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Abstract A group G of permutations of a set � is primitive if it acts transitively on
�, and the only G-invariant equivalence relations on � are the trivial and universal
relations.

A digraph � is primitive if its automorphism group acts primitively on its vertex
set, and is infinite if its vertex set is infinite. It has connectivity one if it is connected
and there exists a vertex α of �, such that the induced digraph �\{α} is not connected.
If � has connectivity one, a lobe of � is a connected subgraph that is maximal subject
to the condition that it does not have connectivity one. Primitive graphs (and thus
digraphs) with connectivity one are necessarily infinite.

The primitive graphs with connectivity one have been fully classified by Jung and
Watkins: the lobes of such graphs are primitive, pairwise-isomorphic and have at
least three vertices. When one considers the general case of a primitive digraph with
connectivity one, however, this result no longer holds. In this paper we investigate
the structure of these digraphs, and obtain a complete characterisation.

Keywords Primitive · Graph · Digraph · Permutation · Group · Orbital graph ·
Orbital digraph · Block-cut-vertex tree

1 Preliminaries

Throughout this note, a graph � will be a pair (V �,E�), where V � is the set of
vertices of �, and E� the set of edges. The set E� consists of unordered pairs of
distinct elements of V �.

A digraph � is a pair (V �,A�), where A� is the set of arcs of �. Each arc
is an ordered pair of distinct elements of V �. All paths in a digraph will be undi-
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rected, unless otherwise stated. A directed cycle in � is a path α0α1 . . . αn such that
(αn,α0) ∈ A� and (αi, αi+1) ∈ A� for all integers i satisfying 0 ≤ i < n.

All graphs and digraphs will be free of loops and multiple edges. They are said to
be infinite if their vertex sets are infinite.

The distance between two connected vertices α and β in a graph or digraph � will
be denoted by d�(α,β).

Groups, and in particular groups of automorphisms, will play a leading role in
many of the arguments presented herein. Throughout this work, G will be a group
of permutations of a set �, where � will usually be the vertex set of some infinite
digraph.

If α ∈ � and g ∈ G, we denote the image of α under g by αg . Following this
notation, all permutations will act on the right. The orbit of α under the action of G

will be denoted by αG.
If α ∈ �, we denote the stabiliser of α in G by Gα , and if � ⊆ � we denote the

setwise and pointwise stabilisers of � in G by G{�} and G(�) respectively.
A transitive group G is primitive on � if the only G-congruences admitted by �

are the trivial and universal equivalence relations; otherwise G is said to be imprimi-
tive. It is said to act regularly on � if Gα = 1 for each α ∈ �.

A subset � of � is called a block if for all g ∈ G we have either �g = � or
�g ∩ � = ∅. A block is called trivial if |�| = 1, and proper if � �= �. Since the
existence of a non-trivial proper block permits the construction of a non-trivial and
non-universal G-congruence on �, the group G is primitive if and only if � does not
contain a non-trivial proper block.

The following is well known, and is often a very useful test for primitivity.

Theorem 1.1 [1, Theorem 4.7] If G is a transitive group of permutations on �, and
|�| > 1, then G is primitive on � if and only if, for every α ∈ �, the stabiliser Gα is
a maximal subgroup of G.

A graph or digraph � is primitive if its automorphism group Aut� acts primitively
on the set V �, and is automorphism-regular if Aut� acts regularly on V �.

A primitive graph or digraph � with at least one edge or arc is always connected.
Indeed, the connected components of � form a set of Aut�-congruence classes.

The connectivity of an infinite connected graph or digraph � is the smallest pos-
sible size of a subset W of V � for which the induced graph � \ W is disconnected.
A lobe of � is a connected subgraph that is maximal subject to the condition it has
connectivity strictly greater than one. If � has connectivity one, then the vertices α

for which � \ {α} is disconnected are called the cut vertices of �.

2 Local structure

Consider the following construction. Let V1 be the set of cut vertices of a connected
graph �, and let V2 be a set in bijective correspondence with the set of lobes of �.
We let T be a bipartite graph whose parts are V1 and V2. Two vertices α ∈ V1 and
x ∈ V2 are adjacent in T if and only if α is contained in the lobe of � corresponding
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to x. In fact, this construction yields a tree, which is called the block-cut-vertex tree
of �. Note that if � has connectivity one and block-cut-vertex tree T , then any group
G acting on � has a natural action on T .

