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Abstract Let us say that a Cayley graph � of a group G of order n is a Černý Cayley
graph if every synchronizing automaton containing � as a subgraph with the same
vertex set admits a synchronizing word of length at most (n − 1)2. In this paper we
use the representation theory of groups over the rational numbers to obtain a number
of new infinite families of Černý Cayley graphs.
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1 Introduction

Let TX be the set of all maps on a set X (which is always taken to be finite in this
paper). We follow the convention here that elements of TX act on the right of X;
in particular, if S ⊆ X and f ∈ TX , then Sf −1 denotes the full inverse image of S

under f . For the purposes of this article, an automaton with state set X is a subset
� ⊆ TX . Elements of X are commonly referred to as states. Often one writes the
automaton as a pair (X,�) to emphasize the set X. Of course, the inclusion � ↪→ TX

extends to the free monoid �∗ and so an automaton is basically a right action of a
finitely generated free monoid on a finite set (where we assume that the generators are
sent to different transformations for simplicity). An important special case is when G

is a finite group and � is a generating set for G. The automaton � = (G,�), where
the elements of � act on the right of G by right multiplication, is called the Cayley
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graph of G with respect to �. We shall say that an automaton (G,�) contains � if
� ⊆ �.

An important notion in automata theory is that of synchronization. Let (X,�)

be an automaton. A word w ∈ �∗ is called a synchronizing word if |Xw| = 1, that
is, w is sent to a constant map under the homomorphism �∗ → TX . An automaton
that admits a synchronizing word is called a synchronizing automaton. The main
open question concerning synchronizing automata is a conjecture from 1964 due to
Černý [8], which has received a great deal of attention [1–5, 8, 12, 14, 17, 19–22].

Conjecture 1 (Černý) A synchronizing automaton with n states admits a synchro-
nizing word of length at most (n − 1)2.

Černý, himself, showed that (n − 1)2 is the best one can hope for [8]. The best

known upper bound on lengths of synchronizing words is n3−n
6 , due to Pin [18] based

on a non-trivial result of Frankl from extremal set theory, see also [15]. It should be

mentioned that an upper bound of n3−n
3 can be obtained by fairly elementary means,

so the hard work lies in improving the bound by a factor of 2.
There are far too many special cases of the Černý conjecture that have been proven

for us to mention them all here. The following list of references contain just a few [1–
5, 8, 12, 14, 17, 19–22]. Let us highlight three results that are most relevant to the
paper at hand. We begin with the theorem of Pin [17].

Theorem 1.1 (Pin) Suppose that A = (X,�) is an automaton containing a Cayley
graph of a cyclic group of prime order p. Then

(1) A is synchronizing if and only if some element of � does not permute X;
(2) If A is synchronizing, then it admits a synchronizing word of length at most

(p − 1)2.

The author (together with his student, Arnold) was motivated by the first part of the
above theorem to introduce the notion of a synchronizing group [5]: a permutation
group (X,G) is said to be a synchronizing group if, for each t ∈ TX which is not
a permutation, the monoid 〈G, t〉 contains a constant map. Synchronizing groups
have since become a hot topic in the theory of permutation groups [16] and relate to
many classical questions about graphs and finite geometries. The technique used to
study such groups in [5] was representation theory over the field of rational numbers,
something we explore further in this paper.

Dubuc, in a groundbreaking paper [12], extended the second part of Pin’s result
to Cayley graphs of arbitrary cyclic groups with respect to cyclic generating sets.
This paper was motivated very much by trying to understand Dubuc’s ideas from a
representation theoretic viewpoint.

Theorem 1.2 (Dubuc) Suppose that A = (X,�) is a synchronizing automaton on n

states containing the Cayley graph of a cyclic group with respect to a single generator.
Then A admits a synchronizing word of length at most (n − 1)2.
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Rystsov [19] proved that any synchronizing automaton on n states containing the
Cayley graph of a group admits a synchronizing word of length at most 2(n−1)2 (this
was rediscovered by Béal for the special case of cyclic groups [6]). More precisely, if
� = (G,�) is a Cayley graph of a group G, the diameter diam�(G) of � is the least
positive integer m such that each element in G can be represented by an element of
�∗ of length at most m. Of course 0 ≤ m ≤ |G| − 1. Rystsov proved the following
theorem [19].

Theorem 1.3 (Rystsov) Let A = (X,�) be an automaton on n states containing the
Cayley graph of a group G with respect to �. Then A admits a synchronizing word
of length at most 1 + (n − 1 + diam�(G))(n − 2).

Of course, applying the bound of n − 1 on the diameter yields the upper bound of
2(n − 1)2. Notice that Rystsov’s bound achieves the Černý bound if and only if �

contains each non-trivial element of G.
If G is a group of order n and � is a set of generators for G, then we say that

� = (G,�) is a Černý Cayley graph if every synchronizing automaton (G,�) con-
taining � admits a synchronizing word of length at most (n − 1)2. Let us call G a
Černý group if all its Cayley graphs are Černý Cayley graphs. Of course if the Černý
conjecture is true, then all groups are Černý groups. Pin’s theorem [17] establishes
that Zp with p prime is a Černý group. Dubuc [12] showed that every Cayley graph
of Zn with respect to a cyclic generator is a Černý Cayley graph; consequently, Zpm

is a Černý group for p prime. To prove that every group is a Černý group, one must
improve on Rystsov’s bound by a factor of 2.

In this paper, our main result is an improved bound for synchronizing automata
containing Cayley graphs based on representation theory over the field of rational
numbers. Our bound does not prove that every Cayley graph is a Černý Cayley graph,
but it does work for certain Cayley graphs of cyclic groups, dihedral groups, sym-
metric groups, alternating groups and (projective) special linear groups (in this last
example, Galois theory comes into play). Even when our main result fails to establish
a Cayley graph is a Černý Cayley graph, our techniques often suffice. In particular,
there are several infinite families of Cayley graphs (coming from affine groups, vec-
tor spaces and dihedral groups) that we can prove are Černý graphs even though our
main result is not up to the task. As a consequence of our results it follows that if p is
a prime, then the dihedral groups Dp and Dp2 and the vector spaces Z

m
p , for m ≥ 1,

are Černý groups.

2 Representation theory

As our primary tool in this paper will be representation theory, we try to record here
most of the needed background. There are plenty of excellent books on group repre-
sentation theory; we shall use [9, 11] as our primary references. All groups in what
follows should be assumed finite.



86 J Algebr Comb (2010) 31: 83–109

2.1 Basic notions

Throughout this section K will always be a subfield of the field C of complex num-
bers. By a representation of a monoid M over K , we mean a monoid homomorphism
ϕ : M → EndK(V ) where EndK(V ) is the endomorphism monoid of a finite dimen-
sional K-vector space V . It is frequently convenient to denote ϕ(m) by ϕm. The
dimension of V is termed the degree of the representation ϕ, denoted by deg(ϕ). One
says that V carries or affords the representation ϕ. By the trivial representation of
M , we mean the homomorphism ϕ : M → K = EndK(K) sending all of M to 1. If
W ⊆ V is a subspace and A ⊆ M , we write AW for the subspace spanned by all
elements of the form ϕm(w) with m ∈ A and w ∈ W . A subspace W ⊆ V is said to
be M-invariant if MW ⊆ W . Notice that MW is the least M-invariant subspace con-
taining W . If W is M-invariant, then it affords a subrepresentation of ϕ by restricting
each ϕm to W . If the only M-invariant subspaces of V are {0} and V , then ϕ is said to
be irreducible. Evidently every degree one representation is irreducible. We remark
that a degree one representation is just a homomorphism ϕ : M → K× where R×
denotes the group of units of a ring R.

If ϕ : M → EndK(V ) and ψ : M → EndK(W) are representations, then their di-
rect sum ϕ ⊕ ψ : M → EndK(V ⊕ W) is defined by placing

(ϕ ⊕ ψ)m = ϕm ⊕ ψm.

Two representations ϕ : M → EndK(V ) and ψ : M → EndK(W) are said to be iso-
morphic (or equivalent) if there is an invertible linear transformation T : V → W

such that for each m ∈ M , the diagram

V
ϕm

T

V

T

W
ψm

W

commutes, i.e. ϕm = T −1ψmT all m ∈ M .
The character ξϕ of a representation ϕ is the function ξϕ : M → K given by

ξϕ(m) = Tr(ϕm) where Tr(A) denotes the trace of the linear operator A. Notice that
ξϕ only depends on the isomorphism class of ϕ and ξϕ⊕ψ = ξϕ + ξψ . Also observe
that ξϕ(1) = deg(ϕ). A representation ϕ is said to be completely reducible if it is iso-
morphic to a direct sum of irreducible representations. The decomposition into irre-
ducibles is unique (up to isomorphism and reordering) and the summands are called
the irreducible constituents of ϕ. For a completely reducible representation, every
M-invariant subspace W has an M-invariant complement W ′ with V = W ⊕ W ′.
Moreover, any irreducible constituent of V is either a constituent of W or of W ′ (or
possibly both if it appears with multiplicity).

