(C).

Lemma 2 The fixed point set K of θ in G = U(n) is isomorphic to U(m)×U(n−m).
Therefore Gm,n is a symmetric space.

Proof For a = (a1, . . . , am), let ă denote the reversal of a, namely

ă := sma = (am, . . . , a1).

If a, b, and c have length m, n−2m and m respectively, then we have Jm,n(a, b, c)T =
(c̆, b, ă)T . Therefore the 1 and −1 eigenspaces of Jm,n are V+ = {(a, b, ă)} and
V− = {(a,0,−ă)} respectively. These spaces are orthogonal with respect to the form
(x, y) 	→ x∗y.

Now K is the set of points in U(n) which commute with Jm,n. So decomposing
C

n into V+ ⊕ V−, we have that K is the set of points in U(n) which leave both V+
and V− invariant. In other words, K is the set of points which preserve the form
(x, y) 	→ x∗y on the subspaces V+ and V−. Thus

K ∼= U(V+) × U(V−) ∼= U(n − m) × U(m). �

The fact that K is the fixed point set of θ in G implies ([17, Theorem 12.3.5]) that
(G,K) is a spherical pair: for every irreducible representation Vλ of G, the subspace
V K

λ of points fixed by K satisfies dimV K
λ ≤ 1. Those representations such that V K

λ

has dimension exactly 1 are called spherical representations. The following theorem
[18, Theorem V.4.3] explains how those representation relate to L2(G/K).

Theorem 1 Let G be a compact simply connected semisimple Lie group, and let
K ≤ G be the fixed point group of an involutive automorphism of G. Further let
ĜK denote the set of equivalence classes of spherical representations Vλ of G with
respect to K . Then L2(G/K) is a multiplicity-free representation of G, and

L2(G/K) ∼=
⊕

λ∈ĜK

Vλ.

To describe which representations are spherical, we now consider diagonal sub-
groups of G and K . For d = (d1, . . . , dn), let diag(d) denote the diagonal matrix
with diagonal entries d1, . . . , dn. Firstly, note that diag(d) is in U(n) if and only if
|di | = 1 for all i. Secondly, note that if d = diag(a, b, c) with a and c of length m,
then θ(d) = (c̆, b, ă). It follows that the diagonal group

T := {diag(a1, . . . , am, bm+1, . . . , bn−m,am, . . . , a1) : |ai | = |bi | = 1}
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is contained in K . In fact, it is a maximal subgroup of K isomorphic to (R/Z)r : this
is called a maximal torus of K .

Recall that the irreducible representations of G are indexed by the dominant
weights λ = (λ1, . . . , λn), where λi ≥ λi+1 and λi ∈ Z. Now the spherical repre-
sentations of G with respect to K are indexed by those particular dominant weights
such that tλ = 1 for all t = (t1, . . . , tn) in the torus T (see Goodman and Wallach [17,
p. 540]). So a dominant weight λ is spherical if it has the form

λ = (λ1, . . . , λm,0, . . . ,0,−λm, . . . ,−λ1)

with λ1 ≥ · · · ≥ λm ≥ 0 and λi ∈ Z. In other words:

Theorem 2 The irreducible representations of U(n) occurring in L2(Gm,n) are in
one-to-one correspondence with the integer partitions with at most m parts.

For any partition μ, we let Hμ(n), or simply Hμ, denote the irreducible represen-
tation in L2(Gm,n) isomorphic to V(μ,0,...,0,−μ̆). The Weyl character formula (equa-
tion (1)) now tells us the dimension of each Hμ. The first few dimensions are:

dimH(0) = dimV(0,...,0) = 1

dimH(1) = dimV(1,0,...,0,−1) = n2 − 1

dimH(2) = n2(n − 1)(n + 3)

4

dimH(1,1) = n2(n + 1)(n − 3)

4

dimH(2,1) = (n2 − 1)2(n2 − 9)

9

dimH(k) =
(

n + k − 2

k

)2
n + 2k − 1

n − 1

dimH(1,...,1︸︷︷︸
k

) =
(

n + 1

k

)2
n − 2k + 1

n + 1

If m = 1, then Gm,n is the complex projective space CP n−1, and only the spaces
H(k) occur. In that case H(k) is isomorphic to the space Harm(k, k) of harmonic poly-
nomials of homogeneous degree k in both z and z̄, where z = (z1, . . . , zn) is a point on
the unit sphere in C

n. Those harmonic polynomials were used by Delsarte, Goethals,
and Seidel in their LP bounds for codes and designs on the complex unit sphere [12].

We now record another representation of U(n) in L2(Gm,n) that we need for our
bounds on codes and designs. Given an nonincreasing sequence of nonnegative inte-
gers μ = (μ1,μ2, . . .), we say μ has size k and write |μ| = k if μ is a partition of k;
that is,

∑
i μi = k. We also say μ has length l and write len(μ) = l if μ has l nonzero

entries. For example, (2,1,0, . . .) has size 3 and length 2. Then for fixed Gm,n, define



J Algebr Comb (2010) 31: 1–32 9

Hk = Hk(m,n) as follows:

Hk(m,n) :=
⊕

|μ|≤k
len(μ)≤m

Hμ(n).

The space H0 has dimension 1 and consists of the constant functions on Gm,n. For
k > 0, the representation Hk is reducible, and Hk−1 is contained in Hk . When m = 1,
Hk is isomorphic to the space of homogeneous polynomials degree k in both z and z̄

on the unit sphere in Cn. In the next section, we will see that Hk is also the span of the
symmetric polynomials of degree at most k on the principal angles between a and b

in Gm,n, for fixed a. Moreover, if g and h are polynomials in Hk and Hk′ respectively,
then gh is in Hk+k′ , and in fact Hk+k′ is spanned by polynomials of that form.

We will also see in the next section that Hk is the space of polynomials f (b) which
are homogeneous of degree k in the entries of Pb , the projection matrix of b ∈ Gm,n.
It follows that for fixed a ∈ Gm,n, the inner product function b 	→ 〈a, b〉 = tr(PaPb)

is in H1(n).
James and Constantine [20] further investigated the irreducible subspaces of

L2(Gm,n), finding zonal polynomials for each irreducible representation. We describe
those results in the following section.

5 Zonal polynomials

A zonal polynomial at a point a ∈ Gm,n is a function on points b ∈ Gm,n which de-
pends only on the principal angles between a and b. Given a symmetric polynomial
f (x1, . . . , xm) ∈ R[x1, . . . , xm] of degree k, we define the zonal polynomial of f at a

as follows: if y(a, b) = (y1, . . . , ym) are the principal angles of a and b, then

fa(b) := f (y1, . . . , ym).

Since f is a symmetric polynomial of degree at most k in the principal angles, it is in
Hk(m,n). If Pa and Pb are the projection matrices for a and b, then b 	→ tr(PaPb) is
an example of a zonal polynomial, since tr(PaPb) = ∑m

i=1 yi , a symmetric polyno-
mial of degree 1.

