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Abstract The well known g-conjecture for homology spheres follows from the
stronger conjecture that the face ring over the reals of a homology sphere, modulo
a linear system of parameters, admits the strong-Lefschetz property. We prove that
the strong-Lefschetz property is preserved under the following constructions on ho-
mology spheres: join, connected sum, and stellar subdivisions. The last construction
is a step towards proving the g-conjecture for piecewise-linear spheres.
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1 Introduction

Our motivating problem is the following well known g-conjecture for spheres, first
raised as a question by McMullen for simplicial spheres [15]. By homology sphere
we mean a pure simplicial complex L such that for every face F ∈ L (including
the empty set), its link lk(F,L) := {T ∈ L : T ∩ F = ∅, T ∪ F ∈ L} has the same
homology (say with integer coefficients) as of a dim(lk(F,L))-sphere. Any simplicial
sphere is a homology sphere.

Conjecture 1.1 (McMullen [15]) The g-vector of any homology sphere is an M-
sequence, i.e. is the f -vector of a multicomplex.
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An algebraic approach to this problem is to associate with a homology sphere
L a standard ring whose Hilbert function is the g-vector of L. This was worked
out successfully by Stanley [22] in his celebrated proof of Conjecture 1.1 for the
case where L is the boundary complex of a simplicial polytope. The hard-Lefschetz
theorem for toric varieties associated with rational polytopes, translates in this case
to the strong-Lefschetz property of face rings, to be defined shortly.

First we introduce some notation. Let K be a (d −1)-dimensional simplicial com-
plex on the vertex set [n]. Let

([n]
k

)
denote the subsets of [n] of size k. The i-th

skeleton of K is Ki = {S ∈ K : |S| = i + 1} = K ∩ ( [n]
i+1

)
, its f -vector is f (K) =

(f−1, f0, . . . , fd−1) where fi = |Ki |, its h-vector is h(K) = (h0, h1, . . . , hd) where
hk = ∑

0≤i≤k(−1)k−i
(
d−i
k−i

)
fi−1, and in case the h-vector is symmetric, its g-vector

is g(K) = (g0, . . . , g�d/2�) where g0 = h0 = 1 and gi = hi − hi−1 for 1 ≤ i ≤ �d/2�.
Let F be a field, A = F[x1, .., xn] the polynomial ring over F, where each variable

has degree one, and Ai is the degree i part of A. The face ring of K , also called
Stanley-Reisner ring, is F[K] = A/IK where IK is the ideal in A generated by the
monomials xa = �1≤i≤nx

ai

i whose support, denoted by supp(a) = {i : ai > 0}, is
not an element of K . Let � = (θ1, .., θd) be a linear system of parameters (l.s.o.p. for
short) of F[K]—if F is infinite it exists, e.g. [23, Lemma 5.2], and generic degree one
elements will do. From now on we assume that F is infinite. Let H(K) = H(K,�) =
F[K]/(�) = H(K)0 ⊕ H(K)1 ⊕ · · · where the grading is induced by the degree
grading in A, and (�) is the ideal in F[K] generated by the images of the elements
of � under the projection A → F[K]. K is called Cohen-Macaulay (CM for short)
over F if for an (equivalently, every) l.s.o.p. �, F[K] is a free F[�]-module.

If K is CM then dimF H(K)i = hi(K). (Further, h is an M-vector iff h = h(K)

for some CM complex K [23, Theorem 3.3].) For K a CM simplicial complex with
a symmetric h-vector, if there exists an l.s.o.p. � and an element ω ∈ A1 such that
the multiplication maps ωd−2i : H(K,�)i −→ H(K,�)d−i , m �→ ωd−2im, are iso-
morphisms for every 0 ≤ i ≤ �d/2�, we say that K has the strong-Lefschetz property,
or that K is SL (over F). Note that for any complex K the set of (�,ω) as above is
Zariski open (in F

(d+1)n), but it may be empty. The elements of a specified nonempty
Zariski open set are called generic.

As was shown by Stanley [22], for K the boundary complex of a simplicial rational
d-polytope P with the origin in its interior, the l.s.o.p � induced by the embedding
of its vertices in R

d and ω = ∑
1≤i≤n xi demonstrate that K is SL over R; hence so

do generic (�,ω). Note that if F is infinite of characteristic zero, then K is SL over
F iff K is SL over R. This follows from writing the SL property as nonvanishing
conditions for polynomials in Z[�,ω], the polynomial ring with (d + 1)n variables
over the integers.

Our main result is that the following constructions on homology spheres preserve
the strong-Lefschetz property.

Theorem 1.2 Let K and L be homology spheres over an infinite field F, and let F

be a face of K . Denote by ∗ the join operator, by # the connected sum operator, and
by Stellar(F,K) the stellar subdivision of K at F . The following holds:

(1) If K and L are SL over F and F has characteristic zero then K ∗ L is an SL
homology sphere (over F).
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(2) If K and L have the same dimension and are SL over F then K#L is an SL
homology sphere (over F). (True over any field.)

(3) If K and lk(F,K) are SL over F and F has characteristic zero, then
Stellar(F,K) is an SL homology sphere (over F). In particular, if K and all of its
face links are SL over F then the barycentric subdivision of K is SL over F.

Remarks 1.3 (1) Replacing the class of homology spheres by the class of piecewise
linear (PL) spheres, Theorem 1.2 still holds. More generally, if S is a class of simpli-
cial complexes with the SL property, then any complex in its closure w.r.t. join and
connected sum is also SL. If S is closed under links, then any complex in its closure
w.r.t. stellar subdivisions is also SL.
(2) Any PL-sphere can be obtained from the boundary of a simplex by a sequence
of stellar subdivisions and their inverses (e.g. the survey [14]). Thus, to prove the
g-conjecture for PL-spheres it is left to prove that the SL property is preserved under
the inverse of stellar subdivisions, in the case of PL-spheres.
(3) A result similar to Theorem 1.2(3) was obtained recently, and independently, by
Murai [19], using different ideas: if one assumes that lk(F,K) ∗ ∂(F \ {u}) is SL for
some u ∈ F (instead of that lk(F,K) is SL) then the conclusion that Stellar(F,K)

is SL holds. His proof works for an arbitrary field. Can his proof be used to prove
Theorem 1.2(3) for an arbitrary field?
(4) We use Theorem 1.2(1) to prove Theorem 1.2(3). Can Murai’s result [19] be used
to prove the assertion of Theorem 1.2(1) for an arbitrary field?

The CM property and the strong-Lefschetz property have equivalent formulations
in terms of the combinatorics of the symmetric algebraic shifting of the original sim-
plicial complex [10] (definitions and further details appear in Section 3). We consider
this reformulation in the context of exterior algebraic shifting, and extend some of
our results to this context as well.

This paper is organized as follows: in Section 2 we discuss the effect of join on
face rings and prove Theorem 1.2(1). In Section 3 we give background on algebraic
shifting and the interpretations of various Lefschetz properties in terms of shifting. In
Section 4 we compare the strong and weak-Lefschetz properties, to be used later in
the proof of Theorem 1.2(3). In Section 5 we relate a certain Lefschetz type property,
in terms of algebraic shifting (symmetric and exterior), to certain edge contractions,
and use it to derive Theorem 1.2(3). In Section 6 we show that connected sum pre-
serves both the strong and weak-Lefschetz properties, also in the exterior algebra
context; in particular we prove Theorem 1.2(2).

2 Strong-Lefschetz and join

The following auxiliary lemma is used in the proof of Theorem 1.2(1).

Lemma 2.1 Let K be a (d −1)-dimensional CM complex with a symmetric h-vector,
with an l.s.o.p. � and an SL element ω over F. Let H = F[K]/(�). Then H decom-
poses into a direct sum of F[ω]-modules, each is of the form

Vm = Fm ⊕ Fωm ⊕ · · · ⊕ Fωd−2im
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for m ∈ F[K]/(�) of degree i for some 0 ≤ i ≤ d/2.