It is simple to verify that if ϕ : N → EndK(V ) is an irreducible representation and
ψ : M → N is an onto homomorphism, then ϕψ is an irreducible representation of
M , a fact we shall use without comment.
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2.2 The representation associated to a transformation monoid

The primary example of a representation for us is the following. Let (X,M) be a
monoid M acting on the right of a finite set X and let V = KX be the K-vector
space of all functions from X to K . Then we can define a representation ρ : M →
EndK(V ), called the standard representation of (X,M), by right translations:

ρm(f )(x) = f (xm).

The degree of ρ is, of course |X|. We shall be particularly interested in the case
where M is a free monoid, since a pair (X,�∗) is essentially the same thing as an
automaton. The vector space V comes equipped with the inner product

〈f,g〉 =
∑

x∈X

f (x)g(x).

It is easy to verify that the group of units of M acts by unitary transformations with
respect to this inner product.

Let V1 be the subspace of constant functions; let us denote by r̃ , for r ∈ K , the
constant function with value r . Then ρm(̃r) = r̃ , for all m ∈ M , and hence V1 is M-
invariant. It is well known and easy to prove that the subspace of vectors fixed by M

is precisely the space of constant functions if and only if M acts transitively on X. Set
V0 = V ⊥

1 ; so V0 = {f ∈ V : ∑x∈X f (x) = 0} and dimV0 = |X|−1. The subspace V0
is invariant for the group of units of M , but not in general for M . It will be convenient
to define the augmentation map ε : V → K by

ε(f ) = 〈f, 1̃〉 =
∑

x∈X

f (x).

Observe that V0 = ker ε. Let S ⊆ X be a subset and χS its characteristic function.
Then, for m ∈ M , notice ρm(χS) = χSm−1 since ρm(χS)(x) = χS(xm), which is 1 if
xm ∈ S and 0 otherwise. Also observe that ε(χS) = |S|. It is easily verified that

χ̂S = χS − |S|
|X| · 1̃ = χS −

(̃ |S|
|X|

)
(2.1)

is the orthogonal projection of χS onto V0. Indeed, the vector 1̃ spans V1 and
〈χS ,̃1〉
〈̃1,̃1〉 = |S|

|X| . Notice that χ̂S = 0 if and only if S = X. The following observation

will be applied often in this paper.

Proposition 2.1 Suppose that (X,M) is transitive and let ρ be the standard repre-
sentation of (X,M). Assume that some element of M acts as a constant map on X.
Let S be a proper subset of X and set W = Span{χ̂S}. Then MW � V0.

Proof By transitivity of M , there is a constant map f ∈ M with image contained
in S. We then compute

ε(ρf (χ̂S)) = ε(χSf −1) − |S| = |Sf −1| − |S| = |X| − |S| > 0
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and so ρf (χ̂S) /∈ ker ε = V0. �

Remark 2.2 The following remark is for experts in representation theory. If M acts
faithfully and transitively on X and contains a constant map, then one can verify that
the standard representation of (X,M) is an injective indecomposable representation
with simple socle V1.

A fact that we shall use frequently is that if G is a finite group acting transitively
on X, then 1

|G|
∑

g∈G ρg is the orthogonal projection of V onto V1 and, in particular,
it annihilates V0.

Proposition 2.3 Let G be a finite group acting transitively on the right of a finite
set X. Then

P = 1

|G|
∑

g∈G

ρg

is the orthogonal projection onto V1.

Proof Since V0,V1 are both G-invariant, they are both invariant under P . So if we
can show V1 = ImP and P fixes V1, then the proposition will follow from the or-
thogonal decomposition V = V0 ⊕ V1. Let us prove the latter statement first. Since
each element of G fixes V1, if r̃ ∈ V1, then

P r̃ = 1

|G|
∑

g∈G

ρg(̃r) = 1

|G|
∑

g∈G

r̃ = r̃

and hence P fixes V1. Next let f ∈ V and let x, y ∈ X. By transitivity y = xh some
h ∈ G. Then we have

Pf (y) = 1

|G|
∑

g∈G

f (yg) = 1

|G|
∑

g∈G

f (xhg) = 1

|G|
∑

t∈G

f (xt) = Pf (x)

where the last equality follows by making the change of variables t = hg. It follows
that Pf is a constant map, completing the proof. �

Since P obviously fixes any vector fixed by all of G, the above proposition shows
that V1 is the space of fixed vectors of G, as was mentioned earlier.

2.3 Group representation theory

We highlight here some key points about group representations. Let G be a finite
group. Maschke’s theorem says that every representation of G over K is completely
reducible [9, 11]. It is a standard fact that group representations are determined up to
isomorphism by their characters [11, Chpt. 7] and hence often one does not distin-
guish between an irreducible representation and its associated character. If we let G

act on the right of itself by right multiplication, then the standard representation of
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(G,G) is called the regular representation of G. It is well known that each irreducible
representation (up to isomorphism) of G is a constituent in the regular representation
of G. In particular, if we look at the decomposition of the regular representation into
V0 ⊕ V1, then we see that each non-trivial irreducible representation of G is a con-
stituent of V0 and each constituent of V0 is non-trivial. Representations ρ and ψ are
said to be orthogonal if they have no common irreducible constituents. Then, we have
the following consequence of Proposition 2.3.

Proposition 2.4 Let G be a group and ϕ : G → EndK(V ) be a representation of G

orthogonal to the trivial representation. Then

0 = 1

|G|
∑

g∈G

ϕg.

Proof Each irreducible constituent of the representation ϕ is an irreducible con-
stituent of V0 in the regular representation and hence is annihilated by 1

|G|
∑

g∈G ϕg

thanks to Proposition 2.3. �

If K = C, then the number of isomorphism classes of irreducible representations
of G is precisely the number of conjugacy classes of G. Moreover, if ϕ(1), . . . , ϕ(s)

form a complete set of representatives of the equivalence classes of irreducible rep-
resentations of G over C and di is the degree of ϕ(i), then ϕ(i) appears exactly di

times as a summand in the decomposition of the regular representation of G into
irreducibles. In particular, |G| = d2

1 + · · · + d2
s , see [9, 11].

Every representation of G over Q is isomorphic to a matrix representation
ϕ : G → Mn(Q) where Mn(Q) is the monoid of n × n-matrices over Q (simply
choose a basis for the representation space). Hence each representation over Q can
be viewed as a representation over C. (Formally speaking, one replaces V by the ten-
sor product C ⊗Q V .) One says that ϕ is absolutely irreducible if it is irreducible as
a representation over C. Absolutely irreducible representations must be irreducible,
but not conversely. For example, let ωn be a primitive nth-root of unity. Then one can
define an irreducible representation ϕ : Zn → EndQ(Q(ωn)) by having the generator
act via left multiplication by ωn. It is easy to see that a Zn-invariant subspace is the
same thing as a left ideal in Q(ωn), but Q(ωn) is a field and so has no non-zero proper
ideals. However, every irreducible representation of Zn over C has degree 1 (since it
has n conjugacy classes and the sums of the degrees squared add up to n). So ϕ is not
absolutely irreducible.

It is a classical fact that if ξ is the character of a complex representation of a group
G of order n, then ξ(g) is a sum of nth-roots of unity and hence is an algebraic
number (in fact an algebraic integer), for each g ∈ G [9, 11]. Thus one can form
a number field Q(ξ) (i.e. a finite extension of Q), called the character field of ξ , by
adjoining the values of ξ . In fact, Q(ξ) is a subfield of the cyclotomic field Q(ωn) and
therefore is a Galois (in fact abelian) extension of Q. Hence if H = Gal(Q(ξ) : Q) is
the Galois group of Q(ξ) over Q, then |H | = [Q(ξ) : Q]. Notice that H acts on the
right of the set of functions θ : G → Q(ξ) by putting θh(g) = h−1(θ(g)) for h ∈ H .
The main result of [11, Chpt. 24] establishes the following theorem, encapsulating
the relationship between irreducible representations of G over Q and C.
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Theorem 2.5 Let G be a finite group.

(1) Let θ be the character of an irreducible representation of G over Q. Then there
is a complex irreducible character ξ of G and an integer s(ξ), called the Schur
index of ξ , so that

θ = s(ξ) ·
∑

h∈Gal(Q(ξ):Q)

ξh.

(2) If ξ is the character of a complex irreducible representation of G, then there is a
unique integer s(ξ) so that

θ = s(ξ) ·
∑

h∈Gal(Q(ξ):Q)

ξh

is the character of an irreducible representation of G over Q. In particular, one
has

deg(θ) = s(ξ)[Q(ξ) : Q]deg(ξ) ≥ [Q(ξ) : Q]deg(ξ). (2.2)

Hence the representation theory of G over Q can be understood in principle via the
complex representation theory and Galois theory. However, it should be mentioned
that computing the Schur index is a non-trivial task and so we content ourselves in
this paper with the bound in (2.2).