There is a particular set of zonal polynomials that play a special role in the theory
of Delsarte bounds. Let Hμ be an irreducible representation in L2(Gm,n). Then for
each a ∈ Gm,n, define the zonal orthogonal polynomial or zonal spherical polynomial
Zμ,a to be the unique element of Hμ such that for every p ∈ Hμ,

〈
Zμ,a,p

〉= p(a). (2)

From equation (2) it follows that the set {Zμ,a : a ∈ Gm,n} spans Hμ. These zonal
polynomials are invariant under the unitary group, in the following sense:

Zμ,b(a) = 〈
U∗Zμ,a,U

∗Zμ,b

〉= 〈
Zμ,Ua,Zμ,Ub

〉= Zμ,Ub(Ua).

(By Ua we mean the action U : Pa 	→ UPaU
∗.) The value of Zμ,b(a) depends on the

U(n)-orbit of (a, b) and therefore depends on the principal angles of a and b. With
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this in mind we sometimes write Zμ,a(b) = Zμ(a, b) or Zμ,a(b) = Zμ(y1, . . . , ym),
where (y1, . . . , ym) are the principal angles of a and b.

Schur orthogonality [27, Theorem 3.3] for irreducible representations implies that
Zμ,a and Zν,b are orthogonal for μ �= ν. So, we have

〈
Zμ,a,Zν,b

〉= δμ,νZμ(a, b).

Moreover, Zμ,a(b) = Zμ,b(a) is in fact real and symmetric in a and b. The zonal
polynomials satisfy some other important properties, including the following positiv-
ity condition:

Lemma 3 For any subset S ⊆ Gm,n,

∑

a,b∈S

Zμ(a, b) ≥ 0.

Equality holds if and only if
∑

a∈S Zμ,a = 0.

Proof We have
∑

a,b∈S

Zμ(a, b) =
∑

a,b∈S

〈
Zμ,a,Zμ,b

〉

=
〈
∑

a∈S

Zμ,a,
∑

b∈S

Zμ,b

〉

≥ 0.

Equality holds only when
∑

a∈S Zμ,a = 0. �

The second important condition the zonal polynomials satisfy is called the addi-
tion formula:

Lemma 4 Let e1, . . . , eN be an orthonormal basis for the irreducible subspace Hμ.
Then

N∑

i=1

ei(a)ei(b) = Zμ(a, b).

Proof Since Zμ,a is in Hμ, we may write it as a linear combination of e1, . . . , eN :

Zμ,a =
N∑

i=1

〈
ei,Zμ,a

〉
ei

=
∑

i

ei(a)ei .

So, it follows that Zμ,a(b) =∑
i ei(a)ei(b). �
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James and Constantine give an explicit formula for the zonal orthogonal polyno-
mials of Gm,n in terms of Schur polynomials, the irreducible characters of SL(m,C).
If y = (y1, . . . , ym) are variables and σ = (s1, . . . , sm) is an integer partition into at
most m parts, then the (unnormalized) Schur polynomial is defined as

Xσ (y) := det(y
sj +m−j

i )i,j

det(yk−j
i )i,j

.

Each Schur polynomial is a symmetric polynomial in (y1, . . . , ym). For more infor-
mation about Schur polynomials, see Stanley [28, Chapter 7]. The normalized Schur
polynomial X∗

σ is the multiple of Xσ such that X∗
σ (1, . . . ,1) = 1.

To define the zonal orthogonal polynomials for Gm,n, first define the ascending
product

(a)s := a(a + 1) · · · (a + s − 1),

and given a partition σ = (s1, . . . , sm), define complex hypergeometric coefficients

[a]σ :=
m∏

i=1

(a − i + 1)si .

Further assume we have a partial order ≤ on partitions defined such that
(s1, . . . , sm) ≤ (k1, . . . , kl) if and only if si ≤ ki for all i. Letting y + 1 := (y1 +
1, . . . , ym + 1), the complex hypergeometric binomial coefficients

[ κ
σ

]
are given by

the formula

X∗
κ(y + 1) =

∑

σ≤κ

[
κ

σ

]
X∗

σ (y).

We can now define the zonal orthogonal polynomials for Gm,n. The following result
is due to James and Constantine [20].

Theorem 3 Let

ρσ :=
m∑

i=1

si(si − 2i + 1)

and let σ and κ partition s and k respectively. Also let

[c](κ,σ ) :=
∑

i

[
κ

σi

][
σi

σ

]

(k − s)

[
κ

σ

]
[c](κ,σi )(

c + ρκ−ρσ

k−s

) ,

where the summation is over partitions σi = (s1, . . . , si−1, si + 1, si+1, . . .) that are
nonincreasing. Then up to normalization, the zonal orthogonal polynomial for Hκ is

Zκ(y) :=
∑

σ≤κ

(−1)s
[
κ

σ

]
[c](κ,σ )

[a]σ X∗
σ (y),
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where y = (y1, . . . , ym) is the set of principal angles.

The first few normalized Schur polynomials are:

X∗
(0)(y) = 1

X∗
(1)(y) = 1

m

m∑

i=1

yi

X∗
(1,1)(y) = 1

(
m
2

)
∑

i<j

yiyj

X∗
(2)(y) = 1

(
m+1

2

)
( m∑

i=1

y2
i +

∑

i<j

yiyj

)
.

Up to normalization by a constant, the first few zonal orthogonal polynomials are:

Z(0)(y) = 1

Z(1)(y) = nX∗
(1)(y) − m

Z(1,1)(y) = (n − 1)(n − 2)X∗
(1,1)(y) − 2(n − 1)(m − 1)X∗

(1)(y) + m(m − 1)

Z(2)(y) = (n + 1)(n + 2)X∗
(2)(y) − 2(n + 1)(m + 1)X∗

(1)(y) + m(m + 1).

The correct normalizations satisfy

〈
Zμ,a,Zμ,a

〉= Zμ(1,1, . . . ,1) = dimHμ.

With the exception of the case μ = (0) (which is normalized correctly in the formula
above), normalizations for Zμ do not play a role in the results which follow.

From the result of James and Constantine, a few observations are apparent. Firstly,
the zonal orthogonal polynomials Zμ(y), like the Schur polynomials, are symmetric
polynomials in y1, . . . , ym, and the polynomials with |μ| ≤ k form an orthonormal
basis for the symmetric polynomials in y1, . . . , ym of degree at most k. Secondly, we
have the following useful description of Hk .

Lemma 5 Hk(m,n) is the space of polynomials Gm,n → C which are homogeneous
of degree k in the entries of the projection matrices for the subspaces.

Proof For convenience, let Homk denote the space of polynomials f (b) which are
homogeneous of degree k in the entries of Pb , for b ∈ Gm,n. First, we claim that Hk is
contained in Homk . Since the zonal polynomials {Zμ,a : a ∈ Gm,n} span Hμ, the zonal
polynomials {Zμ,a : |μ| ≤ k, a ∈ Gm,n} span Hk , and it suffices to show that Zμ,a is
in Homk . But Zμ,a(b) is a symmetric polynomial of the principal angles y(a, b),
which are precisely the nonzero eigenvalues of PaPb . Moreover, a standard theorem
from linear algebra [19, Theorem 1.2.12] states that the j -th elementary symmetric
function of the eigenvalues of a matrix is the sum of all j × j principal minors.
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Therefore every symmetric polynomial of degree k in the eigenvalues of PaPb is also
a homogeneous polynomial of degree k in the entries of PaPb , which is in turn a
homogeneous polynomial of degree k in the entries of Pb .