Proof Clearly V1 (1 ∈ H0) is an F[ω]-module which contains H0. Assume that for
1 ≤ i ≤ d/2 we have already constructed a direct sum of F[ω]-modules, Ṽi−1, which
contains H̃i−1 := H0 ⊕· · ·⊕Hi−1, in which each Vm contains some nonzero element
of H̃i−1. We now extend the construction to have these properties w.r.t. H̃i .

Let Wi := ker(ωd−2i+1 : Hi → Hd−i+1), and let m1, . . . ,mt form a basis
(over F) of Wi . By the definition of Wi , each Vmj

, 1 ≤ j ≤ t , is an F[ω]-submodule
of H . As ωd−2i : Hi → Hd−i is injective, the sum of the Vmj

’s is direct, and

is denoted by Vi = ⊕
1≤j≤t Vmj

. Let us check that Vi ∩ Ṽi−1 = 0 by showing
that its intersection with each Hl is zero. For l > d − i or l < i this is obvi-
ous. Otherwise, an element in Vi ∩ Ṽi−1 ∩ Hl is of the form ωl−i+1x = ωl−iy

where x ∈ Hi−1, y ∈ Wi and i ≤ l ≤ d − i. As ω is an SL-element, multiplying
by ωd−i+1−l , the LHS stays nonzero while by definition of Wi the RHS becomes
zero, a contradiction. We now show that the direct sum in degree i (Vi ⊕ Ṽi−1)i
equals Hi , by computing dimensions: dimF(Ṽi−1)i = dimF(ωHi−1)i = hi−1(K), and
dimF Wi = hi(K) − hd−i+1(K) = hi(K) − hi−1(K) hence (Vi ⊕ Ṽi−1)i = Hi and
H̃i has the desired properties. As the h-vector of K is symmetric, H = H̃�d/2�, which
completes the proof. �

Recall that the join of two simplicial complexes with disjoint sets of vertices is
K ∗ L := {S ∪ T : S ∈ K,T ∈ L}.

Theorem 2.2 Let K and L be CM complexes over an infinite field F on disjoint sets
of vertices, with symmetric h-vectors, of dimensions dK − 1, dL − 1, with l.s.o.p’s
�K,�L and SL elements ωK,ωL respectively; over F. Then:

(0) K ∗ L is a CM complex of dimension dK + dL − 1 with a symmetric h-vector.
(1) �K

⊎
�L is an l.s.o.p for K ∗ L (over F).

(2) If char(F) = 0 then ωK + ωL is an SL element of F[K ∗ L]/(�K

⊎
�L).

We thank one of the referees for pointing out to us the relevance of [6]. Theorem
2.2 easily follows from [6, Theorem 11]; we leave the proof below for the sake of
completeness.

Proof (0) is easy and well known. A topological way to see that K ∗ L is CM is to
use Reisner theorem and Künneth theorem. An algebraic way will be described in
the proof of (1). To see that K ∗ L has a symmetric h-vector note that the product of
symmetric polynomials is a symmetric polynomial.

We now exhibit a special l.s.o.p. for K ∗ L. For a set I let AI := F[xi : i ∈ I ] be a
polynomial ring. The isomorphism

AK0

⊗

F

AL0
∼= AK0

⊎
L0 , aK ⊗ aL �→ aKaL

induces a structure of an A = AK0
⊎

L0 module on F[K]⊗
F

F[L], isomorphic to
F[K ∗ L], by mK ⊗ mL �→ mKmL and (aK ⊗ aL)(mK ⊗ mL) = aKmK ⊗ aLmL.
(E.g. aK ∈ AK0 ⊆ A acts like aK ⊗ 1 on F[K]⊗

F
F[L]. )
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The above isomorphism induces an isomorphism of A-modules

F[K ∗ L]/(�K

⊎
�L)F[K ∗ L] ∼= F[K]/(�K)F[K]

⊗

F

F[L]/(�L)F[L], (1)

proving part (1).
By Lemma 2.1, F[K]/(�K) decomposes into a direct sum of F[ωK ]-modules,

each of the form Vm(K) = Fm
⊕

FωKm
⊕ · · ·⊕Fω

dK−2i
K m for m ∈ F[K]/(�K)

of degree i for some 0 ≤ i ≤ dK/2; and similarly for F[L]/(�L).
As F is infinite of characteristic zero, to prove (2) we may assume F = R.

The R[ωK ]-module Vm(K) is isomorphic to the R[ω]-module R[∂σdK−2i]/(θ) by
ωK �→ ω and m �→ 1, where σ j is the j -simplex, θ is an l.s.o.p. induced by the po-
sitions of the vertices in an embedding of σdK−2i as a full dimensional geometric
simplex in R

dK−2i with the origin in its interior, and ω = ∑
v∈σ0

xv is an SL ele-

ment for R[∂σdK−2i]/(θ). By equation (1), R[K ∗ L]/(�K

⊎
�L) is isomorphic as

an R[ωK + ωL]-module to a direct sum of submodules of the form Vm(K)⊗Vm′(L).
To prove part (2), we will show that ωK + ωL is an SL element of each direct sum-
mand. Thus, it is enough to prove it for the join of boundaries of two simplices with
l.s.o.p.’s as above and the SL elements having weight 1 on each vertex of the ground
set.

Note that the join ∂σ k ∗ ∂σ l is combinatorially isomorphic to the boundary of
the polytope P := conv(σ k ∪ σ l) where σk and σ l are embedded in orthogonal
spaces and intersect only in the origin which is in the relative interior of both.
McMullen’s proof of the g-theorem for simplicial polytopes [16, 17] states that∑

v∈P0
xv = ω∂σk + ω∂σ l is indeed an SL element of R[∂σ k ∗ ∂σ l]/(�∂P ) where

�∂P is the l.s.o.p. induced by the positions of the vertices in the polytope P . By the
definition of P , �∂P = �∂σk � �∂σ l . Thus part (2) is proved. �

In particular, Theorem 2.2 implies Theorem 1.2(1). Similarly, as the join of PL
spheres is a PL sphere, Remark 1.3(1) follows in the same manner.

Remarks 2.3 (1) As a nonzero multiple of an SL element is again SL, in Theorem
2.2(2) any element aωK + bωL where a, b ∈ F, ab �= 0, will do.

(2) The case char(F) �= 0: the proof above shows that for ω = ωK + ωL we get an
isomorphism of F[ω]-modules

Vm(K)

⊗

F

Vm(L)
∼= F[ωK ]

(ω
dK−2iK+1
K )F[ωK ]

⊗

F

F[ωL]
(ω

dL−2iL+1
L )F[ωL]

over any infinite field F. Picking the basis {ωl
K ⊗ ω

j
L : 0 ≤ l ≤ dK − 2iK,0 ≤ j ≤

dL − 2iL} for the module on the RHS, we see that the representing matrix of the
map ωdK+dL−2i : (Vm(K) ⊗ Vm(L))i → (Vm(K) ⊗ Vm(L))dK+dL−i consists of integer
entries (all entries are binomials). However, if char(F) �= 0, the determinant of this
matrix may equal zero. In other words, there exist simplices σdK ,σ dL such that for
any l.s.o.p’s �K,�L of the face rings of their boundaries, respectively, there is no SL-
element for F[∂σdK ∗∂σdL ]/(�K ∪�L). On the other hand, for strongly edge decom-
posable complexes, introduced in [21], Murai proved recently, see [19, Corollary 3.5],
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that the SL property holds over any field. The join of boundaries of two simplices is
strongly edge decomposable (identify a pair of vertices, one from each simplex, to ob-
tain the boundary of a simplex), hence for some other l.s.o.p �, F[∂σdK ∗ ∂σdL ]/(�)

has an SL-element. This raises the following question:

Problem 2.4 Does Theorem 1.2(1) hold for a field of an arbitrary characteristic?
Can the results in [19] be used to prove this?