2.4 Representations of free monoids

Several combinatorial lemmas concerning representations of free monoids have been
exploited in the literature in connection with Černý’s conjecture [6, 12, 14, 19], as
well as with the theory of rational power series [7]. Here we collect some variants.
Let us denote by �≤d the set of all words in �∗ of length at most d . The length of a
word w is denoted |w|, as usual.

Lemma 2.6 Let ϕ : �∗ → EndK(V ) be a representation and suppose that W ⊆ V is
a subspace. Then �∗W = �≤dW where d = dim�∗W − dimW .

Proof Let Wi = �≤iW . Then

W = W0 ⊆ W1 ⊆ · · · ⊆ �∗W

and if Wi = Wi+1, then Wj = �∗W for all j ≥ i. In particular, if we have

W0 � W1 � · · · � Wd = �∗W,

then d + dimW0 ≤ dim�∗W and so d ≤ dim�∗W − dimW . But since �∗W =
�≤dW implies the same equality for every larger value of d , this completes the
proof. �

Our next two results are important for when the alphabet is partitioned into two
subsets.
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Lemma 2.7 Let � = � ∪ � and suppose ϕ : �∗ → EndK(V ) is a representation.
Let W ⊆ V be a �∗-invariant subspace that is not �∗-invariant. Let U = �∗�≤1W .
Then U = �≤d�≤1W where d = dimU − dimW − 1.

Proof By assumption, W ′ = �≤1W � W . Hence dimW ′ ≥ dimW +1. Applying the
previous lemma to W ′, we may take

d = dimU − dimW ′ ≤ dimU − (dimW + 1) = dimU − dimW − 1,

establishing the lemma. �

Proposition 2.8 Suppose that � = � ∪ � and let δ : �∗ → �∗ be the map erasing
letters from �. Let ϕ : �∗ → EndK(V ) be a representation and W ⊆ V a subspace.
Define Wr = Span{wW : |δ(w)| ≤ r} and set

Vr = Span{wW : |w| ≤ dimWr − dimW, |δ(w)| ≤ r} r ≥ 0

Ur = �≤dr �≤1Vr−1 r ≥ 1

where dr = dimWr − dimWr−1 − 1. Suppose Ws �= �∗W . Then, V0 = W0 and, for
1 ≤ r ≤ s + 1, we have Ur = Vr = Wr .

Proof As W0 = �∗W , Lemma 2.6 provides the equality V0 = W0. It follows directly
from the definitions that in general Ur ⊆ Vr ⊆ Wr . Suppose by induction that Vr =
Wr for 0 ≤ r ≤ s; we show Ur+1 = Vr+1 = Wr+1. Indeed, by induction we have

Wr+1 = �∗�≤1Wr = �≤dr+1�≤1Wr = �≤dr+1�≤1Vr = Ur+1

where the second equality is a consequence of Lemma 2.7 and the penultimate one
follows from the induction hypothesis. This completes the induction. �

Our final lemma concerns the situation where W ⊆ U , but �∗W � U . The ques-
tion is how long a word does it take to get you out of U? The answer is provided by
the next lemma.

Lemma 2.9 Suppose ϕ : �∗ → EndK(V ) is a representation and let W ⊆ U be sub-
spaces of V such that �∗W � U . Let us say W = SpanX. Then there exist x ∈ X

and w ∈ �∗ with ϕw(x) /∈ U and |w| ≤ dimU − dimW + 1.

Proof Again let Wi = �≤iW and consider the chain of subspaces

W = W0 ⊆ W1 ⊆ · · · ⊆ �∗W.

As in the proof of Lemma 2.6, if Wi = Wi+1, then Wi = �∗W . Now W0 ⊆ U and
�∗W � U , so choosing d least such that Wd � U , we have

W = W0 � W1 � · · · � Wd−1 ⊆ U.
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Consequently, dimW + d − 1 ≤ dimU , or in other words we have the sought after
inequality d ≤ dimU − dimW + 1. Since Wd is spanned by the elements ϕw(x) with
|w| ≤ d and x ∈ X, and moreover Wd � U , it follows that we can find w ∈ �∗ and
x ∈ X with the desired properties. �

3 An improved bound for automata containing Cayley graphs

In this section, we ameliorate Rystsov’s bound for synchronizing automata containing
Cayley graphs. Our bound is good enough to obtain Pin’s result [17], as well as
to obtain several new infinite families of Černý Cayley graphs. It does not recover
Dubuc’s result, although it comes much closer than [6, 19]. Again all groups are
finite here.

Let G be a group of order n > 1. Define m(G) to be the maximum degree of
an irreducible representation of G over Q. As each irreducible representation of G

is a constituent in the regular representation, and all groups admit the trivial repre-
sentation, one has 1 ≤ m(G) ≤ n − 1. Since the regular representation is faithful, it
follows from Maschke’s theorem that the irreducible representations of G separate
points. Since the only roots of unity in Q are ±1, it follows that m(G) = 1 if and
only if G ∼= Z

m
2 for some m. We shall see momentarily that if G is a cyclic group

of prime order n, then m(G) = n − 1. Before proving our main theorem, we isolate
some key ideas of the proof, many of which are inspired by the beautiful paper of
Dubuc [12]; see also our previous paper with Arnold [5].

Let (X,�) be a synchronizing automaton with n states. Suppose �∗ acts tran-
sitively on X (as is usually the case). Then for any proper subset S ⊆ X, there is a
word w ∈ �∗ so that |Sw−1| > |S|: one can take w to be an appropriate synchronizing
word, for instance. The basic strategy for obtaining bounds on lengths of synchroniz-
ing words (although this strategy is now known not to be optimal in general [13]) is to
prove that, for each subset S of X with 2 ≤ |S| < n, there is a word t ∈ �∗ of length
at most k so that |St−1| > |S| (we say such a word t expands S). Then one obtains
a synchronizing word of length at most 1 + k(n − 2). Indeed, to expand a singleton
subset requires a single non-permutation from � (which must exist if the automaton
is synchronizing). One can then expand repeatedly by words of length at most k until
obtaining X. Since one has to expand at most n − 2 times from a two element set to
an n element set, this establishes the bound. Observing that (n − 1)2 = 1 + n(n − 2),
the goal is to try and prove that one can take k ≤ n.

Our first idea is a lemma that we shall refer to as the “Standard Argument” since
it is an argument we shall use time and time again throughout the paper.

Lemma 3.1 (Standard Argument) Suppose (X,�) is an automaton and let ρ : �∗ →
EndQ(V ) be the standard representation with V = Q

X . Let V1 be the space of con-
stant maps and V0 the orthogonal complement. Let S � X and recall the definition of
χ̂S from (2.1). Suppose ρuvw(χ̂S) /∈ V0 with u,v,w ∈ �∗. Then if there exist r ≥ |v|
and a non-negative linear combination

P =
∑

y∈�≤r

cyρy
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with cv > 0 and ρuPρw(χ̂S) ∈ V0, then |St−1| > |S| for some t ∈ �∗ with |t | ≤
|u| + |w| + r .

Proof Since ρuvw(χ̂S) /∈ V0 = ker ε, it follows

0 �= ε(ρuvw(χ̂S)) = ε(χS(uvw)−1) − ε

( |S|
|X| · 1̃

)
= |S(uvw)−1| − |S|.

This leads us to two cases. If |S(uvw)−1| − |S| > 0, then we are done since |uvw| =
|u| + |v| + |w| ≤ |u| + |w| + r . So suppose instead

|S(uvw)−1| − |S| < 0. (3.1)

Since ρuPρw(χ̂S) ∈ V0 = ker ε, it follows

0 = ε(ρuPρw(χ̂S)) =
∑

y∈�≤r

cyε(ρuyw(χ̂S))

=
∑

y∈�≤r

cy(|S(uyw)−1| − |S|).
(3.2)

Taking into account that the cy are non-negative, cv > 0 and (3.1) holds, in order
for (3.2) to be valid there must exist y ∈ �≤r with |S(uyw)−1| − |S| > 0. Setting
t = uyw completes the proof. �

The next lemma, which shall be our main workhorse, is called the “Gap Bound”.
First let us describe the “Standard Setup”, which is essentially a collection of nota-
tional conventions that will be needed at the start of nearly every proof in the remain-
der of the paper.

Definition 3.2 (Standard Setup) Let G be a group of order n > 1 generated by �

and suppose � ⊆ � ⊆ TG with (G,�) a synchronizing automaton. Set � = � \ �.
Suppose S ⊆ G is a subset with 2 ≤ |S| < n. Let ρ : �∗ → EndQ(V ) be the stan-
dard representation where V = Q

G. Put W = Span{χ̂S} and set Wr = Span{wW :
|δ(w)| ≤ r}, for r ≥ 0, and we agree W−1 = 0. Recall that δ : �∗ → �∗ is the map
erasing �. Define cr = dimWr − dimWr−1. These numbers are referred to as the
gaps. By construction Wr is a G-invariant subspace for the regular representation of
G so we may write Wr = Wr−1 ⊕ Ur where Ur is a G-invariant subspace. Note that
cr = dimUr and Wr = U0 ⊕ U1 ⊕ · · · ⊕ Ur . Then

W ⊆ W0 ⊆ W1 ⊆ · · · ⊆ �∗W

and as soon as Wr = Wr+1 one has Wr = �∗W (since Wr = �∗�≤1Wr−1 for r ≥ 1).
Note that W0 = �∗W ⊆ V0, while Proposition 2.1 yields �∗W � V0. Hence there is
a maximal integer s so that Ws ⊆ V0.