Next we claim that Homk and Hk are actually equal. To see this, consider the
zonal polynomials in Homk : the degree-k polynomials fa(b) in the entries of Pb

which depend only on the U(n)-orbit of (a, b). These zonal polynomials are sym-
metric functions of the principal angles y(a, b) = y1, . . . , ym, which depend only on
the projection of a basis of b onto the subspace a. Therefore, it suffices to consider
degree-k polynomials in the entries of PaPbPa (which are also degree-k polynomials
in the entries of Pb). Now choose the unitary matrix Ua in the proof of Lemma 1 so
that

UaPaU
∗
a = diag(1, . . . ,1,0, . . . ,0), UaPaPbPaU

∗
a = diag(y1, . . . , ym,0, . . . ,0).

Since the zonal polynomials are symmetric functions of y1, . . . , ym and polynomials
of degree k in the entries of UPaPbPaU

∗, they are symmetric polynomials of degree
k in y1, . . . , ym. Thus every zonal polynomial of Homk is also a zonal polynomial of
Hk . Since the two spaces have the same zonal polynomials, and the zonal polynomials
span the entire space, the two spaces are equal. �

6 Bounds

Recall that an A-code is a collection S of subspaces in Gm,n such that 〈a, b〉 =
tr(PaPb) ∈ A for every a �= b in S. In this section, we find upper bounds on the size
of an A-code in terms of either the cardinality of A or the elements of A. A summary
of the results for |A| ≤ 2 is given in Table 1.

Table 1 Upper bounds on |S|, when S ⊆ Gm,n is an A-code

A {α} {α,β}

Absolute
bound

n2
(

n2

2

)
(m > 1)

Relative
bound

n(m − α)

m2 − nα

n(m − α)(m − β)

m2
[

(m+1)2

2(n+1)
+ (m−1)2

2(n−1)
− (α + β) + nαβ

m2

]

Relative
bound
conditions

α <
m2

n
α + β ≤ 2(m2n − 4m + n)

n2 − 4
,

α + β − nαβ

m2
<

m2n − 2m + n

n2 − 1
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If A = {α1, . . . , αk}, then the annihilator of A is the symmetric function

annA(y) :=
k∏

i=1

⎛

⎝
m∑

j=1

yj − αi

⎞

⎠ .

The significance of the annihilator is that if S is an A-code, then annA(y(a, b)) = 0
for any a �= b in S. More generally, given any symmetric polynomial f satisfying
f (1,1, . . . ,1) �= 0, an f -code is a collection S of subspaces such that for every a �= b

in S, the principal angles y(a, b) = (y1, . . . , ym) satisfy f (y1, . . . , ym) = 0. If A is
any set of inner product values and f is the annihilator of A, then an A-code is also
an f -code.

Theorem 4 If S ⊆ Gm,n is an f -code, with deg(f ) = k, then

|S| ≤ dim(Hk(m,n)).

In particular, if S is a k-distance set, then the annihilator of the code has degree k,
so |S| ≤ dim(Hk(m,n)). Note that since Hk(m,n) is the space of homogeneous poly-
nomials of degree k in the n × n projection matrices for Gm,n, we have

dim(Hk(m,n)) ≤
(

n2 + k − 1

k

)
.

Proof If S is an f -code, consider the zonal polynomials fa(b) := f (y(a, b)), for
a ∈ S. Since fa(b) is a degree-k symmetric polynomial in y(a, b), it is an ele-
ment of Hk(m,n). Since fa(b) = 0 for every b ∈ S except a, and fa(a) �= 0, the
set {fa : a ∈ S} is linearly independent. Thus the number of functions |S| is at most
the dimension of the space Hk(m,n). �

If equality holds, then the functions fa form a basis for the space. Moreover, the
space Hk(m,n) is exactly the space of functions on S.

Corollary 1 If S is a 1-distance set in Gm,n, then

|S| ≤ n2.

If S is a 2-distance set in Gm,n (m > 1), then

|S| ≤
(

n2

2

)
.

Proof Use Theorem 4 together with the facts that dim(H1(m,n)) = n2 and for m > 1,

dim(H2(m,n)) = (
n2

2

)
. �

Theorem 4 is called the absolute bound for Grassmannian codes, because the
bound depends only on the number of different distances that occur in S. It is the
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complex analogue of the bound for real Grassmannian spaces given by Bachoc, Ban-
nai and Coulangeon [3, Theorem 9]. When m = 1, it reduces to the absolute bound
of Delsarte, Goethals and Seidel [12, Theorem 6.1]. There is also a relative bound,
which depends on the actual values of the inner products and is sometimes tighter.
The relative bound for real Grassmannian spaces was given by Bachoc [2, Proposi-
tion 2.3].

Theorem 5 Let f (x1, . . . , xm) ∈ R[x1, . . . , xm] be a symmetric polynomial such that
f = ∑

μ cμZμ, where Zμ is a zonal orthogonal polynomial, and each cμ ≥ 0. Fur-
ther assume that c(0) is strictly positive. If S is a set of subspaces in Gm,n such that
fa(b) := f (y1(a, b), . . . , ym(a, b)) is nonpositive for every a �= b in S, then

|S| ≤ f (1, . . . ,1)

c(0)

.

Proof Since fa(b) ≤ 0 for b �= a, summing over all b ∈ S, we have
∑

b∈S

fa(b) ≤ fa(a) = f (1, . . . ,1).

Then averaging over all a ∈ S,

f (1, . . . ,1) ≥ 1

|S|
∑

a,b∈S

fa(b)

= 1

|S|
∑

μ

cμ

∑

a,b∈S

Zμ(a, b).

By Lemma 3, the inner sum is non-negative for μ �= 0. If μ = (0), then Z(0)(a, b) = 1
for all a and b, and hence,

f (1, . . . ,1) ≥ 1

|S|c(0)

∑

a,b∈S

1

= c(0)|S|. �

Equality holds if and only if fa(b) = 0 for every a �= b ∈ S and for each μ �= (0),
we have either cμ = 0 or

∑
a∈S Zμ,a = 0. (We will see in Section 9 that when cμ > 0

for all |μ| ≤ deg(f ), this implies that we have a Grassmannian t-design.)
By way of example, we consider the case of a single nontrivial distance in detail.

The following result is known as the complex Grassmannian simplex bound and can
also be obtained from the real Grassmannian simplex bound by embedding C

n into
R

2n: see Corollary 4 in Section 7.

Corollary 2 Let S be a subset of Gm,n such that tr(PaPb) ∈ [0, α] for all a �= b in S,
and α < m2/n. Then

|S| ≤ n(m − α)

m2 − nα
.
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Proof The first two zonal orthogonal polynomials are Z(0)(y) = 1 and (up to normal-
ization) Z(1)(y) =∑m

i=1 yi − m2/n. The annihilator for α is the polynomial

f (y1, . . . , ym) =
m∑

i=1

yi − α,

and if y1, . . . , ym are the principal angles of a and b in S, then fa(b)=f (y(a, b))=0.
In terms of zonal polynomials, we have

f (y1, . . . , ym) =
m∑

i=1

yi − α

= Z(1)(y) +
(

m2

n
− α

)
Z(0)(y).