It is perhaps helpful to the reader at this point to describe a graph that is typical of
those in which we are interested. Let P5 denote the Petersen Graph. To each vertex
α in P5 we adjoin another two copies of P5 in such a way that α is contained in
three distinct copies of P5 that intersect only in α. We continue this process for each
additional vertex whenever a new P5 is adjoined. In this way we obtain an infinite
graph with connectivity one, whose lobes are isomorphic to P5. The block-cut-vertex
tree of this graph is a biregular tree, in which one set of the natural bipartition has
valency 3, and the other valency 10. As we shall see, this graph is primitive.

Let � be a primitive digraph with connectivity one whose lobes have at least three
vertices, and suppose G is a vertex- and arc-transitive group of automorphisms of �.
Since � is vertex-transitive with connectivity one, every vertex is a cut vertex. Fix
some lobe � of �, and let H be the subgroup of the automorphism group Aut�
induced by the setwise stabiliser G{�} of V � in G. Let T be the block-cut-vertex
tree of �, and let x be the vertex of T that corresponds to the lobe �. Our aim in this
section is to show H is primitive but not regular.

If x1 and x2 are distinct vertices of the tree T , we use C(T \ {x1}, x2) to denote
the connected component of T \ {x1} that contains the vertex x2.

Lemma 2.1 If G acts primitively on the vertices of �, then H acts primitively on the
vertices of �.

Proof If H acts transitively but not primitively on V �, then there exists a non-
trivial proper block � ⊆ V �. For any two distinct vertices α,β ∈ �, the digraph
(V �, (α,β)H ) is not connected, since it does not contain a path from α to any vertex
in V � \ �.

If H does not act transitively on V �, then one may choose distinct vertices
α,β, γ ∈ V � such that β ∈ αH but γ /∈ αH . Again the digraph (V �, (α,β)H ) is
not connected, as there is no path from α to γ . Thus, if H is not transitive on V �, or
if H is transitive but not primitive on V �, then there exist distinct vertices α,β ∈ V �

such that the digraph �′ := (V �, (α,β)H ) is not connected.
Suppose this is the case, and choose distinct vertices α,β ∈ V � such that �′ is

not connected. We will show this assumption implies the digraph �′ := (V �, (α,β)G)

cannot be connected, and is therefore not primitive; whence G cannot be primitive.
Recall that T is the block-cut-vertex tree of � and x is the vertex of T corre-

sponding to the lobe �. Let {�i}i∈I be the set of connected components of �′ and
let

Ci :=
⋃

δ∈�i

C(T \ {x}, δ) ∩ V �.

Suppose δi ∈ Ci and δj ∈ Cj , with i �= j . We claim δi and δj are not adjacent in �′.
Indeed, since the distance dT (α,β) between α and β in T is equal to 2, if δi and δj

are to be adjacent in the arc-transitive digraph �′, it must be the case that
dT (δi, δj )= 2. If either δi or δj is not adjacent to x in T then dT (δi, δj )>2, so they
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cannot be adjacent in �′. On the other hand, if δi and δj are adjacent to x in T , then
they both lie in V � = V �′, and therefore δi ∈ �i and δj ∈ �j . In this case, if they
are adjacent in �′ then there exists g ∈ G such that either (δi, δj ) or (δj , δi) is equal
to (α,β)g . Such an automorphism must fix V � setwise, and therefore lies in G{�}.
Thus, there exists an element h ∈ H such that either (δi, δj ) or (δj , δi) is equal to
(α,β)h, meaning that δi and δj are adjacent in �′; however, this contradicts the fact
that δi and δj are in distinct components of �′. Hence, δi and δj are not adjacent
in �′.

Hence, there can be no path in �′ between a vertex in Ci and a vertex in Cj when-
ever i �= j , and so the digraph �′ is not connected. Whence, �′ cannot be primitive,
and G cannot act primitively on V �. �

Fix distinct vertices α,β ∈ V � and recall that α and β are also vertices of the
block-cut-vertex tree T .

A geodesic between two vertices is a shortest path between them. In a tree, there is
a unique geodesic between any two vertices. Let [α,β]T be the T -geodesic between
α and β , and let (α,β)T be the T -geodesic [α,β]T excluding both α and β . This
notation extends obviously to [α,β)T and (α,β]T .

Since α and β are vertices of both � and T , the distance dT (α,β) is even, so we
may choose a vertex y ∈ (α,β)T that is distinct from α and β .