The Gap Bound relates the length of a word needed to expand S to the size of the
maximal gap.
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Lemma 3.3 (Gap Bound) Let us assume the Standard Setup. Then there is a word
t ∈ �∗ of length at most

1 + dimWs − max
0≤r≤s

{cr} + diam�(G)

such that |St−1| > |S|.

Proof Fix, for each element g ∈ G, a word ug ∈ �∗ of length at most diam�(G) so
that ug maps to g ∈ G under the projection π : �∗ → G. Let λ : G → EndQ(V ) be
the regular representation of G. Then ρ|�∗ = λπ , that is, ρu = λπ(u) for u ∈ �∗. In
particular, ρug = λg .

Since Ws+1 � V0, it follows �Ws � V0 as V0 is invariant under �∗. Hence bWs �

V0 some b ∈ �. Let ck = max{cr : 0 ≤ r ≤ s}. First suppose k = 0. Proposition 2.8,
but with W0 in the place of W , implies that Ws is spanned by elements of the form
ρx(f ) where |x| ≤ dimWs − dimW0 = dimWs − c0, |δ(x)| ≤ s and f ∈ W0. As
W0 = �∗W , it follows ρbxy(χ̂S) /∈ V0 for some y ∈ �∗ and x as above. Since χ̂S ∈
V0, we have by Proposition 2.3

0 = ρbx

1

|G|
∑

g∈G

λg(χ̂S).

Recalling that ρy = λπ(y) = ρuπ(y)
, the Standard Argument with u = bx, v = uπ(y),

w = 1 and P = 1
|G|

∑
g∈G ρug provides a word t of length at most

|bx| + diam�(G) ≤ 1 + dimWs − c0 + diam�(G)

such that |St−1| > |S|.
Finally suppose k > 0. Proposition 2.8 yields Wk is spanned by vectors of the

form ρyb′z(χ̂S) where y ∈ �∗, b′ ∈ �≤1 and z ∈ �∗ such that the inequalities
|z| ≤ dimWk−1 − 1 and |δ(z)| ≤ k − 1 hold. On the other hand, Proposition 2.8,
but with Wk in the place of W , yields that Ws is spanned by elements of the form
ρx(f ) where |x| ≤ dimWs − dimWk , |δ(x)| ≤ s − k and f ∈ Wk . Putting this to-
gether, we can find x, y, b′, z with the above properties so that ρbxyb′z(χ̂S) /∈ V0.
Since ρb′z(χ̂S) ∈ Wk ⊆ V0, it follows from Proposition 2.3 that

0 = ρbx

1

|G|
∑

g∈G

λgρb′z(χ̂S).

Invoking the Standard Argument where we take u = bx, v = uπ(y), w = b′z and
P = 1

|G|
∑

g∈G ρug yields the existence of a word t ∈ �∗ with

|t | ≤ |bx| + |b′z| + diam�(G)

≤ 1 + dimWs − dimWk + 1 + dimWk−1 − 1 + diam�(G)

= 1 + dimWs − ck + diam�(G)
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such |St−1| > |S|. This completes the proof. �

Since the largest gap is at least m(G), or n − 1 − dimWs ≥ m(G), we obtain our
main result, improving upon Rystsov’s bound, Theorem 1.3.

Theorem 3.4 Let G be a group of order n > 1 generated by � and suppose � ⊆ � ⊆
TG with (G,�) a synchronizing automaton. Then (G,�) admits a synchronizing
word of length at most

1 + (n − m(G) + diam�(G)) (n − 2).

In particular, if diam�(G) ≤ m(G), then (G,�) satisfies the Černý bound and hence
(G,�) is a Černý Cayley graph.

Proof Observing that (n − 1)2 = 1 + n(n − 2), the last statement follows from the
first, which we proceed to prove. Let S ⊆ G be a subset with 2 ≤ |S| < n. It suffices to
show that there exists t ∈ �∗ with |t | ≤ n − m(G) + diam�(G) and |St−1| > |S|. So
we assume the Standard Setup. Let θ be an irreducible character of G of degree m(G).
We know that θ appears as a constituent in the regular representation of G. As G is
non-trivial, we may assume that θ is not the character of the trivial representation.
Since in the direct sum decomposition V = V0 ⊕V1, the representation afforded by V1
is the trivial representation, it follows that θ is a constituent in the subrepresentation
afforded by V0. Now we may write V0 = Ws ⊕ U with U a G-invariant subspace.
Then we have, following the notation of the Standard Setup,

V0 = Ws ⊕ U = U0 ⊕ U1 ⊕ · · · ⊕ Us ⊕ U.

There are two cases. Suppose first θ is a constituent of Uk , some 0 ≤ k ≤ s. Then
ck ≥ m(G) and therefore it follows

1 + dimWs − max
0≤r≤s

{cr} + diam�(G) ≤ n − ck + diam�(G)

≤ n − m(G) + diam�(G).

On the other hand, since n − 1 = dimV0 = dimWs + dimU , if θ is a constituent of
U then dimWs ≤ n − 1 − m(G), yielding

1 + dimWs − max
0≤r≤s

{cr} + diam�(G) ≤ n − m(G) + diam�(G).

The desired word t is now provided by the Gap Bound. �

4 Some examples

In this section, we consider several natural families of Cayley graphs and determine
whether or not we achieve the Černý bound with our bound, and if not we see by how
much we fail. In what follows, ωm always denotes a primitive mth-root of unity.
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4.1 Cyclic groups

Our first family of examples consists of cyclic groups. Let G be a cyclic group of
order n. Then the regular representation of G is isomorphic to the representation
ρ : G → EndQ(Q[x]/(xn − 1)) which sends the generator to left multiplication by x.
One has the direct sum decomposition Q[x]/(xn − 1) = ⊕

d|n Q(ωd) where the gen-
erator acts on Q(ωd) via left multiplication by ωd . An invariant subspace of Q(ωd)

is the same thing as a left ideal, and hence each Q(ωd) carries an irreducible sub-
representation. We conclude m(G) = φ(n), where φ is Euler’s totient function. If we
choose a cyclic generator for G, then the diameter of the resulting Cayley graph is
n− 1. Theorem 3.4 thus yields an upper bound of 1 + (2n − 1 − φ(n))(n − 2) on the
length of a synchronizing word. If n is prime, then φ(n) = n − 1 and so we achieve
the Černý bound, yielding a new proof of Pin’s theorem. In general, we do not ob-
tain Dubuc’s result, although we are much closer than [6, 19]. For instance, suppose
n = pm with p prime. Then one can compute that the ratio of the Černý bound to our
bound is approximately 1 − 1

p
and so is nearly 1 when p is very large.

On the other hand, suppose n = p1 · · ·pk is the prime factorization of a square-
free number n. Let us consider the natural generating set for G corresponding to the
direct product decomposition G ∼= Zp1 × · · · × Zpk

. The diameter with respect to
this generating set is (p1 − 1) + · · · + (pk − 1). On the other hand m(G) = φ(n) =
(p1 − 1) · · · (pk − 1). It is easy to see that as long as n is odd or k ≥ 3, one has
(p1 − 1) · · · (pk − 1) ≥ (p1 − 1) + · · · + (pk − 1) and so this Cayley graph of G is a
Černý Cayley graph, something which is not a consequence of the results of [12].

4.2 Dihedral groups

Let G = Dn be the dihedral group of order 2n. Let s be a reflection and r be a
rotation of order n. Then every element of Dn can be written in one of the forms
srk , rks with k ≤ �n

2 �, srks with k < �n
2 � or rk with k ≤ �n+1

2 �. Hence the diam-
eter of Dn with respect to this generating set is at most �n+1

2 �. One can show that
m(Dn) = φ(n). Let us just establish that m(Dn) ≥ φ(n). Indeed, define a representa-
tion ρ : Dn → EndQ(Q(ωn)) by having ρ(s) act via complex conjugation and ρ(r)

act via multiplication by ωn. We already know this representation is irreducible when
restricted to 〈r〉 and so it is irreducible for Dn.