Applying Theorem 5, we get

|S| ≤ f (1, . . . ,1)

c(0)

= m − α

m2/n − α
. �

In particular, if S is a 1-distance set with non-trivial inner product α, then Corol-
lary 2 applies, and the bound is tighter than the bound in Corollary 1 provided that
α < 1/(n + 1). When m = 1, Corollary 2 reduces to Delsarte, Goethals and Seidel’s
bound for a set of complex equiangular lines:

|S| ≤ n(1 − α)

1 − nα
.

Similarly, using the zonal orthogonal polynomials Z(0),Z(1),Z(1,1) and Z(2), we
get a bound using the annihilator of two distances.

Corollary 3 Let S be a subset of Gm,n such that tr(PaPb) ∈ [α,β] for all a �= b in S.
Further assume that

α + β ≤ 2(m2n − 4m + n)

n2 − 4
, (3)

α + β − nαβ

m2
<

m2n − 2m + n

n2 − 1
. (4)

Then

|S| ≤ n(m − α)(m − β)

m2
[

(m+1)2

2(n+1)
+ (m−1)2

2(n−1)
− (α + β) + nαβ

m2

] .

When m = 1 this reduces to the Delsarte, Goethals and Seidel’s bound of

|S| ≤ n(n + 1)(1 − α)(1 − β)

2 − (n + 1)(α + β) + n(n + 1)αβ

for 2-distance sets of lines in complex projective space CP n−1.
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Proof The annihilator for {α,β} is

f (y) =
(

m∑

i=1

yi − α

)(
m∑

i=1

yi − β

)

,

and is nonpositive if 〈a, b〉 ∈ [α,β]. In terms of Schur polynomials, the annihilator is

f (y) =
(

m + 1

2

)
X∗

(2)(y) +
(

m

2

)
X∗

(1,1)(y) − (α + β)mX∗
(1)(y) + αβ.

Writing each Schur polynomial in terms of zonal orthogonal polynomials, we get

f (y) = c(2)Z(2) + c(1,1)Z(1,1) + c(1)Z(1) + m2

n

[
(m + 1)2

n + 2
+ (m − 1)2

n − 2
− (α + β)

]

+ αβ − m2(m + 1)2

2(n + 1)(n + 2)
− m2(m − 1)2

2(n − 1)(n − 2)
,

for some constants c(2), c(1,1), and c(1). The resulting bound f (1,1, . . . ,1)/c(0) from
Theorem 5 simplifies to

n(m − α)(m − β)

m2
[

(m+1)2

2(n+1)
+ (m−1)2

2(n−1)
− (α + β) + nαβ

m2

] .

Conditions (3) and (4) arise from insisting that c(1) ≥ 0 and c(0) > 0 respectively. �

7 Other bounds

Certain cases of equality in Corollaries 2 and 3 also achieve equality for bounds
on the size of the largest inner product that occurs in a set of subspaces. For real
Grassmannians, Conway, Hardin and Sloane [9] call these bounds the simplex and
orthoplex bounds. Here we give their complex analogues.

Recall that if Pa is the n × n projection matrix for a ∈ Gm,n, then Pa is Hermitian
with trace m, so P ′

a = Pa − mI/n lies in a real space of dimension n2 − 1. More-
over ||P ′

a ||2 := tr(P ′
aP

′
a) = m(1 − m/n), so P ′

a is embedded onto a sphere of radius√
m(1 − m/n) in R

n2−1. Further recall that the chordal distance on Gm,n is defined
by

dc(a, b)2 = m − tr(PaPb)

= 1

2
||Pa − Pb||2 = 1

2
||P ′

a − P ′
b||2.

With this distance, the Grassmannians are isometrically embedded into R
n2−1. The

“Rankin bounds” given in Theorem 6 below (see [5, Theorems 6.1.1 & 6.1.2]) are
bounds on the minimum distance between points on a real sphere as a function of the
number of points and the dimension of the space. An equatorial simplex refers to a
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set of N points on the unit sphere that form a simplex in a hyperplane of dimension
N − 1.

Theorem 6 Given N points on a sphere of radius r in R
D , the minimum distance d

between any two points satisfies

d ≤ r

√
2N

N − 1
.

Equality requires N ≤ D + 1 and occurs if and only if the points form a regular
equatorial simplex. For N > D + 1, the minimum distance satisfies

d ≤ r
√

2,

and equality requires N ≤ 2D. When N = 2D, equality occurs if and only if the
points are the vertices of a regular orthoplex.

Conway, Hardin and Sloane [9] apply these bounds to get the simplex and ortho-
plex bounds for real Grassmannians: we can do the same for the complex Grassman-
nians.

Corollary 4 Given a finite set S ⊆ Gm,n, the largest inner product α = 〈a, b〉 between
any two subspaces in S satisfies

α ≥ m
m|S| − n

n|S| − n
. (5)

Equality requires |S| ≤ n2 and occurs if and only if the subspaces form a regular
equatorial simplex in R

n2−1. For |S| > n2, the largest inner product satisfies

α ≥ m2

n
, (6)

and equality requires |S| ≤ 2(n2 − 1). Equality occurs if the subspaces form the
2(n2 − 1) vertices of a regular orthoplex in R

n2−1.

If S is an {α}-code, then solving inequality (5) for |S| recovers the relative bound
in Corollary 2. Moreover, if |S| = n2 (equality in the absolute bound of Corollary 1),
then

α = m(mn − 1)

n2 − 1
.

On the other hand, if S is a {0,m2/n}-code, and m = n/2, then the relative bound in
Corollary 3 implies that

|S| ≤ 2(n2 − 1),

which corresponds to equality in the orthoplex bound (6).
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8 Examples

In this section we give examples demonstrating the tightness of the bounds in the
previous sections.

When the rank m of the Grassmannian subspaces is 1, we recover all the classical
results of Delsarte, Goethals and Seidel [12] for lines in complex projective space:
their paper gives several examples of bounds with equality. In particular, the upper
bound for {α}-codes in CP n−1 is n2, and equality can only hold with a trace inner
product value of α = 1/(n + 1). Examples of tightness have been found for several
small values of n and are conjectured to exist for every n. These equiangular lines are
sometimes called symmetric informationally complete POVMs in the quantum infor-
mation literature: see [24] for more details or [21] for recent results. Another impor-
tant example in G1,n is the relative bound (Corollary 3) with inner product values of
α = 0 and β = 1/n. The upper bound for the size of a {0,1/n}-code is n(n + 1), and
when equality is achieved the code is known as a maximal set of mutually unbiased
bases. Constructions achieving the bound are known when n is a prime power; see
[16] for some constructions and [25] for applications to quantum information.

In the case m = n/2, if a is in Gm,n, then its orthogonal complement a⊥ is also in
Gm,n, and a and a⊥ have a trace inner product of 0. Here again, such subspaces have
applications in quantum state tomography; more details will be found in [15]. If S is
a {0, n/4}-code in Gn/2,n, then by the relative bound (Corollary 3), S has size at most
2(n2 − 1). In these case we may assume that both a and a⊥ are in S, because if a and
b have a trace inner product of n/4, then so do a⊥ and b. The following construction,
due to Martin Rötteler, is readily verified and demonstrates that Corollary 3 is tight
when n is a power of 2.