Lemma 2.2 If g ∈ Gα does not fix y ∈ V T , and δ /∈ C(T \ {y}, α), then δg /∈ C(T \
{y}, β).

Proof If δ /∈ C(T \ {y}, α) and δg ∈ C(T \ {y}, β) then δ, δg /∈ C(T \ {y}, α), so we
must have g ∈ Gα,y . �

Lemma 2.3 If g ∈ Gα does not fix the vertex y and δ /∈ C(T \ {y}, α) then
dT (y, δg) > dT (y, δ).

Proof If δ /∈ C(T \{y}, α) then y ∈ [α, δ]T . Thus dT (δ, δg) = dT (δ, y)+dT (y, yg)+
dT (yg, δg) and dT (δ, δg) = dT (δ, y)+dT (y, δg). Therefore dT (y, δg) = dT (yg, δg)+
dT (y, yg). Now dT (yg, δg) = dT (y, δ), and dT (y, yg) ≥ 1. Whence dT (y, δg) >

dT (y, δ). �

Henceforth, if H is a subgroup of G, then we will write H ≤ G; if we wish to
exclude the possibility of H = G we will instead write H < G.

Lemma 2.4 Let g1, . . . , gn ∈ Gα and h1, . . . , hn ∈ Gβ , and suppose Gα,y = Gβ,y .
If there exists γ ∈ V T such that Gα,y ≤ Gγ then, for some m ≤ n, there exist
g′

2, . . . , g
′
m ∈ Gα \Gy and g′

1 ∈ Gα \Gy ∪{1} together with h′
1, . . . , h

′
m−1 ∈ Gβ \Gy

and h′
m ∈ Gβ \ Gy ∪ {1} such that

γ g′
1h

′
1...g

′
mh′

m = γ g1h1...gnhn .

Proof The proof of this lemma will be an inductive argument. Suppose there exists
γ ∈ V T such that Gα,y ≤ Gγ .
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Let n = 1. When considering h1 ∈ Gβ we have two cases: either h1 ∈ Gy or h1 ∈
Gβ \ Gy . If h1 ∈ Gy then h1 ∈ Gβ,y = Gα,y , so g1h1 ∈ Gα . In this case, redefine
g1 := g1h1 and set h′

1 := 1. Alternatively, if h1 ∈ Gβ \ Gy then set h′
1 := h1. Having

found a suitable h′
1, we will now construct g′

1 from the (possibly redefined) element
g1 ∈ Gα . We again have two cases: either g1 ∈ Gy or g1 ∈ Gα \ Gy . If g1 ∈ Gy

then g1 ∈ Gα,y and so g1 ∈ Gγ . In this case we can choose g′
1 := 1. Otherwise, if

g1 ∈ Gα \ Gy , then choose g′
1 := g1. In choosing g′

1 and h′
1 in this way we ensure

that

γ g1h1 = γ g′
1h

′
1 ,

so the hypothesis holds when n = 1.
Let k be a positive integer, and suppose the hypothesis is true for all integers n ≤ k.

Fix g1, . . . , gk+1 ∈ Gα and h1, . . . , hk+1 ∈ Gβ , and set

γ ′ := γ g1h1...gk+1hk+1 .

We will use induction to construct elements g′
2, . . . , g

′
m ∈ Gα \ Gy and g′

1 ∈ Gα \
Gy ∪ {1} together with h′

1, . . . , h
′
m−1 ∈ Gβ \ Gy and h′

m ∈ Gβ \ Gy ∪ {1} such that

γ g′
1h

′
1...g

′
mh′

m = γ ′,

where m is some integer less than or equal to k + 1.
We begin by considering hk+1 ∈ Gβ . There are two cases: either hk+1 ∈ Gy or

hk+1 ∈ Gβ \ Gy . If hk+1 ∈ Gy then hk+1 ∈ Gβ,y = Gα,y , so gk+1hk+1 ∈ Gα . In
this case, redefine gk+1 := gk+1hk+1 and set h′ := 1. If, on the other hand, hk+1 ∈
Gβ \ Gy , then set h′ := hk+1.