Suppose first that n = pk with p an odd prime. Then since 1 − 1/p ≥ 2/3, the
formula φ(n) = n(1 − 1

p
) yields

φ(n) − n + 1

2
≥ 2n

3
− n + 1

2
= n − 3

6
≥ 0

since n ≥ 3. Thus the Cayley graph of Dn with respect to r, s is Černý.
Next consider the case n = pkq� with p < q odd primes. We claim again that the

Cayley graph of Dn with respect to r, s is Černý. Indeed, since 1 − 1/p ≥ 2/3 and
1 − 1/q ≥ 4/5, from φ(n) = n(1 − 1

p
)(1 − 1

q
) it follows

φ(n) − n + 1

2
≥ 8n

15
− n + 1

2
= n − 15

30
≥ 0
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where the last equality uses n ≥ 15.
The reader should verify that for all other n, our bound does not achieve the Černý

bound. The bound we obtain is 1 + (n − φ(n) + �n+1
2 �)(n − 2), which for many n is

not far from the Černý bound. For example, for n = 2m, one has φ(n) = n/2. Thus our
main result implies that any synchronizing automaton containing the Cayley graph of
Dn with respect to r, s has a synchronizing word of length at most 1 + (n + 1)(n −
2) = (n − 1)2 + n − 2.

We shall establish later that if p is an odd prime, then Dp and Dp2 are Černý
groups.

4.3 Symmetric and alternating groups

It is well known that each irreducible representation of the symmetric group Sn over
Q is absolutely irreducible [9]. Letting pn be the number of partitions of n, it follows
that Sn has pn irreducible representations over Q and the sum of their degrees squared
is n!. Thus pnm(Sn)

2 ≥ n! and so we obtain m(Sn) ≥ √
n!/pn. It is a well-known re-

sult of Hardy and Ramanujan that pn ∼ exp(π
√

2n/3)
4n

√
3

. On the other hand, Stirling’s

formula says that n! ∼ √
2πn

(
n
e

)n. Comparing these expressions, we see that m(Sn)

grows faster than any exponential function of n. On the other hand, the diameter of
Sn with respect to any of its usual generating sets grows polynomially with n. For
instance, if one uses the Coxeter-Moore generators (12), (23), . . . , (n − 1n) the di-
ameter of Sn is well known to be

(
n
2

)
, while if one uses the generators (12), (12 · · ·n),

then the diameter is no bigger than (n + 1)n(n − 1)/2 since each Coxeter-Moore
generator can be expressed as a product of length at most n + 1 in these generators.
Thus the Cayley graph of Sn with respect to either of these generating sets is a Černý
Cayley graph for n sufficiently big (and sufficiently big is not very big in this case).

To deal with the alternating group An, we use the following lemma, which is a
trivial consequence of Clifford’s theorem.

Lemma 4.1 Let G be a group and suppose H is a subgroup of index 2. Then m(H) ≥
m(G)/2.

Proof Let ϕ : G → EndQ(V ) be an irreducible representation of degree m(G) and fix
s /∈ H . If ϕ|H is irreducible, we are done. Otherwise, let W be a proper H -invariant
subspace of V affording an irreducible subrepresentation. Since G = H ∪ sH and W

is H -invariant, but not G-invariant, it follows that sW �= W . Moreover, sW is also
an H -invariant subspace since if h ∈ H and w ∈ W , then hsw = s(s−1hs)w ∈ sW

using that H is a normal subgroup and W is H -invariant. Moreover, sW carries
an irreducible subrepresentation of H since if U ≤ sW is an H -invariant subspace,
a routine verification yields s−1U is an H -invariant subspace of W . Consequently
W ∩ sW = 0. Clearly the direct sum W ⊕ sW is G-invariant, being preserved by both
H and s and using G = H ∪ sH . Thus, because ϕ is irreducible, we conclude that
V = W ⊕ sW . Since W and sW are isomorphic as vector spaces, m(G) = dimV =
2 dimW , establishing the lemma. �

It is immediate from the lemma that m(An) ≥ m(Sn)/2 and hence grows faster
than any exponential function of n. Again most of the standard generating sets for An
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have polynomial diameter growth as a function of n, leading to Černý Cayley graphs
for n large enough.

4.4 Special and projective special linear groups

Suppose p is an odd prime and let G = SL(2,p) be the group of all 2 × 2 matrices
of determinant 1 over Zp . A standard generating set � for G consists of the matrices

x =
[

1 1
0 1

]
and y =

[
1 0
1 1

]
. (4.1)

Our goal is to show that the Cayley graph � of G with respect to x and y is a Černý
Cayley graph for almost all odd primes. This is the first example where we shall
use the Galois theoretic description of the irreducible representations over Q. Let us
begin by estimating the diameter, following [10].

A routine computation using ad − bc = 1 establishes that if c �= 0, then

[
a b

c d

]
=

[
1 a−1

c

0 1

][
1 0
c 1

][
1 d−1

c

0 1

]
. (4.2)

On the other hand if c = 0, then d �= 0 and
[
a b

0 d

]
=

[
a − b b

−d d

][
1 0
1 1

]
. (4.3)

Putting together (4.2) and (4.3) (and using d �= 0 in (4.3) to apply (4.2) to the first
matrix in the product) we conclude the diameter diam�(G) is at most 3(p − 1)+ 1 =
3p − 2.

We shall require a lemma about cyclotomic fields for the proof.

Lemma 4.2 Let α = cos 2π/n with n ≥ 3. Then [Q(α) : Q] = φ(n)/2.

Proof The intersection F of Q(ωn) with the reals R is the fixed-field of the automor-
phism σ ∈ Gal(Q(ωn) : Q) given by σ(z) = z (complex conjugation). Moreover, σ

is non-trivial as n ≥ 3 implies ωn /∈ R. Since Q(ωn) is a Galois extension of Q, it
follows that [Q(ωn) : F ] = |〈σ 〉| = 2. Thus

φ(n) = [Q(ωn) : Q] = [Q(ωn) : F ][F : Q] = 2[F : Q]
and so [F : Q] = φ(n)/2. Therefore, it suffices to prove F = Q(α). Clearly α =
1
2 (ωn + ωn) ∈ F , so we are left with establishing the containment F ⊆ Q(α). It is
easy to see that 1

2 (1 + σ) is the projection from Q(ωn) to F and so F is spanned
by the elements 1

2 (ωm
n + ωm

n ) = cos 2πm/n with 0 ≤ m ≤ φ(n) − 1. Let Tm be the
mth-Chebyshev polynomial of the first kind [10]. This is a polynomial with inte-
ger coefficients satisfying Tm(cos θ) = cosmθ and can be obtained by expanding the
right-hand side of De Moivre’s formula. It follows that cos 2πm/n is a polynomial
with integer coefficients in cos 2π/n = α and so F ⊆ Q(α), as required. �
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To conclude the proof, we use the character table of SL(2,p), which goes back
to Frobenius and Schur. It can be found for instance in [11, Chpt. 38]. It turns out
that SL(2,p) has irreducible complex characters ξ1 of degree p + 1 with Q(ξ1) =
Q(cos 2π

p−1 ) and ξ2 of degree p − 1 with character field Q(ξ2) = Q(cos 2π
p+1 ). We

deduce from Lemma 4.2 and the estimate (2.2) from Theorem 2.5 that

m(SL(2,p)) ≥ max

{
(p + 1)

φ(p − 1)

2
, (p − 1)

φ(p + 1)

2

}
. (4.4)

To compare the diameter to m(SL(2,p)), first note that φ(n) ≥ 8 for all n > 18.
Consequently when our prime p is at least 19, then

m(SL(2,p)) ≥ (p − 1)
φ(p + 1)

2
≥ 4(p − 1) ≥ 3(p − 1) + 1

and hence we have a Černý Cayley graph. For p = 17, a direct computation using
(4.4) shows that the graph � is a Černý Cayley graph. For p = 3,5,7,11,13 our
estimates do not suffice to prove that the graph � is a Černý Cayley graph.

Let us next consider the case of the projective special linear group G =
PSL(2,p) = SL(2,p)/{±I }. We choose the cosets of the matrices x and y from
(4.1) as generators and with respect to this generating set, the Cayley graph � of G

still has diameter at most 3(p − 1) + 1. The complex characters of PSL(2,p) are
also computed in [11, Chpt. 38]. Here one finds an irreducible character of degree
p + 1 with character field Q(cos 2π

(p−1)/2 ) and one of degree p − 1 with character

field Q(cos 2π
(p+1)/2 ). Arguing as above yields

m(PSL(2,p)) ≥ max

{
p + 1

2
· φ

(
p − 1

2

)
,
p − 1

2
· φ

(
p + 1

2

)}
. (4.5)

Again using that φ(n) ≥ 8 whenever n > 18, we conclude that as long as p ≥ 37,
the graph � is a Černý Cayley graph. Direct computation with the estimate (4.5)
shows that, for p = 19,23,29,31, we also obtain a Černý Cayley graph. That is, for
p ≥ 19, the Cayley graph of PSL(2,p) with the above generating set is a Černý
Cayley graph. Our estimates fail to handle the cases p = 3,5,7,11,13,17.

5 Further examples of Černý Cayley graphs and Černý groups

In this section we consider some Cayley graphs for which Theorem 3.4 is not strong
enough to prove that they are Černý, but the ideas underlying the theorem do suffice.
In the process we give the first examples of non-cyclic Černý groups. Our main tool
is the following lemma, whose proof is similar to that of the Gap Bound.