Theorem 7 Let X1, . . . ,Xn2−1 be the Pauli matrices of order n = 2k , and let

Mi := 1

2
(I + Xi).

Then
⋃n2−1

i=1 {Mi, I − Mi} is the set of projection matrices for a {0, n/4}-code of size
2(n2 − 1) in Gn/2,n.

More generally, the bound is tight when n is the order of a Hadamard matrix: details
will appear in [15].

When the dimension of the complex space is an odd prime power, there is another
construction which achieves the relative bound with equality. The following is the
complex version of a set of real Grassmannian packings due to Calderbank, Hardin,
Rains, Shor, and Sloane [8]. For lack of another reference in the complex case, the
details are included here.

Let V := F
n
q , where q = pk and p is an odd prime, and let {ev : v ∈ V } be the

standard basis for C
qn

. Then define the qn × qn Pauli matrices

X(a) : ev 	→ ev+a,

Y (a) : ev 	→ ωtr(aT v)ev,
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where ω is a primitive p-th root of unity. Note that ev is an eigenvalue for Y(a) and
e∗
v := ∑

a ωtr(aT v)ea is an eigenvalue for X(a). Define the extraspecial Pauli group
E to be generated by all X(a),Y (a), and ωI ; it has pqn elements, all of the form
ωiX(a)Y (b), for i ∈ Zp , a, b ∈ V . Its center is Z(E) = 〈ωI 〉, and E := E/Z(E) is
Abelian and therefore a vector space isomorphic to V 2 under the mapping

(a, b) 	→ X(a)Y (b)/Z(E).

The space V 2 has a nondegenerate alternating bilinear form (a symplectic form),
namely

〈(a1, b1), (a2, b2)〉 := tr(aT
1 b2 − aT

2 b1).

It is not difficult to check that two elements in E, say wiX(a1)Y (b1) and
wjX(a2)Y (b2), commute if and only if their images in E/Z(E) satisfy

〈(a1, b1), (a2, b2)〉 = 0.

Subspaces on which the symplectic form vanishes are called totally isotropic. There-
fore, a subspace W of E/Z(E) is totally isotropic if and only if its preimage W in E

is an Abelian subgroup.
We now use characters of subgroups of E to define elements of Gqk,qn . Let W be a

totally isotropic subspace of E/Z(E) of dimension n− k, and let W be the preimage
of W in E. If χ : W → C is a character of W , then χ ′ : W → C defined by

χ ′(ωiX(a)Y (b)) = ω−iχ(X(a)Y (b)/Z(E))

is a character of W . Define a matrix

χ := 1

|W |
∑

g∈W

χ ′(g)g.

Lemma 6 If W is an (n − k)-dimensional totally isotropic subspace of E/Z(E)

and χ is a character of W , then χ is the projection matrix for a qk-dimensional
subspace of C

qn
which is invariant under the action of W .

Proof It is not difficult to check that χ is Hermitian and 2
χ = χ . It is also not

difficult to check that χv is an eigenvector of g ∈ W for any v ∈ C
pn

, so χ is a
projection matrix for an invariant subspace. The rank of χ is the trace of χ , which
can be computed as follows, after noting that the only elements of E with non-zero
trace are the multiples of the identity:

tr(χ) = 1

|W |
∑

g=ωiI

χ ′(g) tr(g) = 1

pqn−k

p∑

i=1

ω−i tr(ωiI ) = qk. �

In the construction that follows we require the q-binomial coefficients, defined as
[
n

m

]

q

:= (qn − 1) . . . (qn−m+1 − 1)

(qm − 1) . . . (q − 1)
.
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Theorem 8 For 0 ≤ k ≤ n − 1, let S be the set of all qk-dimensional invariant sub-
spaces of the preimages W of all (n − k)-dimensional totally isotropic subspaces W

of E/Z(E) (as described in Lemma 6). Then S is a (n− k + 1)-distance set in Gqk,qn

of size

qn−k

[
n

n − k

]

q

n∏

i=k+1

(qi + 1).

Proof For j ∈ {1,2}, let Wj be an isotropic subspace of E/Z(E), let Wj be its
Abelian preimage in E, let χj be a character of Wj , and let j := χj

as in
Lemma 6. Then

tr(12) = 1

|W1||W2|
∑

g1∈W1

∑

W2∈S2

χ ′
1(g1)χ

′
2(g2) tr(g1g2)

= 1

|W1||W2|
∑

g1∈W1∩W2

∑

g2=ωig−1
1

χ ′
1(g1)χ

′
2(g2) tr(ωiI )

= pqn|W1 ∩ W2|
|W1||W2| (or 0, depending on χ ′

1 and χ ′
2)

= qn|W1 ∩ W2|
|W1||W2|

(or 0).

Furthermore, any two distinct invariant subspaces from the same isotropic Wj are
orthogonal. If W1 �= W2, then dim(W1 ∩ W2) ∈ {0,1, . . . , n−k−1} and so |W1 ∩ W2|
takes n − k possible values. It follows that S is a (n − k + 1)-distance set. To find the
size of S, first note that the number of isotropic subspaces of dimension n − k is (see
[6, Lemma 9.4.1])

[
n

n − k

]

q

n∏

i=k+1

(qi + 1)

and then note that each isotropic subspace produces qn−k invariant subspaces. �

In the case k = n − 1, Theorem 8 produces a 2-distance set in Gqn−1,qn of size
q(q2n−1)

q−1 . The inner product values that occur are α = 0 and β = qn−2: this construc-
tion achieves equality in the relative bound (Corollary 3). In his thesis, Zauner [30]
has a construction which has these same parameters (in fact, Zauner’s construction is
more general, as it also allows q to be an even prime power). In the case k = n−2, we

get a 3-distance set in Gqn−2,qn of size q2(q2n−1)(q2n−2−1)

(q2−1)(q−1)
, with inner product values

α = 0, β = qn−4, and γ = qn−3.
There are many open questions regarding whether or not tightness in the bounds

can be achieved; in particular, it is not known if there are any examples of subspaces
achieving equality in the absolute bound (Corollary 1) for m > 1. The smallest non-
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trivial case is a set of 16 subspaces of dimension 2 in C
4, with an inner product value

of α = 14/15.

9 Designs

In this section, we introduce the concept of a complex Grassmannian t-design. We
give lower bounds for the size of a t-design and indicate the relationship between
designs and codes.

Recall that Ht(m,n) is the direct sum of the irreducible representations Hμ of
U(n) containing the zonal orthogonal polynomials Zμ,a , where μ is an integer par-
tition of size at most t and length at most m. Ht(m,n) may also be thought of as
the symmetric polynomials of degree at most t in the principal angles of pairs of
subspaces in Gm,n.

We call a finite subset S ⊆ Gm,n a t-design if, for every polynomial f in Ht(m,n),

1

|S|
∑

a∈S

f (a) =
∫

Gm,n

f (c) dc.