If we now consider the (possibly redefined) element gk+1 ∈ Gα , there are again
two cases: either gk+1 ∈ Gy , or gk+1 ∈ Gα \ Gy . If gk+1 ∈ Gy then gk+1 ∈ Gα,y =
Gβ,y , so hkgk+1h

′ ∈ Gβ . In this case, let h′′ := hkgk+1h
′; then

γ ′ = γ g1h1...gkh
′′
,

so we can apply the induction hypothesis to γ g1h1...gkh
′′

and we are done. If, on the
other hand, gk+1 ∈ Gα \ Gy , then set g′ := gk+1, and observe

γ ′ = γ g1h1...gkhkg
′h′

.

By the induction hypothesis, for some l ≤ k there exist g′
2, . . . , g

′
l ∈ Gα \ Gy and

g′
1 ∈ Gα \ Gy ∪ {1} together with h′

1, . . . , h
′
l−1 ∈ Gβ \ Gy and h′

l ∈ Gβ \ Gy ∪ {1}
such that

γ g1h1...gkhk = γ g′
1h

′
1...g

′
lh

′
l .

At this final stage in the proof, we again face two possibilities: either h′
l = 1 or

h′
l ∈ Gβ \ Gy . In the first instance define g′′ := g′

lh
′
lg

′, so γ ′ = γ g′
1h

′
1...g

′
l−1h

′
l−1g

′′h′
.

Since g′′ = g′
lg

′ ∈ Gα and h′ ∈ Gβ and l ≤ k, we may apply the induction hypothesis.
On the other hand, if h′

l ∈ Gβ \ Gy , then set g′
l+1 := g′ ∈ Gα \ Gy and h′

l+1 :=
h′ ∈ Gβ \ Gy ∪ {1}, and observe γ ′ = γ g′

1h
′
1...g

′
l+1h

′
l+1 . Now l ≤ k, so defining m to be
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l + 1 we have m ≤ k + 1. Thus in both cases the hypothesis holds. It is therefore true
for n = k + 1. �

We are now in a position to present the main result of this section which describes
necessary conditions for a vertex-transitive subgroup of the automorphism group of
an infinite primitive digraph with connectivity one to be imprimitive.

Theorem 2.5 Let G be a vertex-transitive group of automorphisms of a connectivity-
one digraph � whose lobes have at least three vertices, and let T be the block-cut-
vertex tree of �. If there exist distinct vertices α,β ∈ V � such that, for some vertex
x ∈ (α,β)T ,

Gα,x = Gβ,x,

then G does not act primitively on V �.

Proof Suppose G acts primitively on V � and there exist distinct vertices α,β ∈ V �

and x ∈ (α,β)T such that Gα,x = Gβ,x . We will begin by showing the group
〈Gα,Gβ〉 generated by Gα and Gβ is not equal to G; then we shall show it is not
equal to Gα . Whence, Gα < 〈Gα,Gβ〉 < G which, by applying Theorem 1.1, will
contradict the assumption that G is primitive.

Without loss of generality, suppose dT (x,α) ≤ dT (x,β). If the orbit β〈Gα,Gβ 〉
contains α, then there exist elements g1, . . . , gn ∈ Gα and h1, . . . , hn ∈ Gβ such that
α = βg1h1...gnhn . By Lemma 2.4, we can find m ≤ n and g′

2, . . . , g
′
m ∈ Gα \ Gx and

g′
1 ∈ Gα \ Gx ∪ {1} together with h′

1, . . . , h
′
m−1 ∈ Gβ \ Gx and h′

m ∈ Gβ \ Gx ∪ {1}
such that

α = βg′
1h

′
1...g

′
mh′

m.

Suppose these automorphisms are chosen so that m is minimal.
Now either g′

1 ∈ Gα \ Gx or g′
1 = 1. If g′

1 = 1 then βg′
1 = β and therefore βg′

1h
′
1 =

β . Thus βg′
2h

′
2...g

′
mh′

m = α, contradicting the minimality of m. So we must have g′
1 ∈

Gα \ Gx . Since β /∈ C(T \ {x}, α), we may apply Lemma 2.2 and Lemma 2.3 to
obtain dT (x,βg′

1) > dT (x,β) and βg′
1 /∈ C(T \ {x}, β).