Lemma 5.1 Assume the Standard Setup. Let A be a subgroup of G and suppose
that, for some 0 ≤ k ≤ s, one has the decomposition Wk = Wk−1 ⊕ Uk where the
subspace Uk affords a representation ψ : A → EndQ(Uk) of A so that: each coset
of H = A/kerψ has a representative in �∗ of length at most ck and either ψ is a
non-trivial irreducible representation of A, or A = G. Then there exists a word t of
length at most n so that |St−1| > |S|.
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Proof Set K = kerψ and choose, for each coset a ∈ A/K , a word ua ∈ �∗ of
length at most ck so that the element of G represented by ua maps into the coset
a; without loss of generality, we may assume uK = 1. Let ϒ = {ua : a ∈ A/K}.
We view ψ as a representation of H = A/K in the natural way. First suppose that
k = 0. Then W0 = U0 and so W0 affords a representation of H . If A = G, clearly
HW = GW = W0. If ψ is irreducible, then the subrepresentation of A afforded by
W0 is irreducible and so again HW = AW = W0. Applying Lemma 2.9 we can find
u ∈ �∗ with |u| ≤ dimV0 − dimW0 + 1 = n − c0 and g ∈ H so that ρuug (χ̂S) /∈ V0.
Since W0 is orthogonal to the trivial representation of H , Proposition 2.4 implies∑

a∈H ψ(a)W0 = 0. Thus

ρu

∑

ua∈ϒ

ρua (χ̂S) = 0.

Applying the Standard Argument with v = ug,w = 1 yields a word t with |St−1| >

|S| and |t | ≤ |u| + c0 ≤ n.
Next suppose 1 ≤ k ≤ s. Then Wk = Wk−1 ⊕ Uk as in the hypothesis. If ψ is

irreducible, then since �≤1Wk−1 � Wk−1 and Wk/Wk−1 affords an irreducible rep-
resentation of A isomorphic to ψ , factoring by Wk−1 yields

Wk/Wk−1 = H�≤1Wk−1/Wk−1.

It follows Wk = ϒ�≤1Wk−1 (using 1 ∈ ϒ ). On the other hand if A = G, then since
Wk = G�≤1Wk−1, it follows that

Wk/Wk−1 = G�≤1Wk−1/Wk−1 = H�≤1Wk−1/Wk−1

as Wk/Wk−1 affords a representation isomorphic to ψ and H = G/kerψ . So again
we have Wk = ϒ�≤1Wk−1. Now by choice of s, we have �Ws � V0. Applying
Proposition 2.8 with Wk in place of W and Ws in place of Wr it follows that Ws is
spanned by vectors of the form ρu(f ) so that |δ(u)| ≤ s − k, |u| ≤ dimWs − dimWk

and f ∈ Wk . Hence we can find b ∈ � and u,f as above with ρbu(f ) /∈ V0. Now
from Wk = ϒ�≤1Wk−1, it follows that we may find such an f of the form ρugb′w(χ̂S)

with g ∈ H , b ∈ �≤1, |δ(w)| ≤ k − 1 and |w| ≤ dimWk−1 − 1 (again using Proposi-
tion 2.8). The operator P = ∑

ua∈ϒ ρua annihilates Uk by Proposition 2.4 (since Uk

affords a representation of H orthogonal to the trivial representation) and therefore
PWk ⊆ Wk−1. Since ρb′w(χ̂S) ∈ Wk , it follows Pρb′w(χ̂S) ∈ Wk−1, whence

ρbuPρb′w(χ̂S) ∈ Ws ⊆ V0

as |δ(bu)| ≤ s − k + 1. Applying the Standard Argument results in a word t with
|St−1| > |S| and

|t | ≤ |bu| + ck + |b′w|
≤ 1 + dimWs − dimWk + ck + 1 + dimWk−1 − 1

≤ n − (dimWk − dimWk−1) + ck = n.

This completes the proof. �
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5.1 Products of cyclic groups of prime order

Let p be a prime and m ≥ 1. Consider the group G = Z
m
p . Then every generating set

for G contains a basis and so to prove that G is a Černý group, it suffices to show that
the Cayley graph of G with respect to a basis is a Černý Cayley graph.

Let’s first describe the irreducible representations of G. We have already seen the
irreducible representation ϕ : Zp → EndQ(Q(ωp)) which sends the generator to left
multiplication by ωp . Hence if ψ : Z

m
p → Zp is any non-zero (and hence onto) linear

functional, then the composition ϕψ is an irreducible representation of Z
m
p . Now if ξ

is the character of ϕ, then ξψ is the character of ϕψ . A straightforward computation
yields

ξ(k) =
{

p − 1 k = 0

−1 k �= 0

(since ξ summed with the trivial character of Zp gives the regular representation
of Zp). Thus if ψ1,ψ2 are two non-zero linear functionals, then ξψ1 = ξψ2 if and
only if kerψ1 = kerψ2. But two non-zero functionals on a finite dimensional vector
space have the same hyperplane as a kernel if and only if they are scalar multiples
of each other. In particular, the number of isomorphism classes of irreducible repre-
sentations of Z

m
p of the form ϕψ with ψ a non-zero functional equals the number of

lines in the dual vector space of Z
m
p , which is of course (pm − 1)/(p − 1).

Thus we have found (pm − 1)/(p − 1) pairwise non-isomorphic irreducible rep-
resentations of degree p − 1. The direct sum of all these representations and the
trivial representation gives a subrepresentation of the regular representation of G of
degree pm and so it must be the regular representation. Thus the above representa-
tions, along with the trivial representation, constitute all the irreducible representa-
tions of G. Consequently, m(G) = p − 1 while the diameter of the Cayley graph is
m(p − 1). In particular, for m > 1, Theorem 3.4 does not help us prove that G is a
Černý group. Nonetheless, we can show that Z

m
p is a Černý group for all m.

Theorem 5.2 Let p be a prime. Then Z
m
p is a Černý group for all m ≥ 1.

Proof Let G = Z
m
p and suppose (G,�) is a synchronizing automaton with � con-

taining a basis � for G. Set n = pm. Let S be a subset of G with 2 ≤ |S| < n. We
show that there is a word t ∈ �∗ of length at most n with |St−1| > |S|. Let us assume
the Standard Setup.

Since W0 is G-invariant, we may write it as M1 ⊕ · · · ⊕ Mk where the subspaces
M1, . . . ,Mk carry non-trivial irreducible subrepresentations of G. Then there exist
non-zero linear functionals ψ1, . . . ,ψk on Z

m
p so that Mi affords a representation

isomorphic to ϕψi with ϕ as in the discussion preceding the proof. In particular,
c0 = dimW0 = k(p−1). The representation afforded by W0 is ψ = ϕψ1 ⊕· · ·⊕ϕψk

and hence, since ϕ is injective, kerψ = ⋂k
i=1 kerψi . But G/kerψi

∼= Zp , for all
i = 1, . . . , k, so H = G/kerψ is isomorphic to a subgroup of Z

k
p and hence has

dimension at most k as a Zp-vector space. Since � is a basis for G, the image of
� is a spanning set for H and hence some subset of � of size at most k maps to a
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basis of H . Thus each coset of H can be represented by an element of �∗ of length at
most k(p − 1) = c0. An application of Lemma 5.1 (with A = G) provides the desired
word t . �

Remark 5.3 Notice that Theorem 5.2 only uses the case of Lemma 5.1 where k = 0,
which is the easier case.

Using similar techniques it can also be shown that if p1, . . . , pk are distinct odd
primes, then the Cayley graph of G = Z

m1
p1 × · · · × Z

mk
pk

with respect to a generating
set � = ⋃k

i=1 �i , where �i is a basis for Z
mi
pi

, is a Černý Cayley graph. Here one
must use that the irreducible representations of G are obtained by projecting to Zd

where d | p1 · · ·pk and then acting on Q(ωd).

5.2 Affine groups

Fix an odd prime p. Then Z
×
p acts naturally on Zp by left multiplication and we can

form the semidirect product Zp � Z
×
p , which can be identified with the affine group

AG(1,p) of all maps Zp → Zp of the form x �→ sx + r with s ∈ Z
×
p and r ∈ Zp .

Now fix a subgroup K ≤ Z
×
p and set G = Zp � K . For example, the case K = {±1}

results in the dihedral group Dp . Put k = |K|. Suppose that � is a generating set
for G so that every translation x �→ x + r can be represented by a word over � of
length at most p − 1, e.g. if � contains a non-trivial translation. Our goal is to show
that (G,�) is a Černý Cayley graph. First let us estimate the diameter. Denote by
A the normal subgroup of translations (so A ∼= Zp). Since G/A ∼= K has size k,
it follows that each coset of A has a representative of length at most k − 1. Since
G = ⋃

Ag where g runs over any given set of coset representatives, we conclude that
the diameter of (G,�) is at most p − 1 + k − 1 = p + k − 2 by our assumption on �.