3 Algebraic shifting

Let < denote the usual order on the natural numbers. A simplicial complex K with
vertices [n] = {1,2, . . . , n} is shifted if for every i < j and j ∈ S ∈ K , also (S \{j})∪
{i} ∈ K .

Algebraic shifting is an operator associating with each simplicial complex a
shifted simplicial complex. It has two versions - exterior and symmetric, both in-
troduced by Kalai. Various invariants of the original complex, like its f -vector and
Betti numbers, can be read off from its shifting. For a survey on algebraic shifting see
Kalai [11]. For completeness we give now the definitions of exterior and symmetric
shifting.
Exterior shifting. Let F be an infinite field. Let V be an n-dimensional vector space
over F with basis {e1, . . . , en}. Let

∧
V be the graded exterior algebra over V . Let

eS = es1 ∧ · · · ∧ esj where S = {s1 < · · · < sj }. Then {eS : S ∈ (
[n]
j )} is a basis for

∧j
V . Note that as K is a simplicial complex, the ideal (eS : S /∈ K) of

∧
V and the

vector subspace span{eS : S /∈ K} of
∧

V consist of the same set of elements in
∧

V .
Define the exterior algebra of K by

∧
K = (

∧
V )/(eS : S /∈ K).

Let {f1, . . . , fn} be a basis of V with a corresponding transition matrix A (eiA = fi

for all i). Let f̃S be the image of fS = fs1 ∧ · · · ∧ fsj ∈ ∧
V in

∧
K , where S =

{s1 < · · · < sj }. Let <L be the lexicographic order on equal sized subsets of N, i.e.
S <L T iff min(S�T ) ∈ S, where � denotes symmetric difference. Define

�e
A(K) = {S : f̃S /∈ span{f̃S′ : S′ <L S}}.

Then there is a nonempty Zariski open set U ⊆ F
n2

such that �e
A(K) is the same

for all A ∈ U . This complex was introduced by Kalai [7] and is called the exterior
shifting of K , denoted by �e(K). Indeed it is well defined as two nonempty Zariski
open sets must intersect. (Kalai used a field extension of F in his definition, and let
the entries of A be algebraically independent over F. However the two definitions are
equivalent.)

The construction is canonical, i.e. it is independent of the choice of the generic
matrix A, and for a permutation π : [n] → [n] the induced simplicial complex π(K)

satisfies �e(π(K)) = �e(K). It results in a shifted simplicial complex, having the
same face vector and Betti vector as K [2].
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Symmetric shifting. Let F be an infinite field, and F[K] = F[x1, . . . , xn]/IK the
face ring (Stanley-Reisner ring) of K , i.e. IK is the homogeneous ideal generated by
the squarefree monomials whose support is not in K , {∏i∈S xi : S /∈ K}. F[K] is
graded by degree. Let y1, . . . , yn be generic linear combinations of x1, . . . , xn. We
choose a basis for each graded component of F[K], up to degree dim(K) + 1, from
the canonical projection of the monomials in the yi ’s on F[K], in the greedy way:

GIN(K) = {m : m̃ /∈ spanF{m̃′ : deg(m′) = deg(m),m′ <L m}}

where
∏

y
ai

i <L

∏
y

bi

i iff for j = min{i : ai �= bi} aj > bj . The combinatorial in-
formation carried by GIN(K) is redundant: if m ∈ GIN(K) is of degree i ≤ dim(K)

then y1m, . . . , yim are also in GIN(K). Thus, GIN(K) can be reconstructed from
its monomials of the form m = yi1 · yi2 · . . . · yir where r ≤ i1 ≤ i2 ≤ . . . ≤ ir ,
r ≤ dim(K) + 1. Denote this set by gin(K), and define S(m) = {i1 − r + 1, i2 −
r + 2, . . . , ir} for such m. The collection of sets

�s(K) = {S(m) : m ∈ gin(K)}
carries the same combinatorial information as GIN(K). �s(K) is a simplicial com-
plex. Again, the construction is canonical, in the same sense as for exterior shifting.
If F has characteristic zero then �s(K) is shifted [9].
Lefschetz properties via shifting. K is CM (over F) iff �s(K) is pure (i.e. all its
maximal faces have the same size) and the following condition holds

S ∈ �s(K), |S| = k ⇒ [d − k] ∪ S ∈ �s(K). (2)

To see this take the first d elements in a generic basis, {y1, . . . , yd}, to be an l.s.o.p.
for K .

Further, let �(d,n) be the pure (d − 1)-dimensional simplicial complex with the
vertex set [n] and facets

{S : S ⊆ [n], |S| = d, k /∈ S ⇒ [k + 1, d − k + 2] ⊆ S}.
Equivalently, �(d,n) is the maximal pure (d − 1)-dimensional simplicial complex
with vertex set [n] which does not contain any of the sets T d

d , . . . , T d
�d/2�, where

T d
d−k = {k+2, k+3, . . . , d −k, d −k+2, d −k+3, . . . , d +2}, 0 ≤ k ≤ �d/2�. (3)

Note that �(d,n) ⊆ �(d,n + 1), and define �(d) = ∪n�(d,n). For K a CM
(d − 1)-dimensional complex with symmetric h-vector, �s(K) ⊆ �(d) is equiva-
lent to K being SL. To see this, take the (d + 1)’th element in a generic basis, yd+1,
to be the strong-Lefschetz element: indeed, �s(K) ⊆ �(d) iff none of the monomi-
als yd−2k−1

d+1 yk+1
d+2 are in GIN(K) (where k = 0,1, . . .), which happens iff the maps

yd−2k
d+1 : H(K)k −→ H(K)d−k are onto for 0 ≤ k ≤ �d/2�, and when h(K) is sym-

metric this happens iff these maps are isomorphisms.
Let �(K) refer to both symmetric and exterior shifting. Kalai refers to the relation

�(K) ⊆ �(d) (4)



118 J Algebr Comb (2010) 31: 111–129

as the shifting theoretic upper bound theorem. To justify the name, note that the
boundary complex of the cyclic d-polytope on n vertices, denoted by C(d,n), satis-
fies �s(C(d,n)) = �(d,n). This follows from the fact that C(d,n) is SL. Recently
Murai [18] proved that also �e(C(d,n)) = �(d,n), as was conjectured by Kalai
[11]. It follows that if K has n vertices and (4) holds, then the f -vectors satisfy
f (K) ≤ f (C(d,n)) componentwise.

For K as above (CM with symmetric h-vector), a condition weaker than the
strong-Lefschetz property is to require only that multiplications yd+1 : H(K)i−1 −→
H(K)i are either injective (for 1 ≤ i ≤ �d/2�) or surjective (for �d/2� < i ≤ d).
This condition is usually called in the literature the weak-Lefschetz property (WL
for short). Even weaker condition is just to require that multiplications yd+1 :
H(K)i−1 −→ H(K)i are injective for 1 ≤ i ≤ �d/2�, called here WWL property.
(Injectivity for i ≤ �d/2� in the case of homology spheres implies also surjective
maps for �d/2� < i ≤ d as was noticed by Swartz; see the proof of Theorem 4.2
below.) The WWL property is equivalent to the following, in the case of symmetric
shifting [3]:

S ∈ �(K), |S| = k ⇒ [d − k] ∪ S ∈ �(K),

S ∈ �(K), |S| = k < �d/2� ⇒ {d − k + 1} ∪ S ∈ �(K). (5)

The first condition holds when K is CM, and the second condition holds iff K is
WWL. As was noticed in [3], (5) is implied by requiring that �(K) is pure and every
S ∈ �(K) of size less than �d/2� is contained in at least 2 facets of �(K).