We now observe h′
1 �= 1. Indeed, if h′

1 = 1 then m = 1 and α = βg′
1 ; since g′

1 ∈ Gα

this is clearly not possible.
Thus, h′

1 ∈ Gβ \ Gx and βg′
1 /∈ C(T \ {x}, β), and we can again deduce from

Lemma 2.2 and Lemma 2.3 that dT (x,βg′
1h

′
1) > dT (x,βg′

1) > dT (x,β), and βg′
1h

′
1 /∈

C(T \ {x}, α).
We may continue to apply Lemmas 2.2 and 2.3 to obtain βg′

1h
′
1...g

′
m /∈ C(T \{x}, β)

and dT (x,βg′
1h

′
1...g

′
m) > dT (x,β). Now either h′

m ∈ Gβ \Gx or h′
m = 1. If h′

m = 1 then
α = βg′

1h
′
1...g

′
m , and so dT (x,α) = dT (x,βg′

1h
′
1...g

′
m) > dT (x,β). If h′

m ∈ Gβ \Gx then,
by Lemma 2.3, dT (x,βg′

1h
′
1...g

′
mh′

m) > dT (x,β); that is, dT (x,α) > dT (x,β). Thus,
in both cases dT (x,α) > dT (x,β). This contradicts our assumption that dT (x,α) ≤
dT (x,β). Hence α /∈ β〈Gα,Gβ 〉, and so 〈Gα,Gβ〉 cannot act transitively on the set
V �. This ensures that 〈Gα,Gβ〉 �= G.

By Theorem 1.1, we must therefore have 〈Gα,Gβ〉 = Gα . Thus, the set of vertices
Fix(Gα) fixed by Gα contains both α and β . This set is a block of imprimitivity. Thus,
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every vertex in V � must be fixed by Gα , and so Gα = 〈1〉. However, Gα is a maximal
subgroup of G, so Gα = 〈1〉 implies that G is a finite cyclic group of prime order.
This, however, is impossible, as G acts transitively on the infinite set V �.

Hence 〈Gα,Gβ〉 �= Gα , and 〈Gα,Gβ〉 �= G, which contradicts our assumption that
G is primitive. �

Theorem 2.6 Let G be a vertex-transitive group of automorphisms of a connectivity-
one digraph � whose lobes have at least three vertices. If G acts primitively on V �

and � is some lobe of � then G{�} is primitive and not regular on V �.

Proof Suppose G acts primitively on V �, and � is a lobe of �. By Lemma 2.1,
G{�} acts primitively on V �. Suppose this action is regular. If T is the block-cut-
vertex tree of � then there exists a vertex x ∈ V T corresponding to the lobe �.
Choose distinct vertices α and β in V �, and observe Gα,x = Gα,{�} ≤ Gβ and
Gβ,x = Gβ,{�} ≤ Gα ; furthermore, x ∈ (α,β)T . This, however, is impossible, as it
implies G is imprimitive by Theorem 2.5. �

3 Global structure

In this section we shall employ Theorem 2.6 to give a complete characterisation of
the primitive connectivity-one digraphs.

Lemma 3.1 Suppose � is a vertex-transitive digraph with connectivity one, whose
lobes are vertex-transitive, have at least three vertices and are pairwise isomorphic.

If γ is a vertex in some lobe � of � and α ∈ V � is γ or lies in a component of
� \ {γ } distinct from the component containing V �\ {γ }, then the subgroup of Aut�
induced by the action of (Aut�)α,{�} on � is (Aut�)γ , and the group induced by the
action of (Aut�){�} on � is Aut�.

Proof Let T denote the block-cut-vertex tree of �, and let � be a lobe of �. Choose
γ ∈ V � and let C′ be a component of � \ {γ } distinct from that which contains
V � \ {γ }. Let C be the subgraph of � induced by C′ ∪ {γ }, and suppose α is any
vertex in C.

We begin by asserting that if �1 and �2 are lobes of �, and α1 and α2 are vertices
in �1 and �2 respectively, then there exists an isomorphism ρ : �1 → �2 such that
α

ρ
1 = α2. Indeed, by assumption there exists an isomorphism ρ′ : �1 → �2. Define

α′
1 := α

ρ′
1 . Since the lobe �2 is vertex-transitive, there exists an automorphism τ of

�2 such that α′
1
τ = α2. Let ρ := ρ′τ . Then ρ : �1 → �2 is an isomorphism, with

α
ρ
1 = α

ρ′τ
1 = α′

1
τ = α2.