In other words, the average of f over S is the same as the average of f over the entire
Grassmannian space. Recall that the average of f over Gm,n can be written as 〈1, f 〉:
with this in mind we define an inner product for functions on S as follows:

〈f,g〉S := 1

|S|
∑

a∈S

f (a)g(a).

Then S is a t-design if 〈1, f 〉 = 〈1, f 〉S for every f ∈ Ht(m,n). Equivalently, the
zonal orthogonal polynomials Zμ,a span Hμ, so S is a t-design if every Zμ,a has the
same averages over S and over Gm,n, where μ is a partition of at most t into at most
m parts.

By way of example, consider Theorem 5. If f = ∑
μ cμZμ and cμ > 0 for every

|μ| ≤ t , then equality in Theorem 5 implies that S is a t-design.
Before we give lower bounds for the size of a t-design, we offer two characteriza-

tions of designs.

Lemma 7 Let S be a finite subset of Gm,n. Then S is a t-design if and only if for
every μ such that 0 < |μ| ≤ t ,

∑

a,b∈S

Zμ,a(b) = 0.

Proof Recall that Z(0) is the constant function, and every other Zμ is orthogonal to
Z(0), so

∫

Gm,n

Zμ,a(b) db = 〈
1,Zμ,a

〉= 0
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for every a ∈ Gm,n and μ �= (0). Thus S is a t-design if and only if

1

|S|
∑

b∈S

Zμ,a(b) = 1

|S|
∑

b∈S

Zμ,b(a) = 0

for all a and 0 < |μ| ≤ t , which means that
∑

b∈S Zμ,b is identically 0. From
Lemma 3, this occurs if and only if

∑
a,b∈S Zμ,a(b) = 0. �

In the following, Pa denotes the projection matrix of a ∈ Gm,n.

Lemma 8 Let S be a finite subset of Gm,n. Then S is a t-design if and only if

1

|S|
∑

a∈S

P ⊗t
a =

∫

Gm,n

P ⊗t
a da.

Proof By Lemma 5, Ht is the space of homogeneous polynomials of degree t in the
entries of Pa . Therefore, the averages over S and Gm,n agree for every polynomial in
Ht if and only if the averages of the entries in the t-th tensor products of the projection
matrices also agree. �

For the purposes of quantum tomography applications, 1- and 2-designs play a
special role (see [15], as well as [26]). In those cases, we can evaluate the integral∫

P ⊗t
a da more explicitly. Let T denote the “swap” operator T : u ⊗ v 	→ v ⊗ u, for

u,v ∈ C
n.

Corollary 5 Let S be a finite subset of Gm,n. Then S is a 1-design if and only if

1

|S|
∑

a∈S

Pa = m

n
I.

Moreover, S is a 2-design if and only if

1

|S|
∑

a∈S

Pa ⊗ Pa = m

n(n2 − 1)
[(nm − 1)I + (n − m)T ] . (7)

Proof It is not difficult to check that
∫

Pa da = (m/n)I (see for example equation
(2.2) of [25]). To evaluate

∫
Pa ⊗Pa da, write Pa =∑m

i=1 aia
∗
i for some orthonormal

basis {ai}mi=1 of a and then use Lemma 5.3 of [25]. �

We now consider bounds for t-designs. The following absolute bound is the com-
plex analogue of [3, Theorem 8].

Lemma 9 If S is a t-design, then

|S| ≥ dim(H�t/2�(m,n)).
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Proof Let {e1, . . . , eN } be an orthonormal basis for H�t/2�. It follows from the unique
decomposition of L2(Gm,n) (or from Lemma 5) that eiej is in H2�t/2� and therefore
in Ht . If S is a t-design, and eiej is in Ht , then

〈
ei, ej

〉= 〈
1, eiej

〉= 〈
1, eiej

〉
S

= 〈
ei, ej

〉
S
,

whence it follows that {e1, . . . , eN } are orthogonal as functions on S (a space of
dimension |S|). �

If equality holds, then the basis for Ht/2(m,n) is also a basis for the functions
on S. There is also a relative bound.

Theorem 9 Let f (x1, . . . , xm) ∈ R[x1, . . . , xm] be a symmetric polynomial such that
f = ∑

μ cμZμ, where Zμ is a zonal polynomial for the Grassmannian space, and
c(0) > 0. Further suppose S is a t-design such that fa(b) = f (y1(a, b), . . . , ym(a, b))

is nonnegative for every a �= b in S, and cμ ≤ 0 for every |μ| > t . Then

|S| ≥ f (1, . . . ,1)

c(0)

.

Proof Let fa be the zonal polynomial of f at a, so that fa(b) ≥ 0 for b �= a. Sum-
ming over all b ∈ S,

|S| 〈1, fa〉S ≥ fa(a) = f (1, . . . ,1).

Again averaging over all a ∈ S,

f (1, . . . ,1) ≤
∑

a∈S

〈1, fa〉S

=
∑

a∈S

∑

μ

cμ

〈
1,Zμ,a

〉
S

=
∑

μ

cμ

∑

a∈S

〈
1,Zμ,a

〉
S
.

Since S is a t-design, the inner sum is zero for 0 < |μ| ≤ t . For |μ| > t , the inner sum
is nonnegative (by Lemma 3) and cμ ≤ 0. Therefore,

f (1, . . . ,1) ≤ c(0)

∑

a∈S

〈
1,Z0,a

〉
S

= c(0)|S|. �

If equality holds, then we have fa(b) = 0 for every a �= b in S. That is, S is an
f -code. Furthermore, for every |μ| > t , we have either cμ = 0 or

∑
a∈S Zμ,a = 0.

As with spherical codes and designs, the case where S is both an f -code and a
t-design is of particular interest, as the size of the set can be determined exactly.
Combining Theorems 5 and 9 gives the following.
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Theorem 10 Suppose S is an f -code for f = ∑
μ cμZμ, where cμ ≥ 0, and S is

also a t-design for t ≥ deg(f ). Then

|S| = f (1,1, . . . ,1)

c(0)

.

Consider the following polynomial in Ht(m,n):

Zt :=
∑

|μ|≤t
len(μ)≤m

Zμ. (8)

This polynomial satisfies
〈
Zt,a, f

〉= f (a) for every f ∈ Ht(m,n). Taking f = Zt in
Theorem 10, we get:

Corollary 6 If S is a Zt -code and a 2t-design, then

|S| = dim(Ht (m,n)).

Theorem 11 Any two of the following imply the third:

(i) S is an f -code, where deg(f ) = t ;
(ii) S is a 2t-design;

(iii) |S| = dim(Ht (m,n)).

Proof Suppose S is a f -code with |S| = dim(Ht ). Since equality holds in Theorem 4,
the polynomials {fa : a ∈ S} are a basis for Ht . However, we have

〈
Zt,a, fb

〉= fb(a) =
{

0, b �= a;
f (1,1, . . . ,1), b = a.

Thus {Zt,a} is a dual basis for Ht and each Zt,a is a multiple of fa . Now consider the
averages

〈
Zt,a, fb

〉
S

: since fa(b) = Zt,a(b) = 0 for b �= a, we get

〈
Zt,a, fb

〉
S

=
{

0, b �= a;
f (1,1, . . . ,1), b = a.