Note that if L is a homology sphere, it is in particular CM with a sym-
metric h-vector. If in addition it is WWL, then in the standard ring S(L) =
F[L]/(y1, . . . , yd+1) = H(L, {y1, . . . , yd})/(yd+1) = S0 ⊕ S1 ⊕ . . . the following
holds: gi(L) = dimF Si for all 0 ≤ i ≤ �d/2�, and Conjecture 1.1 holds for L.

We summarize the discussion above in the following hierarchy of conjectures,
where assertion (i) implies assertion (i + 1):

Conjecture 3.1 Let L be a homology (d − 1)-sphere. Then:
(1) If S ∈ �(L), |S| = k ≤ �d/2� and S ∩ [d − k + 1] = ∅ then S ∪ [k + 2, d −

k + 1] ∈ �(L).
This is equivalent to �(K) ⊆ �(d), and in the symmetric case this is equivalent

to L being SL.
(2) If S ∈ �(L), |S| = k < �d/2� and S ∩[d −k +1] = ∅ then S ∪[�d/2�+2, d −

k + 1] ∈ �(L). In the symmetric case this is equivalent to L being WWL.
(3) g(L) is an M-vector.

To see that the conclusion of Conjecture 3.1(1) is equivalent to equation (4) use the
fact that �(K) is pure and shifted. The equivalence of the conclusion of Conjecture
3.1(2) and equation (5) is obvious.

4 Strong Lefschetz versus weak-Lefschetz

Examples of Gorenstein algebras admitting the weak-Lefschetz property but not the
strong-Lefschetz property were found in [5, Example 4.3]. For Gorenstein algebras
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arising as face rings of homology spheres the SL property is conjectured to hold. Does
it follow from the (conjectured) WL property for homology spheres? We end this
section with a result in this direction, to be used later in the proof of Theorem 1.2(3).

Consider the multiplication maps ωi : H(K,�)i −→ H(K,�)i+1, m �→ ωim

where ωi ∈ A1. Let dim(K) = d − 1. Denote by 
WL(K, i) the set of all (�,ωi) ∈
Ad+1

1 such that � is an l.s.o.p. of F[K], F[K] is a free F[�]-module, and ωi :
H(K)i −→ H(K)i+1 is either injective (and i < d/2) or surjective (and i ≥ d/2).
Denote by 
SL(K, i) the set of all (�,ω) ∈ Ad+1

1 such that � is an l.s.o.p. of
F[K], F[K] is a free F[�]-module, and ωd−2i : H(K)i −→ H(K)d−i is injective
(0 ≤ i ≤ �d/2�). If 
SL(K, i) �= ∅ we say that K is i-Lefschetz and for (�,ω) ∈

SL(K, i) that H(K,�) is i-Lefschetz with an i-Lefschetz element ω. For d odd

WL(K, �d/2�) = 
SL(K, �d/2�), which we simply denote by 
(K, �d/2�).

The following is well known, see e.g. [24, Proposition 3.6] for the case 
SL(K, i);
similar arguments can be used to prove the same conclusion for 
WL(K, i).

Lemma 4.1 For every simplicial complex K and for every i, 
WL(K, i) is a Zariski
open set. For 0 ≤ i ≤ � dim(K)+1

2 �, 
SL(K, i) is a Zariski open set. (They may be
empty, e.g. if K is not pure.)

Theorem 4.2 (Swartz) Let d ≥ 1. If for every 0 ≤ m ≤ d and every homology 2m-
sphere L, 
(L,m) is nonempty, then for every t > 2d and for every homology t-
sphere K , 
WL(K,m) is nonempty for every 0 ≤ m ≤ d . In particular, if for every

even dimensional homology sphere L, 
(L,
dim(L)

2 ) �= ∅ then Conjecture 1.1 follows.

Proof By [25, Theorem 4.26] and induction on t , for any 0 ≤ m ≤ d , 
WL(K,

(t + 1) − (m + 1)) is nonempty, i.e. multiplication ω : H(K)t−m → H(K)t−m+1
is surjective for a generic l.s.o.p. and ω in A1. Hence, for the canonical mod-
ule 
(K), multiplication by a generic degree 1 element ω : (
(K)/�
(K))m →
(
(K)/�
(K))m+1 is injective in the first d degrees. As K is a homology sphere,

(K) ∼= R[K] as graded A-modules up to a shift in grading (e.g. [23]), hence

WL(K,m) is nonempty for every m ≤ d . Combining this with Lemma 4.1, and the
fact that a finite intersection of Zariski nonempty open sets is nonempty, we obtain
that if the conditions of Theorem 4.2 are met for every d ≥ 1 then every homology
sphere is WL, and hence Conjecture 1.1 follows. �

We wish to show further, that if all even dimensional homology spheres satisfy
the condition in Theorem 4.2 then all homology spheres are SL. The following result
aims at this direction. If one could extend the conclusion of Lemma 4.3 below for
every l.s.o.p. of S ∗ ∂σ (not only of the form �S ∪ �∂σ ), then indeed WL would
imply SL for homology spheres. Compare with [6, Proposition 19].

Lemma 4.3 Let S be a homology sphere with an l.s.o.p. �S over a field F of char-
acteristic zero. If H(S,�S) is (� dimS+1

2 �)-Lefschetz but not SL then there exists a
simplex σ such that the homology sphere S ∗ ∂σ is of even dimension 2j , and for
every l.s.o.p. �∂σ of ∂σ , F[S ∗ ∂σ ]/(�S ∪ �∂σ ) has no j -Lefschetz element; in par-
ticular F[S ∗ ∂σ ]/(�S ∪ �∂σ ) is not WL.
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Proof Denote the dimension of S by d − 1 and recall that AS0 = F[xv : v ∈ S0]. By
Lemma 4.1 
SL(S, i) is a Zariski open set for every 0 ≤ i ≤ �d/2�. The assumption
that S is not SL (but is (� d

2 �)-Lefschetz) implies that there exists 0 ≤ i0 ≤ �d/2� − 1
such that 
SL(S, i0) = ∅ (as a finite intersection of Zariski nonempty open sets is
nonempty). Hence, for the fixed l.s.o.p. �S and every ωS ∈ (AS0)1, there exists 0 �=
m = m(ωS) ∈ Hi0(S) such that ω

d−2i0
S m = 0.

Let T = S ∗ ∂σ where σ is the (d − 2i0 − 1)-simplex. Note that dim(σ ) ≥ 1,
hence ∂σ �= ∅. Then T is a homology sphere of even dimension 2d − 2i0 − 2.
We have seen (Theorem 2.2) that for any l.s.o.p. �∂σ of ∂σ , �T := �S ∪ �∂σ

is an l.s.o.p. of T . Every ωT ∈ (AT0)1 has a unique expansion ωT = ωS + ω∂σ

where ωS ∈ (AS0)1 and ω∂σ ∈ (A∂σ0)1. Recall the isomorphism (1) of AT0 -modules
F[T ]/(�T ) ∼= F[S]/(�S) ⊗F F[∂σ ]/(�∂σ ). Let m(ωT ) ∈ ( F[T ]

(�T )
)d−i0−1 be

m(ωT ) :=
∑

0≤j≤d−2i0−1

(−1)jω
d−2i0−1−j
S m ⊗ ω

j
∂σ .

Note that the sum ωT m(ωT ) is telescopic, thus ωT m(ωT ) = ω
d−2i0
S m ⊗ 1 +

(−1)d−2i0−1m ⊗ ω
d−2i0
∂σ 1 = 0 + 0 = 0. For a generic ωT , the projection of ω∂σ on

F[∂σ ]/(�∂σ ) is nonzero, hence so is the projection of ω
d−2i0−1
∂σ , and we get that

m(ωT ) �= 0. Thus, Zariski topology tells us that for every ωT ∈ (AT0)1, there exists
0 �= m(ωT ) ∈ ( F[T ]

(�T )
)d−i0−1 such that ωT m(ωT ) = 0. �

5 Lefschetz properties and Stellar subdivisions

Roughly speaking, we will show that Stellar subdivisions preserve the SL property
when F has characteristic zero. As mentioned in the Introduction, we may assume
F = R.