Let x be the vertex of T that corresponds to �. For k ≥ 0, define �k to be the
subgraph of � induced by the set {ξ ∈ V � | dT (x, ξ) ≤ 2k + 1}, and Ck := C ∩ �k .
Note that �0 = �. We will show any automorphism σk : �k → �k which fixes Ck

admits an extension σk+1 : �k+1 → �k+1 which fixes Ck+1.
Fix k ≥ 0 and let σk : �k → �k be an automorphism that fixes Ck pointwise; in

particular, σ0 ∈ (Aut�)γ . Let {αi}i∈I be the set of vertices in V �k \ V �k−1 (where
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V �−1 := ∅). Each vertex αi belongs to a unique lobe �i of �k , and, if k ≥ 1, the
lobe �i possesses precisely one vertex in �k−1. Since � is vertex transitive, any two
vertices lie in the same number of lobes of �, so let {�i,j }j∈J be the set of lobes of �

that contain αi and are distinct from �i . Each lobe �i,j is wholly contained in �k+1
and has exactly one vertex in �k , namely αi . If i ∈ I , set α′

i := α
σk

i and �′
i := �

σk

i .
Then �′

i = �i′ for some i′ ∈ I . For all j ∈ J there exists an isomorphism ρi,j :
�i,j → �i′,j such that α

ρi,j

i = α′
i . Thus, we may define a mapping σk+1 : �k+1 →

�k+1 with

βσk+1 :=

⎧
⎪⎨

⎪⎩

βσk if β ∈ V �k;

β if β ∈ C;

βρi,j if β ∈ V �i,j \ C.

This is clearly a well-defined automorphism of �k+1.
Hence if σ0 ∈ (Aut�)γ , then we may extend it to an automorphism σ of � that

fixes C pointwise, and therefore fixes α. Since each automorphism in (Aut�)γ may
be extended in this way, the subgroup of Aut� induced by (Aut�)α,{�} must contain
(Aut�)γ . Clearly no automorphism of � may fix α and � setwise whilst not also
fixing γ , so these two groups must in fact be equal.

We now adjust the above argument to show that the group induced by the action
of (Aut�){�} on � is Aut�. Fix k ≥ 0 and consider an automorphism σk : �k → �k

that fixes V � setwise; in particular, σ0 ∈ (Aut�).
Using the above notation, we may define a map σk+1 : �k+1 → �k+1 with

βσk+1 :=
{

βσk if β ∈ V �k;

βρi,j if β ∈ V �i,j .

This is a well-defined automorphism of �k+1. Thus we may extend any automor-
phism σ0 ∈ (Aut�) to an automorphism σ of � that fixes � setwise. Whence the
group induced by the action of (Aut�){�} on � is Aut�. �

The primitive graphs with connectivity one have the following complete charac-
terisation.

Theorem 3.2 [3, Theorem 4.2] If � is a vertex-transitive graph with connectivity one,
then it is primitive if and only if the lobes of � are primitive, pairwise isomorphic and
each has at least three vertices.

Jung and Watkins’ result, while impressive, cannot be applied to primitive di-
graphs without some modification. Indeed, consider the following counterexample.
Let � be the connectivity-one primitive graph whose lobes are undirected 3-cycles,
in with each vertex lies in precisely two lobes. It is of course possible to verify this
graph is primitive using Theorem 3.2.

We assign to each vertex in � the label 1, 2 or 3 in such a way that no two vertices
in a common lobe of � share the same label. Whence, each lobe of � has a vertex
labelled 1, a vertex labelled 2 and a vertex labelled 3.
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For each lobe in � we replace its edge set with a set of three arcs, from the vertex
labelled i to the vertex labelled (i + 1) mod 3, for i = 1,2,3. In this way we obtain a
vertex-transitive connected digraph �′ whose vertex set is V �. Furthermore, the lobes
of this digraph are primitive, pairwise isomorphic, and have at least three vertices.
However, the set of vertices labelled 1 is a non-trivial proper block of the group
Aut�′, so this group cannot act primitively on the digraph �′.

The approach taken by Jung and Watkins in their proof of Theorem 3.2 is broadly
similar to the argument presented thus far. They first prove that any automorphism of
a lobe � of a vertex-transitive graph � with connectivity one may be extended to an
automorphism of �. It is then shown that if the lobes of � are vertex primitive, have
at least three vertices, and are pairwise isomorphic, then � is primitive. It is here that
their proof fails to apply to digraphs; by citing Theorem 1 of [2] they claim the lobes
of � cannot be automorphism-regular. While this is indeed true of graphs, it is not
true of digraphs, as our previous example illustrates.