Define a map ϕ : G → EndQ(Q(ωp)) on the basis by ϕ(r,s)(ω
t
p) = ωst+r

p for 0 ≤
t ≤ p − 1. So the factor Zp acts in the way to which we are already accustomed
while K acts via the identification of Z

×
p with the Galois group Gal(Q(ωp),Q). It is

routine to verify that ϕ is a representation. Also if λ : K → EndQ(QK) is the regular
representation of K and π : G → K is the projection, then λπ : G → EndQ(QK) is
a representation.

Proposition 5.4 The regular representation of G over Q decomposes as λπ ⊕ k · ϕ.

Proof We compare characters. Let ξ be the character of the regular representation
of G. It is well known and easy to see that

ξ(r, s) =
{

|G| (r, s) = (0,1)

0 otherwise.

Let θ be the character of λπ and ζ the character of ϕ. Then we have

θ(r, s) =
{

k s = 1

0 s �= 1
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To compute ζ , first let α be the character of the representation ψ of G on
Q[x]/(xp − 1) given by ψ(r,s)(x

t + (xp − 1)) = xst+r + (xp − 1). Then as a rep-
resentation of G, Q[x]/(xp −1) decomposes as the direct sum Q⊕Q(ωp) where the
factor Q is spanned by 1 + x + · · · + xp−1 + (xp − 1), which is fixed by G (since G

is a group of permutations of Zp and the latter can be identified with the cyclic group
〈x + (xp − 1)〉). Thus ψ is the direct sum of ϕ and the trivial representation. Now
α counts the number of 0 ≤ t ≤ p − 1 so that st + r ≡ t mod p. But this latter con-
gruence is equivalent to t (1 − s) ≡ r mod p and so has p solutions if r = 0, s = 1,
no solutions if s = 1, r �= 0 and one solution otherwise. Since ζ(r, s) = α(r, s) − 1, it
follows

ζ(r, s) =

⎧
⎪⎨

⎪⎩

p − 1 r = 0, s = 1

−1 r �= 0, s = 1

0 else.

Putting it all together, we compute

(θ + k · ζ )(r, s) =

⎧
⎪⎨

⎪⎩

k + k(p − 1) = kp r = 0, s = 1

k − k = 0 r �= 0, s = 1

0 else

and so ξ = θ + k · ζ , completing the proof. �

The proposition immediately leads us to deduce that m(G) = p − 1 and conse-
quently Theorem 3.4 is to weak to establish that (G,�) is a Černý Cayley graph.
Nonetheless, it is a Černý Cayley graph as the following result shows.

Theorem 5.5 Let K ≤ Z
×
p be a subgroup with p an odd prime. Set G equal to

the semidirect product Z
×
p � K , which we view as a subgroup of the affine group

AG(1,p). Let � be a generating set for G so that each translation has a represen-
tative in �∗ of length at most p − 1. Then the Cayley graph (G,�) of Zp � K is a
Černý Cayley graph.

Proof If K is trivial, then there is nothing to prove since we already know Zp is a
Černý group. So assume K �= 1. We retain the notation above and assume the Stan-
dard Setup. We must find t ∈ �∗ with |St−1| > |S| and |t | ≤ n. Recalling that we
have shown under the hypotheses of the theorem that diam�(G) ≤ p − 1 + k − 1,
if cr ≥ 2(p − 1) for some 0 ≤ r ≤ s, then the Gap Bound provides a word t with
|St−1| > |S| and

|t | ≤ n − cr + diam�(G) ≤ n − 2(p − 1) + p − 1 + k − 1 ≤ n.

If dimWs ≤ n − 1 − 2(p − 1), then the Gap Bound again asserts the existence of a
word t of length no more than n − 2(p − 1) + diam�(G) ≤ n so that |St−1| > |S|.

Next suppose that cr = p − 1 for some 0 ≤ r ≤ s. Since V ∼= Q
K ⊕ k · Q(ωp) and

dim Q
K/V0 = k − 1 < p − 1, it must be the case that Wr = Wr−1 ⊕ Ur with Ur

∼=
Q(ωp) (where we take W−1 = 0, as usual). But if A is the subgroup of translations,
then Ur affords a non-trivial irreducible representation of A, whence Lemma 5.1
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provides the desired word t as by assumption each element of A has a representative
in �∗ of length at most p − 1 and cr = p − 1.

If we are in none of the above cases, then Ws must contain as constituents at least
k−1 of the k copies of Q(ωp). In the notation of the Standard Setup, Ws decomposes
as U0 ⊕ U1 ⊕ · · · ⊕ Us with dimUr = cr . Here no Ui

∼= Q(ωp) or contains Q(ωp)

as a constituent with multiplicity greater than 1, or we would be back in one of the
previous cases. From the fact that Q

K/V0 has at most k − 1 irreducible constituents,
it follows that s = k − 2 and each Ur

∼= Q(ωp) ⊕ Mr where Mr is a non-trivial
irreducible constituent of Q

K , for 0 ≤ r ≤ s. Thus V0 ∼= Ws ⊕ Q(ωp) and hence
dimWs ≤ n− 1 − (p − 1) from which there results, by the Gap Bound, a word t with
|St−1| > |S| and length at most

1 + dimWs − (p − 1) + diam�(G) ≤ n − 2(p − 1) + p − 1 + k − 1 ≤ n.

This completes the proof, establishing the theorem. �

Remark 5.6 Let us remark that the last case of the above proof can only happen when
k = 2 since if K has k − 1 non-trivial irreducible representations, then each of them
must have degree 1 and so m(K) = 1, which implies K ∼= Z

m
2 . But K must be cyclic,

being a subgroup of Z
×
p , and consequently k = 2, as claimed.

An important special case of Theorem 5.5 is the full affine group.

Corollary 5.7 If p is an odd prime, any Cayley graph of the affine group AG(1,p)

with respect to a generating set containing a translation is a Černý Cayley graph.

5.3 Dihedral groups: revisited

In this section we show that if p is an odd prime, then the dihedral groups Dp and Dp2

are Černý groups. Let us begin with Dp . Since the subgroup of rotations of a regular
p-gon is cyclic of prime order, and hence generated by any non-trivial element, there
are two types of generating sets for Dp that are minimal with respect to containment:
either a reflection and a rotation, or two distinct reflections. Indeed, any generating
set � must contain a reflection. If � contains a rotation, then we are in the first case;
if s1, s2 ∈ � are distinct reflections, then s1s2 is a rotation by twice the angle between
their respective lines of reflection and hence s1, s2 generates the dihedral group.

A similar analysis holds for Dp2 . Let r be a rotation of order p2 and let K be
the subgroup generated by rp . Then K is a normal subgroup and Dp2/K ∼= Dp . We
claim that � is a generating set for Dp2 if and only if under the canonical projection
ρ : Dp2 → Dp one has that ρ(�) generates Dp . Necessity is clear. For sufficiency,
observe that if ρ(�) is a generating set, then either it contains a reflection and a
rotation or two reflections. Consider the first case. Then the rotation is of the form
aK where a is a rotation not belonging to K . But any element of 〈r〉 not belonging to
K is a generator. Thus a is a rotation of order p2 and � generates Dp2 . In the second
case, we have reflections s1, s2 so that s1K,s2K generate Dp . Then s1s2K is a non-
trivial rotation and so s1s2 /∈ K . Hence, s1s2 generates 〈r〉 and so s1, s2 generate Dp2 .
It follows that minimal generating sets of Dp2 with respect to containment consist
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either of a reflection and rotation of order p2 or of two reflections s1, s2 so that s1s2
is a rotation of order p2. The reader should note that the same argument applies
mutatis mutandis to Dpm .

In Subsection 4.2, we showed that Cayley graphs of Dp and Dp2 with respect to a

generating set consisting of a rotation and a reflection are Černý Cayley graphs (the
former is also covered by Theorem 5.5), so we are left with considering generating
sets consisting of two reflections.

Consider for the moment Dn with n odd. Let s, s′ be two reflections so that ss′ is
a rotation of order n. Then we claim that the diameter of Dn is at most n (actually it
is exactly n, as is well known in the theory of reflection groups). Indeed, since s, s′
are involutions, it follows that (ss′)−1 = s′s and so each non-trivial rotation can be
written uniquely in the form (ss′)k or (s′s)k with 0 ≤ k ≤ n−1

2 , that is each rotation
can be represented by a word of length at most n−1. Since each reflection is a product
of s with a rotation, this gives the upper bound of n. It now follows that Theorem 5.5
applies to show that Dp is a Černý group.

Theorem 5.8 Let p be an odd prime. Then the dihedral group Dp of order 2p is a
Černý group.

Proof Viewing Dp as a subgroup of the affine group AG(1,p) = Zp �Z
×
p , the above

discussion shows that each translation can be represented by a word of length at
most p − 1 for any generating set of Dp . Theorem 5.5 then provides the desired
conclusion. �

To prove that Dp2 with p an odd prime is a Černý group we first need to decom-
pose the regular representation of Dp2 over the rational numbers. Let r be a rotation
by 2π/p2 and s a reflection over an axis of symmetry of the regular p2-gon. Let
α : Dp2 → Q

× be given by sending each reflection to −1 and rotation to 1. Also note
that Q(ωp) and Q(ωp2) afford irreducible representations of Dp2 by having r act as
multiplication by ωp,ωp2 , respectively, and s acting as complex conjugation. Again
the latter two representations are already irreducible when restricted to 〈r〉.