Proposition 5.1 Let K be a simplicial complex. Let K ′ be obtained from K by identi-
fying two distinct vertices u and v in K , i.e. K ′ = {T : u /∈ T ∈ K}∪ {(T \ {u})∪{v} :
u ∈ T ∈ K}. Let d ≥ 2. Assume that {d + 2, d + 3, . . . ,2d + 1} /∈ �(K ′) and that
{d +1, d +2, . . . ,2d −1} /∈ �(lk(u,K)∩ lk(v,K)). Then {d +2, d +3, . . . ,2d +1} /∈
�(K). (Shifting is over R for �s and over any infinite field for �e .)

The case d = 2 and dim(K) = 1 of this proposition was proved by Whiteley [27] in
the symmetric case. The relation between symmetric shifting and rigidity of graphs,
discussed in Lee [13], is used to translate his result to algebraic shifting terms.

Proof for symmetric shifting Let ψ : K0 −→ R
2d be generic (in the space R

2d|K0|).
Then ψ represents a tuple of 2d linear forms taken from a suitable nonempty Zariski
open set (it includes e.g. all ψ such that the entries of the representing matrix w.r.t. a
fixed basis are algebraically independent over Q). It induces the following map:
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ψ2d
K : ⊕T ∈Kd−1RT −→ ⊕

F∈( K0
d−1)

R
2d/ span(ψ(F )),

1T �→
∑

F∈( K0
d−1)

δF⊆T ψ(T \ F)F (6)

where δF⊆T equals 1 if F ⊆ T and 0 otherwise, and a in the F -coordinate denotes
the image of a in R

2d/ span(ψ(F )). Thus the image of ψ2d
K is in the tautological

vector bundle, denoted by τK,d , over the Grassmannian Gr((d − 1)
(|K0|

d−1

)
,R

2d(
|K0|
d−1)).

Recall that {d + 2, d + 3, . . . ,2d + 1} /∈ �s(K) iff yd
2d+1 /∈ GIN(K), where Y =

{yi}i∈K0 is a generic basis for A1 and A = R[xv : v ∈ K0]. By Lee [13, Theorems
10,12,15] and Tay, White and Whiteley [26, Proposition 5.2], yd

2d+1 /∈ GIN(K) iff
Kerφ2d

K = 0 for some φ : K0 −→ R
2d (equivalently, every φ in some Zariski non-

empty open set of maps).
Consider the following degenerating map: for 0 < t ≤ 1 let ψt : K0 −→ R

2d be
defined by ψt(i) = ψ(i) for every i �= u and ψt(u) = ψ(v) + t (ψ(u) − ψ(v)). Let
ψ0 = limt �→0 ψt . Thus ψ1 = ψ , and for any 0 < t ≤ 1,

span(ψt (u) − ψt(v)) = span(ψ(u) − ψ(v)), (7)

hence the same equality holds in the limit t �→ 0.
Let ψ2d

K,t : ⊕T ∈Kd−1RT −→ ⊕
F∈( K0

d−1)
R

2d/ span(ψt (F )) be the map induced

by ψt . Thus ψ2d
K,1 = ψ2d

K , and for {u,v} ⊆ F ∈ (
K0
d−1

)
, limt �→0 span(ψt (F )) =

span(ψ(F )).
Let ψ2d

0 be the limit map limt �→0 ψ2d
K,t . This limit, which we describe explicitly be-

low, is then the (obviously unique) continuous extension of ψ2d
K,· : RKd−1 × (0,1] →

τK,d to RKd−1 ×[0,1], where ψ2d
K,·(s, t) = ψ2d

K,t (s) for 0 < t ≤ 1. Let a|F denote the

coefficient vector of a in the base coordinate F . Then ψ2d
0 reads as follows, where

T ∈ Kd−1 and F ∈ (
K0
d−1

)
:

ψ2d
0 (1T )|F

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if F � T

ψ(T \ F) in R
2d/ span(ψ(F )) if {u,v} ⊆ F ⊆ T

(ψ(u) − ψ(v)) in R
2d/ span(ψ(T \ {u})) if {u,v} ⊆ T = F � {u}

−(ψ(u) − ψ(v)) in R
2d/ span(ψ(T \ {u})) if {u,v} ⊆ T = F � {v}

ψ0(T \ F) in R
2d/ span(ψ0(F )) otherwise.

(8)

This follows directly from the definition of ψ2d
0 and the observation (7). Assume for a

moment that ψ2d
0 is injective. Then for a small enough perturbation of the entries of a

representing matrix of ψ2d
0 , the columns of the resulted matrix would be independent,

i.e. the corresponding linear transformation would be injective. In particular, there
would exist an ε > 0 such that for every 0 < t < ε, Kerψ2d

K,t = 0. In particular, for a

generic ψ , Kerψ2d
K = 0. Thus, the following Lemma 5.2 completes the proof. �
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Lemma 5.2 ψ2d
0 is injective for a non-empty Zariski open set of maps ψ :

K0 −→ R
2d .

Proof For a linear transformation C, denote by [C] its representing matrix w.r.t. given
bases. In [ψ2d

0 ] bases are indexed by sets according to (8) and each column represents
the image ψ2d

0 (1T ) for some T ∈ Kd−1. Recall that for T such that {u,v} ⊆ T ∈
Kd−1, ψ2d

0 (T )|T \v = −ψ2d
0 (T )|T \u.

First add rows indexed by F ′ � {u} to rows F ′ � {v} (in particular F ′ ∩ {u,v} = ∅),
then delete the rows F containing u, to obtain a matrix [B], of a linear transforma-
tion B . In particular, we delete all rows F such that {u,v} ⊆ F .

Note that K ′
0 = K0 \ {u}, thus, for the obvious bases, [B] is obtained from

[(ψ |K ′
0
)2d
K ′ ] by doubling the columns indexed by T ′ � {v} ∈ K ′

d−1 where both T ′ �
{v}, T ′ � {u} ∈ Kd−1, and by adding a zero column for every T ′ � {u,v} ∈ Kd−1. For
short, write ψ2d

K ′ = (ψ |K ′
0
)2d
K ′ . More precisely, the linear maps B and ψ2d

K ′ are related

as follows: they have the same range. The domain of B is dom(B) = dom(ψ2d
0 ) =

D1 ⊕ D2 ⊕ D3 where
D1 = ⊕{RT : T ∈ Kd−1, {u,v} � T , (u ∈ T ) ⇒ (T \ u) ∪ v /∈ K},
D2 = ⊕{RT : T ∈ Kd−1, u ∈ T ,v /∈ T , (T \ u) ∪ v ∈ K},
D3 = ⊕{RT : T ∈ Kd−1, {u,v} ⊆ T }.
For a base element 1T of D1, let T ′ ∈ K ′ be obtained from T by replacing u with v.
Then B(1T ) = ψ2d

K ′ (1T ′); thus KerB|D1
∼= Kerψ2d

K ′ . For a base element 1T of D2,
B(1T ) = ψ2d

K ′ (1((T \ u) ∪ v)), and B|D3 = 0.
Assume we have a linear dependency

∑
T ∈Kd−1

αT ψ2d
0 (T ) = 0. By assumption,

{d + 2, d + 3, . . . ,2d + 1} /∈ �s(K ′), hence Kerψ2d
K ′ = 0. Thus, by inspecting the

matrix [ψ2d
0 ] and the matrix [B] described above, we conclude that αT = 0 for every

base element T except possibly for T containing {u,v} and for T ′ � {u}, T ′ � {v} ∈
Kd−1, where αT ′�{u} = −αT ′�{v}. We need to show that αT ′�{v} = 0 for every T ′ �
{v} ∈ K such that T ′ ∪ {u} ∈ K .