Imrich’s result states that the automorphism group of a graph with more than two
vertices cannot be regular and primitive. It relies on two results, Lemmas 2 and 3 of
[2]. Lemma 2 is the well-known result that a regular primitive group of permutations
must be cyclic; Lemma 3 states that any transitive abelian automorphism group of a
non-trivial graph is the direct product of two cyclic groups of order 2. Any primitive
and regular automorphism group of a graph must therefore equal this direct product;
Imrich shows that no such graph exists, and correctly deduces that automorphism-
regular primitive graphs are not possible. It is in the proof of the latter lemma that
Imrich’s result ceases to be applicable to digraphs: his argument requires the exis-
tence of a specific graph automorphism ψ . On inspection it transpires that ψ is not
a digraph automorphism, since it reverses the direction of edges. Thus Theorem 1 of
[2] is not applicable to digraphs, which in turn causes Jung and Watkins’ result to fail.

Although their result does not extend immediately to digraphs, a complete char-
acterisation is still possible.

Theorem 3.3 If � is a vertex-transitive digraph with connectivity one, then it is prim-
itive if and only if the lobes of � are primitive but not automorphism-regular, pairwise
isomorphic and each has at least three vertices.

Proof Let � be a vertex-transitive digraph with connectivity one. Suppose the lobes
of � are primitive but not automorphism-regular, pairwise isomorphic and each has
at least three vertices. Let ≈ be an Aut�-congruence on V � such that there exist
distinct vertices α,β ∈ V � with α ≈ β . We will show this relation must be universal,
and thus that � is a primitive digraph.

Let T be the block-cut-vertex tree of �, let γ ∈ V � be the vertex in the geodesic
[α,β]T such that dT (β, γ ) = 2, and let � be the lobe of � containing β and γ .

By Lemma 3.1 the group (Aut�){�} acts primitively and not regularly on the
lobe �. Thus there exits an automorphism h ∈ (Aut�)γ,{�} which does not fix β .
By restricting the action of h to the vertices of �, we see that there must be an
element in Aut�γ which does not fix β . By Lemma 3.1, the subgroup of Aut�
induced by (Aut�)α,{�} is equal to (Aut�)γ , so there must therefore exist an element
g ∈ (Aut�)α,γ,{�} that does not fix β .
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Thus, β and βg are distinct vertices in �. Now α ≈ β , so α ≈ βg , and therefore
β ≈ βg . Since (Aut�){�} is primitive on V � and ≈ induces a non-trivial (Aut�){�}-
congruence on V �, this relation must be universal in �. By assumption, Aut� acts
transitively on the lobes of �, so if two vertices lie in the same lobe then they must lie
in the same congruence class. Thus, if γ is any vertex of �, and αx1α1x2 . . . xnγ is
the geodesic in T between α and γ , then α and α1 lie in a common lobe, so α ≈ α1.
Similarly, α1 ≈ α2 and α2 ≈ α3, so α ≈ α2 and α ≈ α3. Continuing in this way we
eventually obtain α ≈ γ . Hence, this congruence relation is universal on V �.

Conversely, suppose the group Aut� acts primitively on V �. Since � is a primi-
tive digraph with connectivity one, we can obtain an graph �′ with vertex set V � and
edge set {{α,β} | (α,β) ∈ A�}. Two vertices are adjacent in � if and only if they are
adjacent in �′. As Aut� is primitive on V � and Aut� ≤ Aut�′, it follows that Aut�′
must be primitive on V �, and hence �′ is a primitive graph. Since � has connectivity
one, the same is true of �′, so we may apply Theorem 3.2 to deduce the lobes of �′
are primitive, pairwise isomorphic and each has at least three vertices. Now, given
a lobe � of �, there is a lobe �′ of �′ such that V � = V �′. Therefore, the lobes
of � have at least three vertices, and are primitive but not automorphism-regular by
Theorem 2.6.

It remains to show they are pairwise isomorphic. Fix some lobe � of � and an
arc (α,β) ∈ A�. Let �1 be the digraph (V �, (α,β)Aut�). As Aut� is primitive, this
digraph is a connected subgraph of �. Thus, every lobe of � must contain an arc in
A�1. Furthermore, if � is a lobe of �, then any automorphism of � mapping the arc
(α,β) to an arc in � must map � to �. Since �1 is arc-transitive, the lobes of � must
be pairwise isomorphic. �

It is now a simple exercise to classify those vertex-transitive digraphs with connec-
tivity one which are counterexamples to the application of Jung and Watkins’ result to
digraphs without modification. Any such counterexample must be one of two types:
digraphs that satisfy the conditions of Jung and Watkins’ theorem, but are neverthe-
less imprimitive; and digraphs that are primitive, but fail to satisfy Jung and Watkins’
characterisation.