Thus we have

〈
1,Zt,afb

〉
S

= 〈
Zt,a, fb

〉
S

= 〈
Zt,a, fb

〉= 〈
1,Zt,afb

〉

for the bases {Zt,a} and {fb}. But the set {Zt,afb} spans H2t (n), so S is a 2t-design.
Conversely, suppose S is a 2t-design with |S| = dim(Ht ), and let f annihilate

of the set of principal angles of S, so S is an f -code. Since Ht spans the functions
on |S|, each fa is in Ht and is therefore a polynomial of degree t . Thus f has de-
gree t . �
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The simplest case of Theorem 11 is when t = 1: in this case, S is a 1-distance
set and a 2-design of size n2. Moreover, S is a Z1-code, and Z1 is the annihilator of
m(mn−1)

n2−1
. Thus the inner product between every two distinct subspaces is

α = m(mn − 1)

n2 − 1
.

10 Association schemes

As Theorem 11 indicates, sets of Grassmannian subspaces which reach equality in the
Delsarte bounds have a great deal of structure. In this section, we show that—much
like spherical codes and spherical designs—these sets often give rise to an association
scheme.

Let S be an f -code with a finite number of distinct sets of principal angles y =
(y1, . . . , ym). Denote the set of y’s that occur by Y . (Here, we include the trivial
principal angles (1, . . . ,1).) For each y ∈ Y , define a |S| × |S| matrix as follows:

Ay(a, b) :=
{

1, a, b have principal angles y;
0, otherwise.

Each Ay is a symmetric {0,1}-matrix. Furthermore, each pair (a, b) has some prin-
cipal angle y, so

∑
y∈Y Ay = J , where J is the all-ones matrix. If y0 := (1, . . . ,1)

denotes the trivial principal angles, then A0 := Ay0 is the identity matrix. We call the
Ay matrices Schur idempotents, as they are idempotent under Schur multiplication,
defined as follows:

(A ◦ B)ij := AijBij .

Under certain conditions, these Schur idempotents form an association scheme.
For each integer partition μ and corresponding zonal polynomial Zμ, define an

|S| × |S| matrix as follows:

Eμ(a, b) := 1

|S|Zμ(a, b).

Each Eμ is also symmetric and in the span of {Ay}y∈Y :

Eμ = 1

|S|
∑

y∈Y
Zμ(y)Ay.

In particular, E(0) is a scalar multiple of J . When {Ay}y∈Y forms an association
scheme, the matrices Eμ are the scheme’s idempotents.

Lemma 10 If S is a 2t-design, then {Eμ}|μ|≤t,len(μ)≤m are a set of orthogonal idem-
potents.
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Proof Let μ and λ satisfy |μ| , |λ| ≤ t and len(μ), len(λ) ≤ m. Then

(EμEλ)a,b = 1

|S|2
∑

c∈S

Zμ(a, c)Zλ(c, b)

= 1

|S|
〈
Zμ,a,Zλ,b

〉
S
.

Since Zμ,a and Zλ,b are in Ht , their product is in H2t . Now S is a 2t-design, so the
average of Zμ,aZλ,b over S is the same as the average over Gm,n. But

〈
Zμ,a,Zλ,b

〉= δλ,μZμ(a, b),

and so EμEλ = δλ,μEμ. �

More generally, if |μ| = i and |λ| = j , and S is a (i + j)-design, then Eμ and Eλ

are orthogonal.
Now suppose S is a 2t-design. By the previous lemma {Eμ}|μ|≤t are linearly inde-

pendent, and clearly the matrices {Ay}y∈Y are also linearly independent. If |Y | equals
the number of partitions of at most t (into at most m parts), then the span of {Ay}y∈Y
and {Eμ}|μ|≤t are the same. Since {Eμ}|μ|≤t is closed under multiplication, so too is
the span of {Ay}y∈Y , and so we have an association scheme.

Corollary 7 Let S be a 2t-design in Gm,n with principal angles set Y (including
(1, . . . ,1)). If |Y | is equal to the total number of partitions of 0,1, . . . , t into at most
m parts, then {Ay}y∈Y is an association scheme.

Lemma 11 Let S be a 2t-design in Gm,n with principal angle set Y such that
|Y | is the total number of partitions of 0,1, . . . , t into at most m parts. Then
{Eμ}|μ|≤t,len(μ)≤m are the idempotents of the scheme {Ay}y∈Y .

Proof Since Eμ = 1
|S|

∑
y∈Y Zμ(y)Ay , we see that the matrix [Zμ(y)] is the transi-

tion matrix between the two bases of the association scheme and is therefore invert-
ible. It follows that for each yi in Y , some linear combination of the rows Zμ forms a
homogeneous degree-t polynomial gi such that gi(yj ) = δij . (Conversely, if such gi

polynomials exist, then [Zμ(y)] is invertible.) Then

(AiEμ)a,b = 1

|S|
∑

c:y(a,c)=yi

Zμ(c, b)

= 〈
gi,a,Zμ,b

〉
S

= 〈
gi,a,Zμ,b

〉
.

Now write gi =∑
|λ|≤t ci,λZλ, so that

〈
gi,a,Zμ,b

〉=
∑

|λ|≤t

ci,λ

〈
Zλ,a,Zμ,b

〉= ci,μZμ(a, b).

Thus AiEμ = ci,μEμ for some ci,μ. �
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By way of example, let t = 1, and suppose S is a 2-design with only two sets of
principal angles, including the trivial one. The number of partitions of at most 1 is
also two (μ = (0) and μ = (1)), so by Corollary 7 we have an association scheme. In
this case the scheme is the trivial one, namely {I, J − I }.

As another example of an association scheme obtained from principal angles, con-
sider the collection of subspaces in Gn/2,n from Theorem 7. This collection has four
distinct sets of principal angles:

y = (1, . . . ,1) (trivial principal angles),

y = (0, . . . ,0) (angles between a and a⊥),

y = (1, . . . ,1︸ ︷︷ ︸
n/4

,0, . . . ,0︸ ︷︷ ︸
n/4

),

y = ( 1
2 , . . . , 1

2 ).

While |Y | = 4 is the number of partitions of at most 2 (μ = (0), μ = (1), μ = (1,1)

and μ = (2)), the hypotheses of Corollary 7 are not satisfied because the subspaces
do not form a 4-design. Nevertheless, it is easy to verify computationally that this
collection does give a 3-class association scheme.

We may define a coarser set of relations on an f -code S using the inner products
values 〈a, b〉 = tr(PaPb) instead of the principal angles y(a, b). Let A denote the set
of nontrivial inner product values that occur in S, so S is an A-code. For α ∈ A let
A′

α be the |S| × |S| matrix defined as follows:

A′
α(a, b) :=

{
1, 〈a, b〉 = α,

0, otherwise.

Also define A′
m := I for the identity relation. Clearly each A′

α is in the span of {Ay :
y ∈ Y }; in fact

A′
α =

∑

y∈Y :∑yi=α

Ay.

In particular, A′
m = A0 = I , and if 0 is in A, then A′

0 = A(0,...,0). As before, the
matrices are Schur idempotents and sum to J . Next we need the corresponding idem-
potents. For each i ∈ {0, . . . , t}, define E′

i as follows:

E′
i :=

∑

|μ|=i

Eμ.