Let ψ2d
0 |res be the restriction of ψ2d

0 to the subspace spanned by the base ele-
ments T = T ′ � {v} such that T ′ ∪ {u} ∈ K , followed by projection onto the subspace
spanned by the F ∈ (

K0
d−1

)
coordinates where v ∈ F (just forget the other coordinates).

As ψ2d
0 (T )|F = 0 whenever F � v /∈ T , by inspecting the matrix [ψ2d

0 ] restricted to
rows F with v ∈ F and to columns T = T ′ � {v} such that T ′ ∪ {u} ∈ K , we see that
if ψ2d

0 |res is injective, then αT = 0 for all T = T ′ � {v} ∈ K such that T ′ ∪ {u} ∈ K .
Thus, Lemma 5.3 below completes the proof. �

Lemma 5.3 ψ2d
0 |res is injective for a non-empty Zariski open set of maps ψ :

K0 −→ R
2d .

Proof Let G = ({u} ∗ (lk(u,K) ∩ lk(v,K)))≤d−2. Note that v appears in the index
set of every row and every column of [ψ2d

0 |res]. Omitting v from the indices of both
of the bases used to define ψ2d

0 |res, we notice that
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ψ2d
0 |res ∼= ψ2d

0 |res : ⊕T ∈Gd−2RT −→ ⊕
F∈( G0

d−2)
R

2d/ span(ψ(F � {v}))

= ⊕
F∈( G0

d−2)
(R2d/ span(ψ(v)))/span(ψ(F )),

1T �→
∑

F∈( G0
d−2)

δF⊆T ψ(T \ F)F

where δF⊆T equals 1 if F ⊆ T and 0 otherwise, and span(ψ(F )) is the image of
span(ψ(F )) in the quotient space R

2d/ span(ψ(v)).
Consider the projection π : R

2d −→ R
2d/ span(ψ(v)) ∼= R

2d−1. Let ψ̄ = π ◦
ψ |G0 : G0 −→ R

2d−1, and ψ̄2d−1
G be the induced map as defined in (6). Then π

induces π∗ψ2d
0 |res = ψ̄2d−1

G .
By assumption, {d + 1, . . . ,2d − 1} /∈ �s(lk(u,K) ∩ lk(v,K)). As symmet-

ric shifting commutes with constructing a cone (Kalai [11, Theorem 2.2.8], and
Babson, Novik and Thomas [1, Theorem 3.7]), {d + 2, . . . ,2d} /∈ �s(G). Hence
yd−1

2d /∈ GIN(G), and by Lee [13], Kerφ2d−1
G = 0 for a generic φ. Thus, all liftings

ψ : K0 −→ R
2d such that ψ̄ = φ satisfy Kerψ2d

0 |res ∼= Kerφ2d−1
G = 0, and this set of

liftings is a non-empty Zariski open set. �

Clearly the set of all ψ such that ψ2d
K is injective is Zariski open. We exhibited

conditions under which it is non-empty.

Proof for exterior shifting The proof is similar to the proof for the symmetric case.
We indicate the differences. The map ψ : K0 → R

d+1 defines the first d + 1 generic
fi ’s w.r.t. the ei ’s basis of R

|K0| and induces the following map:

ψd+1
K,ext : ⊕T ∈Kd−1RT −→ ⊕1≤i≤d+1 ⊕

F∈( K0
d−1)

RF,m �→ (f1�m, . . . , fd+1�m) (9)

where fi�· is the left interior product given by bilinear extension of eS�eT =
δS⊆T sign(S,T )eT \S , as in [8]. By [20, Proposition 3.1],

Kerψd+1
K,ext = ∩1≤i≤d+1 Kerfi�= ∩R<lex {d+2,...,2d+1} Ker(fR�: ⊕T ∈Kd−1RT −→ R),

and hence by shiftedness {d + 2, . . . ,2d + 1} /∈ �e(K) ⇔ Kerψd+1
K,ext = 0.

Replacing ψ(u) by ψ(v) induces a map

ψd+1
K,u : ⊕T ∈Kd−1RT −→ ⊕1≤i≤d+1 ⊕

F∈( K0
d−1)

RF.

Note that if Kerψd+1
K,u = 0 then Kerψd+1

K,ext = 0 for generic ψ . Let [Bext] be obtained

from the matrix [ψd+1
K,u ] by adding the rows indexed by F ′ � u to the corresponding

rows indexed by F ′ � v and deleting the rows indexed by F with u ∈ F . The domain
of Bext is D1 ⊕ D2 ⊕ D3 defined by sets indexing a basis as for B in the symmetric
case. For a base element 1T of D1, let T ′ ∈ K ′ be obtained from T by replacing
u with v. Then Bext(1T ) = ψd+1

K ′,ext(1T ′); thus KerBext|D1
∼= Kerψd+1

K ′,ext. For a base

element 1T of D2, Bext(1T ) = ψd+1
K ′,ext(1((T \u)∪v)), and as we may number v = 1,
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u = 2 then B|D3 = 0 (for each column indexed by F ′ � {u,v}, the rows of F ′ �u and
of F ′ �v have opposite signs in ψd+1

K,u ). Now we can adopt the arguments showing that

Kerψ2d
0 = 0 using B in the symmetric case, to show that Kerψd+1

K,u = 0 using Bext.
This settles the case F = R.

As �e(K) is shifted when defined w.r.t. any field, the proof above holds for any
infinite field. �

Recall that the d-Lefschetz property for a 2d-homology sphere K is equivalent to
yd+1

2d+3 /∈ GIN(K) (for a generic basis {y1, . . . , yn} w.r.t {x1, . . . , xn}), which in turn is
equivalent to {d + 3, . . . ,2d + 3} /∈ �s(K). We conclude the following.

Corollary 5.4 Let K be a 2d-sphere for some d ≥ 1, and let a, b ∈ K be two vertices
which satisfy the Link Condition, i.e. such that lk(a,K) ∩ lk(b,K) = lk({a, b},K).
Let K ′ be obtained from K by contracting a �→ b. Then:

(1) K ′ is a 2d-sphere, PL homeomorphic to K ([21, Theorem 1.4]).
(2) If K ′ is d-Lefschetz and lk({a, b},K) is (d − 1)-Lefschetz over R, then K is

d-Lefschetz over R (by Proposition 5.1).

Let K be a simplicial complex. Its Stellar subdivision at a face T ∈ K is the
operation K �→ K ′ where

K ′ = Stellar(T ,K) := (K \ st(T ,K)) ∪ ({vT } ∗ ∂T ∗ lk(T ,K)),

where vT is a vertex not in K and st(T ,K) = {S ∈ K : T ⊆ S}. Note that for u ∈
T ∈ K , u,vT ∈ K ′ satisfy the Link Condition and their identification results in K .
Further, lk({u,vT },K ′) = lk(u, ∂T ∗ lk(T ,K)) = ∂(T \ {u}) ∗ lk(T ,K).

Proof of Theorem 1.2(3) Let T = Stellar(F,K), denote its dimension by d − 1, and
assume by contradiction that T is not SL. As we have seen in the proof of Lemma
4.3, there exists 0 ≤ i0 ≤ �d/2� such that 
SL(T , i0) = ∅. First we show that i0 �=
�d/2�: for even d this is obvious. For odd d , note that for u ∈ F the contraction
vF �→ u in T results in K , which is �d/2�-Lefschetz. Further, the (d − 3)-sphere
lk({vF ,u}, T ) = lk(F,K) ∗ ∂(F \ {u}) is SL by Theorem 1.2(1), and in particular
is (�d/2� − 1)-Lefschetz. Thus, by Corollary 5.4, T is �d/2�-Lefschetz, and hence
0 ≤ i0 ≤ �d/2� − 1.