Since the conditions given in Theorem 3.3 under which one may be certain a
vertex-transitive digraph with connectivity one is primitive include the corresponding
conditions given in Jung and Watkins’ theorem, no primitive digraph with connectiv-
ity one is of the latter type. Thus, any counterexample must be imprimitive, yet still
satisfy the conditions of Jung and Watkins result. We begin with a lemma.

Lemma 3.4 For each prime p, a digraph � on p vertices is a directed cycle if and
only if its automorphism group is the cyclic group Cp of order p.

Proof Suppose p is prime and � is a digraph on p vertices. If � is a directed cycle
then clearly its automorphism group is Cp .

Conversely, suppose � has automorphism group Cp . Without loss of generality,
we may label the vertices of � as integers 0,1, . . . , p − 1 such that (0,1) is an arc in
� and Cp is generated by the permutation ρ with

iρ = i + 1 mod p.
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Since Cp is transitive on V �, for some set J ⊆ {1, . . . , p − 1} we may write

A� =
⋃

j∈J

(0, j)Cp .

Note that 1 ∈ J . Let σ be a permutation of V � fixing the vertex 0 and fixing J

setwise. Choose (a, b) ∈ A� and observe (a, b) = (0, j)ρ
k

for some j ∈ J and some
integer k. Now (a, b)ρ

−kσ = (0, j)σ = (0, j ′) for some j ′ ∈ J , and (0, j ′) ∈ A�.
Thus σ lies in Aut� and, if J contains at least two elements, is not in Cp . Whence,
J = {1} and � is a directed cycle. �

Recall that any counterexample to the unmodified extension of Jung and Watkins’
result to digraphs must be imprimitive, yet still satisfy the conditions of their theorem.
By Theorem 3.3, all such digraphs must have automorphism-regular primitive lobes
which are pairwise isomorphic, with each possessing at least three vertices. Let � be
such a digraph.

If � is a lobe of �, then Theorem 1.1 tells us that Aut� is cyclic of prime order p.
Since this group is transitive, it implies that � must have precisely p vertices. Thus
� is a p-vertex digraph whose automorphism group is the cyclic group Cp of order
p, and is necessarily a directed cycle by Lemma 3.4.

Conversely, we note that for any odd prime p, a vertex-transitive digraph with
connectivity one whose lobes have p vertices and automorphism group Cp , satisfies
the primitivity conditions given by Jung and Watkins for graphs.

Thus the counterexamples to the unmodified extension of Jung and Watkins’ result
are precisely those digraphs whose lobes have an odd prime p number of vertices,
and are directed cycles. This is summarised in our concluding theorem. Here the
undirected graph associated with the digraph � is the graph with vertex set V � and
edge set {{α,β} | (α,β) ∈ A� or (β,α) ∈ A�}.

Theorem 3.5 If � is a vertex-transitive imprimitive digraph with connectivity one,
then its associated (undirected) graph is primitive if and only if the lobes of � are
pairwise isomorphic directed p-cycles, for some odd prime p.

Acknowledgements This paper contains parts taken from the author’s DPhil thesis, completed under the
supervision of Peter Neumann at the University of Oxford. The author would like to thank Dr Neumann
for his tireless enthusiasm and helpful suggestions. The author would also like to thank the EPSRC for
generously funding this research, and the two referees who strengthened this paper with their advice.

References

1. Bhattacharjee, M., Macpherson, D., Möller, R.G., Neumann, P.M.: Notes on Infinite Permutation
Groups. Lecture Notes in Mathematics, vol. 1698. Springer, Berlin (1998)

2. Imrich, W.: Graphen mit transitiver Automorphismengruppe. Monatsh. Math. 73, 341–347 (1969)
3. Jung, H.A., Watkins, M.E.: On the structure of infinite vertex-transitive graphs. Discrete Math. 18,

45–53 (1977)


	Infinite primitive directed graphs
	Abstract
	Preliminaries
	Local structure
	Global structure
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