Proposition 5.9 Let p be an odd prime. Then the regular representation of Dp2

decomposes as the direct sum of the trivial representation, α and two copies of both
Q(ωp) and Q(ωp2).

Proof For notational purposes let r be a rotation by 2π/p2 and s a reflection. Let
ξ1, ξ2 be the characters afforded by Q(ωp) and Q(ωp2) respectively. Notice that α

can be viewed as its own character. We show that the character ξ of the regular repre-
sentation is the sum of the trivial character τ with α + 2 · ξ1 + 2 · ξ2. Since the value
of a character at 1 is its degree, first note

τ(1) + α(1) + 2ξ1(1) + 2ξ2(1) = 1 + 1 + 2φ(p) + 2φ(p2)

= 1 + 1 + 2(p − 1) + 2(p2 − p) = 2p2

= ξ(1).
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Next we remark that ξ(g) = 0 all 1 �= g ∈ Dp2 . From the computation in Proposi-
tion 5.4 for ζ , it follows that

ξ1(r
k) =

{
p − 1 p | k
−1 p � k

while ξ1(sr
k) = 0 all k.

Since the regular representation of Zp2 is Q ⊕ Q(ωp) ⊕ Q(ωp2) we may deduce
that

ξ2(r
k) =

{
−1 − (p − 1) = −p p | k, k �= 0

−1 − (−1) = 0 p � k.

We claim that ξ2(sr
k) = 0 all k. Since all the reflections are conjugate in Dn with n

odd (rotation acts transitively on the axes of symmetry of a regular n-gon with n odd),
it suffices to deal with ξ2(s) (recall characters are traces and similar linear operators
have the same trace).

To ease notation, set ω = ωp2 . Then {1,ω, . . . ,ωp2−p−1} is a basis for Q(ωp2)

and the minimal polynomial for ω is the cyclotomic polynomial

1 + xp + (xp)2 + · · · + (xp)p−1.

If p < m < p2 − p, then ωm = ωp2−m and p2 − m < p2 − p. Since p2 − m �= m,
we conclude basis vectors of this form do not contribute to the trace of the operator
complex conjugation. From the minimal polynomial for ω it follows

ωp = ωp2−p = −1 − ωp − (ωp)2 − · · · − (ωp)p−2

and so the basis vector ωp contributes −1 to the trace of complex conjugation as an
operator. If 0 < m < p, then

ωm = ωp2−m = ωp2−pωp−m = (−1 − ωp − (ωp)2 − · · · − (ωp)p−2)ωp−m.

Note that kp+p−m = m with 0 ≤ k ≤ p−2 implies (k+1)p = 2m, a contradiction
since 2,m < p. So basis vectors of this form do not contribute to the trace. Finally,
1 = 1 and so the basis vector 1 contributes 1 to the trace. Thus the trace of complex
conjugation is zero, i.e. ξ2(s) = 0, as was required.

It follows τ(srk) + α(srk) + 2ξ1(sr
k) + 2ξ2(sr

k) = 1 − 1 + 0 + 0 = 0 and

τ(rk) + α(rk) + 2ξ1(r
k) + 2ξ2(r

k) =
{

1 + 1 + 2(p − 1) − 2p p | k, k �= 0

1 + 1 + 2(−1) + 0 p � k

= 0

establishing the desired equality ξ = τ + α + 2 · ξ1 + 2 · ξ2. �

Theorem 5.10 Let p be an odd prime. Then the dihedral group Dp2 of order 2p2 is

a Černý group.
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Proof By the discussion at the beginning of this subsection we need only handle the
case that the generating set � consists of two reflections s, s′ with r = ss′ a reflection
of order p2. Let us assume the Standard Setup and prove the existence of a word t of
length at most n = 2p2 so that |St−1| > |S|.

As shown above, diam�(Dp2) ≤ p2. Also V0 has five irreducible constituents: α

of degree 1, two copies of Q(ωp) each of degree p − 1 and two copies of Q(ωp2)

each of degree p2 − p. Let K = 〈rp〉; so Dp2/K ∼= Dp and sK, s′K generate the
quotient group. Notice that K is the kernel of the representation of Dp2 on Q(ωp).

Recalling Ws = U0 ⊕ · · · ⊕ Us , assume first that Ui affords α for some 0 ≤ i ≤ s.
Then applying Lemma 5.1 to A = 〈s〉 establishes the existence of the desired word t .

Next assume that Ui
∼= Q(ωp) for some 0 ≤ i ≤ s. Let A = 〈r〉 be the subgroup

of rotations. Then Q(ωp) affords a non-trivial irreducible representation ψ of A and
kerψ = K . Since every rotation in Dp

∼= Dp2/K can be written as either (ss′K)m or

(s′sK)m with m ≤ p−1
2 , it follows that each coset of A/K has a representative from

� of length at most p − 1 and so Lemma 5.1 again applies to guarantee the desired
word t exists.

Suppose that, for some 0 ≤ i ≤ s, we have Ui is isomorphic to either 2Q(ωp),
α ⊕ Q(ωp) or α ⊕ 2Q(ωp). Let ψ : G → EndQ(Ui) be the representation afforded
by Ui . Then kerUi = K and ci ≥ p ≥ diamsK,s′K(Dp2/K) and so an application of
Lemma 5.1 yields the sought after word t .

We claim that in all other cases, the Gap Bound provides the desired conclusion.
First we claim that unless there exist 0 ≤ i < j ≤ s so that Ui and Uj both have
Q(ωp2) as constituents, the Gap Bound immediately provides the result. Indeed, if
no copy of Q(ωp2) is a constituent of Ws , then

1 + dimWs + diam�(Dp2) ≤ n − 2(p2 − p) + p2 ≤ n

and the Gap Bound establishes the desired result. On the other hand, if exactly one
copy of Q(ωp2) is a constituent of Ws , then cr ≥ p2 − p some 0 ≤ r ≤ s and also
1 + dimWs ≤ n − (p2 − p). So the Gap Bound yields a word t of length at most
n − (p2 − p) − (p2 − p) + p2 ≤ n in this case as well.

So let Ui,Uj be as above. If no constituent of Ws is isomorphic to Q(ωp), then
again the Gap Bound provides the desired result since

1 + dimWs − (p2 − p) + p2 ≤ n − 2(p − 1) − (p2 − p) + p2 = n − p + 2 ≤ n

as p ≥ 3. If we are not in one of the cases previously considered, then Q(ωp) may
only occur as a constituent of Ui or Uj in Ws . If Q(ωp) is a constituent of either Ui

or Uj , but not both, then the Gap Bound once again yields the desired result since

1+dimWs − (p2 −p +p −1)+p2 ≤ n− (p −1)− (p2 −1)+p2 = n−p +2 ≤ n.

Thus we are left with the case that Ui and Uj each have Q(ωp) and Q(ωp2) as
constituents. In particular, we have ci, cj ≥ p2 − 1.

Now again, by the cases previously considered, either α is not a constituent of
Ws or α is a constituent of Ui or Uj . But then again the Gap Bound handles the
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result since in the latter case either ci or cj is p2 = diam�(D)p2 , while in the former
1 + dimWs = n − 1 and so the Gap Bound yields n − 1 − (p2 − 1) + p2 = n as an
upper bound on the length of t . This completes the proof. �

6 Open questions

There are a number of open questions left by this paper. As it is not quite clear that
the Černý conjecture is true — there is not even a quadratic bound at the full level
of generality — the fact that there are quadratic bounds in the context of this paper
makes the following question enticing.

Question 1 Is it true that all groups are Černý groups?

Dubuc’s work [12] begs the question as to whether all cyclic groups are Černý
groups.

Conjecture 2 All cyclic groups are Černý groups.

The difficulty in working on this conjecture is that Dubuc seems to use in an es-
sential way that each element of a cyclic group of order n has a unique representation
by a word of length at most n − 1 with respect to a cyclic generating set. I suspect
that a little bit of number theory may be needed in the general case.

The next natural step would be to consider abelian groups. I would guess that if
one can handle the above conjecture, then the next conjecture should be accessible.

Conjecture 3 All abelian groups are Černý groups.

I suspect that Dubuc’s techniques [12] can be extended to show that the Cayley
graph of a dihedral group with respect to a generating set consisting of a reflection and
a rotation is a Černý Cayley graph. I will put forth the following bolder conjecture.

Conjecture 4 Dihedral groups are Černý groups.

Finally, given the large degrees of representations and the substantial amount of
knowledge in the literature concerning representations of symmetric groups, it seems
natural to ask:

Question 2 Are all symmetric groups Černý groups?
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8. Černý, J.: A remark on homogeneous experiments with finite automata. Mat.-Fyz. Časopis Sloven.
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