Let L = T ∗ ∂σ , where σ is the (d − 2i0 − 1)-simplex (then L has even dimension
2d − 2i0 − 2). By Lemma 4.3, for any two l.s.o.p.’s �T and �∂σ of R[T ] and R[∂σ ]
respectively, R[L]/(�T ∪ �∂σ ) has no (d − i0 − 1)-Lefschetz element.

On the other hand, we shall now prove the existence of such l.s.o.p.’s and a (d −
i0 − 1)-Lefschetz element, to reach a contradiction. This requires a close look at the
proof of Proposition 5.1.

Note that R[L]/(�T ∪ �∂σ ) has a (d − i0 − 1)-Lefschetz element for some
l.s.o.p.’s �T ,�∂σ of T and ∂σ respectively, iff for some map ψ : L0 → R

d ⊕
R

d−2i0−1 ⊕ R such that ψ(T0) ⊆ R
d ⊕ 0 ⊕ R and ψ(σ0) ⊆ 0 ⊕ R

d−2i0−1 ⊕ R, the
kernel Ker(ψ2d−2i0

L ) vanishes. Here we identify ψ with linear forms in R[L] such
that the first d columns in [ψ] correspond to �T , the next d − 2i0 − 1 columns corre-
spond to �∂σ and the last column correspond to a (d − i0 − 1)-Lefschetz element ω.
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W �T �∂σ ω

vF ∗ 0 ∗
u ∗ 0 ∗

lk({vF ,u},L)0 ∗ 0 ∗
L0 \ (lk({vF ,u},L)0 ∪ {vF ,u}) ∗ 0 ∗

σ0 0 ∗ ∗

W0 �∂σ ω

0 0
0 0
0 0
0 0
∗ ∗

W1 �T ω

0 0
∗ ∗
∗ ∗
∗ ∗
0 0

W2 �T \ {θ1} �∂σ ω

0 0 0
∗ 0 ∗
∗ 0 ∗
0 0 0
0 ∗ ∗

W3 �T

∗
∗
∗
∗
0

Fig. 1 The spaces W,W0,W1,W2,W3. (Same row labels for all, written explicitly for W and left blank
for the rest. The ∗ stands for arbitrary R-coordinates)

Indeed, such a generic block matrix on the first 2d − 2i0 − 1 columns induces two
l.s.o.p.’s, for R[T ] and R[∂σ ], whose union is an l.s.o.p. for R[L] by Theorem 2.2,
and for the statement about the (d − i0 − 1)-Lefschetz element we use the results in
[13] and [26] as in the proof of Proposition 5.1.

Note that L = Stellar(F,K ∗ ∂σ ), and that for u ∈ F the contraction vF �→ u in L

results in K ∗ ∂σ . Further, lk({vF ,u},L) = lk(F,K) ∗ ∂(F \ {u}) ∗ ∂σ .
We now show that there exists a map ψ : L0 −→ R

d ⊕ R
d−2i0−1 ⊕ R for which

the following four properties hold simultaneously:
(0) ψ(σ0) ⊆ 0 ⊕ R

d−2i0−1 ⊕ R and induces an l.s.o.p. �∂σ of R[∂σ ] and an SL
element ω∂σ of R[K]/(�∂σ ) (by last d − 2i0 columns).

(1) ψ(K0) ⊆ R
d ⊕ 0 ⊕ R and induces an l.s.o.p. �K of R[K] (by first d columns)

and an SL element ωK of R[K]/(�K) (by last column).
(2) 0 �= ψ(vF ) ∈ R

d ⊕0⊕R induces a map π : R
2d−2i0 → R

2d−2i0/ spanψ(vF ) ∼=
R

2d−2i0−1 such that π ◦ψ |lk(F,K)0∪F0∪σ0 induces an element in 
(G,d − i0 − 2) for
G = {u} ∗ lk({vF ,u},L).

(3) ψ(K0 ∪ {vF }) ⊆ R
d ⊕ 0 ⊕ R and the first d columns of [ψ] induce an l.s.o.p.

�T of R[T ].
To see this, we show that in the linear space W of maps {f : L0 → R

2d−2i0} ∼=
R

|L0|×(2d−2i0) such that ψ(T0) ⊆ R
d ⊕ 0 ⊕ R and ψ(σ0) ⊆ 0 ⊕ R

d−2i0−1 ⊕ R, the
Zariski open set 
 of maps for which properties (0),(1),(2) and (3) hold is nonempty.
We will look at projections onto linear spaces πi : W → Wi , the Wi ’s are defined in
Fig. 1, and at Zariski nonempty open sets 
i ⊆ Wi such that an element in π−1

i (
i)

has property (i) for i = 0,1,2,3. The intersection of these four nonempty Zariski
open sets is nonempty, hence it will follow that 
 is nonempty. See Figure 1 for
illustration.
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As T is CM, 
3 �= ∅, corresponding to l.s.o.p.’s of R[T ]. As K is SL, 
1 �= ∅,
corresponding to pairs of l.s.o.p. and an SL element of R[K]. As ∂σ is SL, 
0 �= ∅,
corresponding to pairs of l.s.o.p. and an SL element of R[∂σ ]. By Theorem 2.2,
elements in ∩i∈{0,1,3}π−1

i (
i) induce �L,�K,�∂σ ,ωK,ω∂σ such that ωK + ω∂σ is
an SL element of R[K ∗ ∂σ ]/(�K ∪ �∂σ ), and �T ∪ �∂σ is an l.s.o.p. of R[L].

To show property (2), first note that by Theorem 2.2 and the assumption that
lk(F,K) is SL, there is a pair (�,ω) of an l.s.o.p. and an SL element for
lk({vF ,u},L) = lk(F,K)∗∂(F \{u})∗∂σ such that � = �lk(F,K) ��∂(F\{u}) ��∂σ

for l.s.o.p’s of the corresponding complexes. By adding xu to this l.s.o.p. we obtain
an l.s.o.p. for G where ω : H(G)d−i0−2 → H(G)d−i0−1 is injective; hence 
2 �= ∅.
Thus, a generic element in W satisfies property (2).

To summarize, we showed that 
 is nonempty. Let ψ ∈ 
 and define for 0 < t ≤ 1
the map ψt : L0 → R

2d−2i0 by ψt(vF ) = ψ(u) + t (ψ(vF ) − ψ(u)) and ψt(v) =
ψ(v) for any vF �= v ∈ L0. As before, define ψ

2d−2i0
0 = limt �→0 ψ

2d−2i0
L,t , see (8).

Now repeat the proof of Proposition 5.1 w.r.t. ψ
2d−2i0
0 . Thus, for a small enough ε,

the map ψ ′ : L0 −→ R
2d−2i0 defined by ψ ′(vF ) = ψ(u) + ε(ψ(vF ) − ψ(u)) and

ψ ′(v) = ψ(v) for every other vertex v ∈ L0, satisfies Ker(ψ ′)2d−2i0
L = 0. Thus, the

first d columns of [ψ ′] induce an l.s.o.p. �T of T , the next d − i0 −1 columns induce
an l.s.o.p. �∂σ of ∂σ , and the last column of [ψ ′] is a (d − i0 − 1)-Lefschetz element
of R[L]/(�T ∪ �∂σ ). This contradicts our earlier conclusion, which was based on
assuming that the assertion of this theorem is incorrect. �

Corollary 5.5 Let S be a family of homology spheres which is closed under taking
links and such that all of its elements are SL, over R. Let S = S(S) be the fam-
ily obtained from S ∪ {∂σn : n ≥ 1} by taking the closure under the operations of:
(0) taking links; (1) join; (2) Stellar subdivisions. Then every element in S is SL.