This implies that E′
0 = J/|S| and E′

i (a, b) = (Zi(a, b) − Zi−1(a, b))/|S| for i > 0
(where Zi is as defined in equation (8)). As in Lemma 10, if S is a 2t-design, then
{E′

i : i ≤ t} is a set of orthogonal idempotents, and if S is a (2t − 1)-design, then
{E′

i : i ≤ t} are linearly independent.
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Clearly E′
i is in the span of {Ay : y ∈ Y }, since each Eμ is in that span. But

suppose Zi(y) is the annihilator polynomial of some i-distance set, so it is a function
only of the sum of the principal angles

∑
j yj rather than a symmetric function in

(y1, . . . , ym). Then, in fact E′
i is in the span of {A′

α : α ∈ A}. If Zi(y) is an annihilator
for sufficiently many i, then {E′

i : 0 ≤ i ≤ t} and {A′
α : α ∈ A ∪ {m}} span the same

set, and that set is closed under multiplication.

Corollary 8 Let S be a 2t-design that is also an A-code in Gm,n. If |A| ≤ t , and
Zi(y) is an annihilator polynomial for each i ≤ t , then {A′

α : α ∈ A ∪ {m}} is an
association scheme.

In fact, these hypotheses can be weakened.

Theorem 12 Let S be a (2t − 2)-design that is also an A-code in Gm,n. If |A| = t ,
and Zi(y) is an annihilator for each 0 ≤ i ≤ t − 1, then {A′

α : α ∈ A ∪ {m}} is an
association scheme.

Proof Since S is a 2(t − 1)-design, the idempotents {E′
i : 0 ≤ i ≤ t − 1} are linearly

independent. We claim that I is also linearly independent from {E′
i : 0 ≤ i ≤ t − 1}.

For, if I =∑t−1
i=0 ciE

′
i , then the off-diagonal entries of I are functions of a polynomial

of degree at most t − 1 in
∑

j yj , namely

1

|S|

(

c0 +
t−1∑

i=1

ci(Zi(y) − Zi−1(y))

)

.

But all off-diagonal entries are 0, implying that the polynomial has t roots in
∑

i yi , a
contradiction. So {E′

i : 0 ≤ i ≤ t −1}∪{I } is linearly independent and therefore spans
{A′

α : α ∈ A ∪ {m}}. Since it is closed under multiplication, we have an association
scheme. �

By way of example, suppose t = 2 in Theorem 12. Note that Z0(y) and Z1(y)

are always annihilators. It follows that if S is a 2-design, and the inner product set
A = {〈a, b〉 : a �= b ∈ S} contains exactly two distinct values, then {A′

α : α ∈ A ∪{m}}
is a 2-class association scheme. The association scheme obtained in this way from the
construction in Theorem 7 is the complete multipartite scheme.

Corollary 9 Let S be a (2t −2)-design and an A-code in Gm,n such that |A| = t and
Zi(y) is an annihilator for i ≤ t − 1. Then the idempotents of the scheme {A′

α : α ∈
A ∪ {m}} are E′

0, . . . ,E
′
t−1, and I −∑t−1

i=0 E′
i .

Proof Let fα denote the annihilator polynomial of A\{α}, normalized so that
fα(y) = 1 when

∑
i yi = α. Then fα is a polynomial of degree t − 1 in

∑
i yi , and
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the corresponding zonal polynomial fα,a is in Ht−1(n). Writing gi := Zi − Zi−1 =∑
|μ|=i Zμ, we have

(A′
αE′

i )a,b = 1

|S|
∑

〈a,c〉=α

gi(y(c, b))

= 〈
fα,a, gi,b

〉
S

− fα(1, . . . ,1)

|S| gi(y(a, b))

= 〈
fα,a, gi,b

〉− fα(1, . . . ,1)

|S| gi(y(a, b)).

Now decomposing fα into its degrees as fα =∑
i cα,igi , we get

(A′
αE′

i )a,b = cα,i

〈
gi,a, gi,b

〉− fα(1, . . . ,1)

|S| gi(y(a, b))

= cα,igi(y(a, b)) − fα(1, . . . ,1)

|S| gi(y(a, b))

= (cα,i |S| − fα(1, . . . ,1))(E′
i )a,b.

Thus A′
αE′

i = λα,iE
′
i for some constant λα,i . �

11 Weighted designs

In this section, we introduce a weighted version of the Grassmannian t-design, which
is easier to construct than the unweighted one. Let S be a finite subset of Gm,n and let
w : S → R be a positive function such that

∑
a∈S w(a) = 1. Then (S,w) is called a

weighted t-design if, for every polynomial f in Ht(m,n),

∑

a∈S

w(a)f (a) =
∫

Gm,n

f (a) da.

In other words, the weighted average of every degree-t polynomial over S is the same
as its average over Gm,n. Every (unweighted) t-design is a weighted t-design with the
constant weight function w(a) := 1/|S|.

The absolute and relative lower bounds for the size of a t-design also apply to
weighted t-designs. In particular, from Lemma 9, the size of a weighted t-design is
at least dim(H�t/2�(m,n)). Moreover, a result of Levenshtein [22, Theorem 4.3] can
be adapted to show that equality holds if and only if the design is unweighted.

The advantage that weighted designs hold over unweighted designs is that it is
always also possible to construct a weighted t-design of reasonable size in Gm,n, for
every t , m, and n. The following result is based on a construction of Godsil [14,
Theorem 3.2].

Theorem 13 There exists a weighted t-design (S,w) in Gm,n such that

|S| ≤ dim(Ht (m,n)).
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Proof Let u := |{μ : 0 < |μ| ≤ t}|. For any a ∈ Gm,n, define a zonal function Ft,a :
Gm,n → R

u as follows:

Ft,a(b) := (Zμ,a(b))(μ:0<|μ|≤t).

In other words, the entries of the vector Ft,a(b) are the values of the zonal polynomi-
als Zμ,a(b) in Ht(m,n). Now recall that for any |μ| > 0,

∫

Gm,n

Zμ,a(b) da = 〈
Zμ,b,1

〉= 0,

since Zμ is orthogonal to the constant function Z(0). So the average of Zμ,a over all
a ∈ Gm,n is 0, which implies that

∫

Gm,n

Ft,a da = (0, . . . ,0).

Thus, the zero function 0 : Gm,n → Ru is in the convex hull of {Ft,a : a ∈ Gm,n}.
Carathéodory’s theorem implies there is a finite subset S ⊆ Gm,n for which 0 is also
in the convex hull of {Ft,a : a ∈ S}. More precisely, there is a positive weighting
w : S → R such that

∑
a∈S w(a) = 1 and

∑

a∈S

w(a)Ft,a = 0,

which in turn implies that
∑

a∈S

w(a)Zμ,a = 0

for every 0 < |μ| ≤ t . Therefore (S,w) is a weighted t-design, by the argument in
Lemma 7. Carathéodory’s theorem also states that S can be chosen with cardinality
at most the dimension of the span of {Ft,a : a ∈ Gm,n}. Since the zonal polynomials
span Ht(m,n), the dimension of this space is dim(Ht (m,n)). �
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