Proof We prove by double induction—on dimension, and on the sequence of opera-
tions of types (0), (1) and (2) which define S ∈ S—that S and all its face links are SL.
Let us call S with this property hereditary SL.

Note that every S ∈ S and every boundary of a simplex, is hereditary SL. This
includes the (unique) zero-dimensional sphere and provides the base of the induction.
(Actually it is known that every (homology) sphere of dimension ≤ 2 is hereditary
SL.)

Clearly if S is hereditary SL, then so are all of its links, as lk(Q, (lk(F,S))) =
lk(Q � F,S). If S and S′ are hereditary SL then by Theorem 2.2 so is S ∗ S′ (here
we note that every T ∈ S ∗ S′ is of the form T = F � F ′ where F ∈ S and F ′ ∈ S′,
and that lk(T ,S ∗ S′) = lk(F,S) ∗ lk(F ′, S′)). We are left to show that if F ∈ S and
S is hereditary SL, then so is T := Stellar(F,S). Assume dimF ≥ 1, otherwise there
is nothing to prove. First we note that by the induction hypothesis for every v ∈ T0,
lk(v, T ) is hereditary SL:
Case 1: v = vF . Then lk(vF ,T ) = lk(F,S) ∗ ∂F is hereditary SL by Theorem 2.2, as
argued above.
Case 2: v ∈ F . Then lk(v, T ) = Stellar(F \ {v}, lk(v, S)) is hereditary SL by the in-
duction hypothesis on the dimension.
Case 3: v /∈ F , v �= vF and F ∈ lk(v, S). Then lk(v, T ) = Stellar(F, lk(v, S)) is
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hereditary SL by the induction hypothesis on the dimension.
Otherwise: lk(v, T ) = lk(v, S) is hereditary SL.

We are left to show that T is SL: S is SL, and for u ∈ F , lk({vF ,u}, T ) =
lk(F,S) ∗ ∂(F \ {u}) is SL by Theorem 2.2. Thus, by Theorem 1.2(3) T is SL, and
together with the above, T is hereditary SL. �

The barycentric subdivision of a simplicial complex K can be obtained by a se-
quence of Stellar subdivisions: order the faces of K of dimension > 0 by weakly de-
creasing size, and perform Stellar subdivisions at those faces according to this order;
the barycentric subdivision of K is obtained. Brenti and Welker [4, Corollary 3.5]
showed that the h-polynomial of the barycentric subdivision of a Cohen-Macaulay
complex has only simple and real roots, and hence is unimodal. In particular, barycen-
tric subdivision preserves non-negativity of the g-vector for spheres all of whose links
are SL. The above corollary shows that the hereditary SL property itself is preserved.

Recently Martina Kubitzke and the second author showed that the g-vector of the
barycentric subdivision of a CM complex is an M-sequence [12].

6 Lefschetz properties and connected sum

Let K and L be pure simplicial complexes which intersect in a common closed facet
〈σ 〉 = K ∩ L. Their connected sum over σ is K#σ L = (K ∪ L) \ {σ }.

Theorem 6.1 Let K and L be homology (d −1)-spheres over an infinite field F which
intersect in a common closed facet 〈σ 〉 = K ∩L. Let A = F[xv : v ∈ (K ∪L)0]. Then:

(0) K#σ L is a homology (d − 1)-sphere; in particular its h-vector is symmetric.
(1) Let � be a common l.s.o.p for K , L, 〈σ 〉 and K#σ L over A (it exists if F

is infinite). Assume that K and L are i-Lefschetz for some i > 0 and let ω be an
i-Lefschetz element for both K and L w.r.t. � (it exists). Then ω is an i-Lefschetz
element of F[K#σ L]/(�).

Proof Straightforward Mayer-Vietoris and Euler characteristic arguments show that
K#σ L is a homology (d − 1)-sphere.

For a simplicial complex M let F(M) := ⊕
a:supp(a)∈M Fxa be a module over

AM0 = F[xv : v ∈ M0] defined by

xv(x
a) =

{
xvx

a if v ∪ supp(a) ∈ M,

0 otherwise.

Note that F(M) ∼= F[M] as AM0 -modules. For v ∈ (K ∪ L)0 \ L0 and m ∈ F(L),
xvm = 0. Then the following is an exact sequence of A-modules:

0 → F(〈σ 〉) (ι,−ι)−−−−→ (F(K) ⊕ F(L))
ιK+ιL−−−−→ F(K ∪σ L) → 0 (10)

where the ι’s denote the obvious inclusions. As F is infinite, there exists a l.s.o.p.
for each of the (d − 1)-complexes in Theorem 6.1(1), and as a finite intersection of
Zariski nonempty open sets is nonempty, � as in (1) exists. When we mod out (10)
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by �, which is the same as to tensor (10) with ⊗AA/�, we obtain an exact sequence
of A-modules:

F(〈σ 〉)
(�)F(〈σ 〉) → F(K)

(�)F(K)
⊕ F(L)

(�)F(L)
→ F(K ∪σ L)

(�)F(K ∪σ L)
→ 0 (11)

where in the middle term we used distributivity of ⊗ over ⊕. Note that F(〈σ 〉)
(�)F(〈σ 〉) ∼=

F is concentrated in degree 0 and that (F(K#σ L)/(�))<d
∼= (F(K ∪σ L)/(�))<d .

Thus, for 0 < i ≤ d/2 we obtain the following commutative diagram of A-modules:

(
F(K#σ L)

(�)F(K#σ L)
)i

∼=−−−−→ (
F(K∪σ L)

(�)F(K∪σ L)
)i

∼=−−−−→ (
F(K)

(�)F(K)
)i

⊕
(

F(L)
(�)F(L)

)i
⏐⏐�ωd−2i

⏐⏐�ωd−2i

⏐⏐�ωd−2i⊕ωd−2i

(
F(K#σ L)

(�)F(K#σ L)
)d−i

∼=−−−−→ (
F(K∪σ L)

(�)F(K∪σ L)
)d−i

∼=−−−−→ (
F(K)

(�)F(K)
)d−i

⊕
(

F(L)
(�)F(L)

)d−i

(12)
where the right vertical arrow is an isomorphism by our assumption. Hence, the left
vertical arrow is an isomorphism as well, meaning that ω is an i-Lefschetz element
of F[K#σ L]/(�). �

Proof of Theorem 1.2(2) If K and L are SL homology (d − 1)-spheres then by The-
orem 6.1 K#L is a homology (d − 1)-sphere and has a pair (�,ω) of l.s.o.p. and
i-Lefschetz element for every 0 < i ≤ �d/2�.

For i = 0, as K#L is Cohen-Macaulay with l.s.o.p. � and hd = 1, then there exists
a 0-Lefschetz element ω̃, i.e. ω̃d �= 0. (This is equivalent to [2, d + 1] ∈ �s(K#L),
which reflects the fact that K#L has non-vanishing top homology.) By Lemma 4.1
the sets of 0-Lefschetz elements and of (0<)-Lefschetz elements are Zariski open.
The fact that they are nonempty implies that so is their intersection, i.e. K#L is SL.
Similarly, one concludes that if K and L are weak-Lefschetz then so is K#L. �

Remark 6.2 The assertion of Theorem 1.2(2), rephrased in terms of algebraic shift-
ing, says that if �s(K),�s(L) ⊆ �(d) then also �s(K#L) ⊆ �(d). The analogous
statement for exterior shifting is also true. These assertions follow from the charac-
terization of the algebraic shifting of a union of complexes whose intersection is a
simplex, given in [20]. To obtain the shifting of K#L from the shifting of K ∪ L just
delete the facet {2,3, . . . , d, d +2} which represent the extra top homology in K ∪L.
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